CERN Accélérateur de science

Article
Report number arXiv:1803.10256 ; CP3-18-24 ; CERN-TH-2018-057 ; HU-Mathematik-2018-03 ; HU-EP-18/09 ; SLAC-PUB-17240
Title Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series
Author(s) Broedel, Johannes (Humboldt U., Berlin) ; Duhr, Claude (CERN ; Louvain U., CP3) ; Dulat, Falko (SLAC) ; Penante, Brenda (CERN) ; Tancredi, Lorenzo (CERN)
Publication 2018-08-07
Imprint 2018-03-27
Number of pages 65
Note 65 pages
In: JHEP 08 (2018) 014
DOI 10.1007/JHEP08(2018)014
Subject category math.MP ; Mathematical Physics and Mathematics ; math-ph ; Mathematical Physics and Mathematics ; hep-ph ; Particle Physics - Phenomenology ; hep-th ; Particle Physics - Theory
Abstract We present a generalization of the symbol calculus from ordinary multiple polylogarithms to their elliptic counterparts. Our formalism is based on a special case of a coaction on large classes of periods that is applied in particular to elliptic polylogarithms and iterated integrals of modular forms. We illustrate how to use our formalism to derive relations among elliptic polylogarithms, in complete analogy with the non-elliptic case. We then analyze the symbol alphabet of elliptic polylogarithms evaluated at rational points, and we observe that it is given by Eisenstein series for a certain congruence subgroup. We apply our formalism to hypergeometric functions that can be expressed in terms of elliptic polylogarithms and show that they can equally be written in terms of iterated integrals of Eisenstein series. Finally, we present the symbol of the equal-mass sunrise integral in two space-time dimensions. The symbol alphabet involves Eisenstein series of level six and weight three, and we can easily integrate the symbol in terms of iterated integrals of Eisenstein series.
Copyright/License publication: (License: CC-BY-4.0)
preprint: (License: arXiv nonexclusive-distrib 1.0)

Corresponding record in: Inspire


 Notice créée le 2018-04-13, modifiée le 2024-10-01


Article from SCOAP3:
scoap3-fulltext - Télécharger le documentPDF
scoap - Télécharger le documentPDF
Fichiers:
1803.10256 - Télécharger le documentPDF
arXiv:1803.10256 - Télécharger le documentPDF