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We consider finite superamplitudes of N ¼ 1 matter, and use superconformal symmetry to derive
powerful first-order differential equations for them. Because of on-shell collinear singularities, the Ward
identities have an anomaly, which is obtained from lower-loop information. We show that in the five-
particle case, the solution to the equations is uniquely fixed by the expected analytic behavior. We apply the
method to a nonplanar two-loop five-particle integral.
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Conformal symmetry has played a central role in
quantum field theory for many decades. In recent years,
its consequences are being actively explored within the
AdS/CFT correspondence, the bootstrap program, and
high-energy QCD.
In particle physics, scattering amplitudes are fundamen-

tal objects, relevant for collider physics. In the high-energy
regime the masses can often be neglected, and the
Lagrangian becomes conformal. Implications of conformal
symmetry were successfully investigated in maximally
supersymmetric Yang-Mills theory, based on the remark-
able duality between scattering amplitudes and Wilson
loops. The conformal symmetry used there is that of the
dual Wilson loop. However, the native (super)conformal
symmetry of the amplitudes is largely unexplored. The
purpose of this Letter is to study its consequences in a
broader framework.
One reason why this is a difficult problem is that putting

the external particles on shell can render the symmetry
anomalous. Tree-level amplitudes have a holomorphic
anomaly [1–4] that arises when external particles become
collinear. This mechanism is responsible for the breakdown
of (super)conformal symmetry of tree-level amplitudes and
of discontinuities of loop amplitudes [5–7].
The conformal symmetry of finite loop integrals and the

associated anomalous Ward identities were studied in
Ref. [8]. The anomaly occurs when an external lightlike
momentum becomes collinear with a loop momentum. The
equations provide nontrivial constraints; however, due to

their second-order nature, it is in general not straightfor-
ward to solve them.
In the present Letter, we show how to obtain powerful

first-order differential equations in a model of N ¼ 1
massless supersymmetric matter. The amplitudes are infra-
red finite. A certain sector of the amplitudes consists of
ultraviolet finite Feynman diagrams, so within it we are not
affected by the running coupling. Naively, the Feynman
integrals in this sector should enjoy all the symmetries of
the model, in particular (super)conformal symmetry. We
show that special conformal supersymmetry is broken by
collinear contact terms inside the finite Feynman integrals,
and we derive Ward identities that quantify this effect.
We remark that a similar phenomenon was observed
in the context of the supersymmetric Wilson loop in
Refs. [9–11].
As a first application, we focus on the five-particle case,

which is interesting for several reasons. First, it turns out
that for four particles (super)conformal symmetry does not
give any restrictions. So, from this point of view, five
particles is the first nontrivial case. On the other hand, five-
particle scattering at higher loops involves intricate tran-
scendental functions [12–14] and is of considerable current
interest [15,16].
We show how the differential equations can be used to

fully determine the answer. The fermionic generator is
reduced to the so-called twistor collinearity operator of
Ref. [1]. Its kernel consists of a function of holomorphic
cross-ratios only [6]. We propose a way to fix this boundary
freedom by imposing expected analytic properties of the
function. We illustrate these ideas by computing a non-
trivial nonplanar two-loop five-particle integral.
N ¼ 1matter superamplitudes and their superconformal

anomalies.—We consider scattering amplitudes in theWess-
Zumino model of N ¼ 1 massless supersymmetric matter.
The multiplet is described by a chiral superfieldΦðp; θÞ and
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its antichiral conjugate Φ̄ðp; θ̄Þ. The Lagrangian contains
cubic interactions g

R
d2θΦ3 and g

R
d2θ̄Φ̄3.

This model is superconformal at the classical level. At
the quantum level, the symmetry is broken, but only by
propagator corrections, and the beta function is propor-
tional to the anomalous dimension of the superfield [17].
This property allows us to study individual finite super-
graphs, with the only requirement that they do not contain
propagator correction subgraphs. See Figs. 1 and 2 for
sample graphs.
Such graphs are naively superconformal. Wewill see that

the symmetry is in fact broken by on-shell collinear effects.
The latter can be controlled and give rise to powerful
anomalous Ward identities.
In order to discuss superamplitudes, we introduce the on-

shell superstates

Φ̄ðp; ηÞ ¼ ϕ̄ðpÞ þ ηψ−ðpÞ;
Ψðp; ηÞ ¼ ψþðpÞ þ ηϕðpÞ: ð1Þ

They depend on the lightlike momentum pα _α ¼ λαλ̃ _α, and
on the Grassmann variable η. For the antichiral on-shell
state η ¼ ½λ̃ θ̄�≡ λ̃ _αθ̄

_α; for the chiral state it is defined as
the Fourier transform of λαθα. The Feynman rules of the
quantum theory are well known. Here we only need the
mixed propagator (wave function) hΦ̄ð−p; θ̄ÞΨðp; ηÞi ¼
ηþ ½λ̃ θ̄�, and the antichiral cubic vertex involving a
Grassmann integral, g

R
d2θ̄Φ̄3.

In our N ¼ 1 model, the breaking of conformal super-
symmetry can already be seen for the three-point vertex
function of two off-shell superfields and one on-shell state.
Apart from illustrating the mechanism, this object will also
constitute the main building block for our practical calcu-
lations. At leading order, it is given by

F ≡ hΦ̄ðq1; θ̄1ÞΦ̄ðq2; θ̄2ÞjΦ̄ðp; ηÞig
¼ δ4ðPÞδ2ðQÞ g

q21q
2
2

: ð2Þ

The delta functions account for momentum P ¼ q1 þ q2 þ
p and supercharge Q ¼ θ̄1q1 þ θ̄2q2 þ ηλ conservation.
Invariance under Q̄ ¼ P

ið∂=∂θ̄iÞ þ λ̃ð∂=∂ηÞ is also
readily verified. We focus on the chiral superconformal

generator Sα ¼ 1
2

P
ið∂2=∂qα _αi ∂θ̄i _αÞ þ ð∂2=∂η∂λαÞ. It anni-

hilates F for generic momentum configurations. However,
this is not true in the collinear regime q1 ∼ q2 ∼ p. When
the bosonic derivatives in Sα act on the product of
propagators in Eq. (2), they generate contact terms. We
postpone the details to a future publication and give the
result for the collinear superconformal anomaly

SαF ¼ 2iπ2λα
Z

1

0

dξðηþ ½λ̃θ̄1�ξþ ½λ̃θ̄2�ξ̄Þ

× δ4ðq1 þ ξpÞδ4ðq2 þ ξ̄pÞ; ð3Þ
where ξ̄ ¼ 1 − ξ. The antichiral generator is not anoma-
lous, S̄ _αF ¼ 0. The superconformal algebra fSα; S̄ _αg ¼
Kα _α then yields an anomaly of the conformal generator K
similar to that of Ref. [8].
The anomalous Ward identity Eq. (3) tells us that when

acting on an on-shell supergraph, such as the one shown in
Fig. 1, we pick up an anomaly contribution from each chiral
three-point vertex (grey blob) connected to an external
antichiral on-shell state. Thanks to the extra delta function
in Eq. (3), a loop integration is localized, so that the
anomaly term for an L-loop graph is expressed in terms of a
onefold integral of an (L − 1)-loop graph.
Let us now apply this anomaly equation to computing

N ¼ 1 matter superamplitudes. They can be classified
according to their Grassmann degree. Because of Q
supersymmetry, the general form of an amplitude of m
Φ̄ states and n Ψ states is

An;m ¼ δ4ðPÞδ2ðQÞPn;m: ð4Þ

The Grassmann degree of Pn;m is related to the Uð1Þ R
symmetry of the theory. We have Rη ¼ 1, RΦ̄ ¼ 2=3,
and RΨ ¼ 1=3. Therefore, Pn;m has R-charge ðnþ 2mÞ=
3 − 2 ≥ 0. In this Letter, we consider the five-particle case
n ¼ 1 and m ¼ 4, i.e., RP ¼ 1, as a first application.
The five-leg amplitudes we consider have the structure

A1;4 ¼ hΦ̄ðp1; η1ÞΦ̄ðp2; η2ÞΦ̄ðp3; η3ÞΦ̄ðp4; η4ÞΨðp5; η5Þi
¼ δ4ðPÞδ2ðQÞΞ123CðpÞ: ð5Þ

Here we used the Q̄ invariant

FIG. 1. One-loop N ¼ 1 matter supergraph. Black and grey
blobs denote antichiral and chiral vertices, respectively. FIG. 2. Nonplanar two-loop N ¼ 1 matter supergraph.
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Ξ123 ¼ η1½23� þ η2½31� þ η3½12�: ð6Þ

Any three η’s define such an invariant, but all the choices
are equivalent due to supercharge conservation, e.g.,
Ξ123 ¼ ðh45i=h12iÞΞ345, etc. Thus, the entire superampli-
tude Eq. (5) is determined by a single bosonic functionCðpÞ.
The latter can be found by extracting a component amplitude,
for example, ½23�h45iC ¼ hψ−ð1Þϕ̄ð2Þϕ̄ð3Þψ−ð4Þϕð5Þi,
which corresponds to the η1η4η5 term in Eq. (5).
Let us now turn to the superconformal Ward identities.

When Sα acts on the rhs of Eq. (5), it commutes with
δ4ðPÞδ2ðQÞ, so that we only need the relation

Sα½Ξ123C� ¼ Fα
123C; ð7Þ

where

Fα
123 ¼ ½23� ∂

∂λ1α þ ½31� ∂
∂λ2α þ ½12� ∂

∂λ3α ð8Þ

is the so-called twistor collinearity operator, see Ref. [1].
We remark that we could have equally well acted with S̄ _α

on the conjugated amplitude A4;1, which has RP ¼ 0.
In order to determine the right-hand side of the Ward

identity we need to evaluate explicitly the S variation of the
supergraphs contributing to A1;4 (recall that we neglect
propagator corrections). The chiral vertex functions are
exactly S invariant. The antichiral ones are invariant up to a
contact term, see Eq. (3), which becomes relevant due to the
loop integrations. So for A1;4 we have contributions from
the antichiral legs 1, 2, 3, 4. The generator Sα lowers the
Grassmann degree by one, so we have

SαA1;4 ¼ δ4ðPÞδ2ðQÞ
X

i¼1;2;3;4

λαi AiðpÞ ð9Þ

with some bosonic anomaly functions AiðpÞ. Comparing
with Eqs. (5) and (7), we derive the anomalous super-
conformal Ward identity

Fα
123CðpÞ ¼

X
i¼1;2;3;4

λαi AiðpÞ: ð10Þ

We note that the freedom in choosing the superinvariant
Ξijk also affects the collinearity operator Fijk. Thus we have
h45iF345C ¼ h12iF123C, etc., where momentum conser-
vation is assumed. However, the additional equations do
not provide new information.
It is convenient to define the dimensionless, helicity-

neutral function

f ¼ h45i½14�½23�C: ð11Þ
For general five-particle kinematics, f depends on four
dimensionless variables. They can be chosen as

x1 ¼ −1 −
s14
s15

; x2 ¼ −1 −
s14
s45

ð12Þ

where sij ¼ 2pi · pj, and

x3 ¼
½12�½34�
½23�½41� ; x4 ¼

½23�½45�
½34�½52� : ð13Þ

The real variables x1, x2 are parity even, while the complex
variables x3, x4 undergo conjugation under parity.
Let us comment on the solutions of the homogeneous

equation Fα
123f̃ ¼ 0. The two components of this equation

fix the dependence on x1, x2, while Fα
ijkx3 ¼ Fα

ijkx4 ¼ 0, so
that any function of the holomorphic variables x3, x4 solves
the homogeneous equation, see also Ref. [6]. However,
transcendental functions of these variables have unphysical
branch cut properties; consequently, we expect the freedom
of the homogeneous solution to reduce to just one inte-
gration constant.
Box with off-shell leg.—Let us illustrate the method with

a one-loop example. We consider the box with one off-shell
leg, see Fig. 1. Extracting the component η1η4η5 we express
the bosonic function R as the following Feynman integral

f ¼ −½14�
Z

d4l
iπ2

h1jq2q̃4j4i
q21q

2
2q

2
3q

2
4

: ð14Þ

As is well known [18], this coincides with the “magic”
pentagon integral of Ref. [19], as well as with the six-
dimensional one-mass scalar box. It is given by

f ¼ Li2ðx1x2Þ − Li2ð−x1Þ − Li2ð−x2Þ þ Li2ð1Þ: ð15Þ
Let us now derive the result for f from the super-

conformal Ward identity [Eq. (10)]. Anomalies originate
from the antichiral legs 1 and 4, see Eq. (3), while
A2 ¼ A3 ¼ 0, up to contact terms. A short supergraph
calculation gives

A1 ¼
logðs23=s45Þ

h15iðs23 − s45Þ
; A4 ¼

logðs23=s15Þ
h45iðs23 − s15Þ

: ð16Þ

Projecting the two components of Eq. (10) with indepen-
dent spinors, we find

x1∂x1fðx1; x2Þ ¼ log
1þ x1
1 − x1x2

≡ a1ðx1; x2Þ;

x2∂x2fðx1; x2Þ ¼ log
1þ x2
1 − x1x2

≡ a4ðx1; x2Þ: ð17Þ

It is clear from Fig. 1 that the functions f, a1, and a4 are
independent of x3, x4.
The system of differential equations, Eq. (17), deter-

mines f up to an arbitrary constant. The latter can be fixed
by demanding finiteness of C in Eq. (11) as s14 → 0. The
final solution takes the form

f ¼
Z

x1

−1

dt
t
a1ðt; x2Þ ¼

Z
x2

−1

dt
t
a4ðx1; tÞ: ð18Þ

To see that each of these integrals solves both equations in
Eq. (17), one uses the integrability condition x2∂x2a1 −
x1∂x1a4 ¼ 0 and the property a1ðx1;−1Þ ¼ a4ð−1; x2Þ ¼ 0
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of the anomaly terms. It is easy to check that Eq. (18)
agrees with Eq. (15).
We find it amusing to note that, although the super-

conformal Ward identities are trivial for four particles, one
can nonetheless obtain the result for the four-particle
amplitude by taking the (finite) collinear limit p2 ∼ p3

of our result, which yields log2 s15=s45 þ π2.
Application to nonplanar five-particle integral.—Next,

we consider the nonplanar pentabox diagram of Fig. 2. Its
η1η4η5 component is given by

f ¼ −½14�½23�
ðiπ2Þ2

Z
d4l1d4l2

q21…q28
h2jq2q̃4j3ih1jq5q̃7j4i: ð19Þ

The symbol [20] of this integral was recently obtained
using the bootstrap approach [14]. Here we compute the
full function, in a straightforward way, using our new
method. In this way, we also prove the result of Ref. [14],
without any assumptions about the symbol alphabet.
The anomalous superconformal Ward identity for this

integral involves four anomaly terms Ai corresponding to
the four chiral vertices in Fig. 2. Because of the 1⇆4 and
2⇆3 symmetries, only two of them are independent. The
delta functions in Eq. (3) reduce the Ai to one-loop
integrals. A1 is determined by the one-mass box with the
magic numerator computed above; A2 involves a sum of
two pentagons with one massive corner.
Using known expressions for these one-loop functions,

we find

A1 ¼
1

h15i
Z

1

0

dξ

ξs45 þ ξ̄s23

�
Li2

�
1 −

ξs45 þ ξ̄s23
ξs12

�

þ Li2

�
1 −

ξs45 þ ξ̄s23
ξs13

�
þ 1

2
log2

�
s12
s13

�
þ π2

6

�

A2 ¼ −½25�
Z

1

0

dξ

h51i½13�h32i½25� þ ξ̄s23s25

× log
ξξ̄s12s24

ðξs15 þ ξ̄s34Þðξs13 þ ξ̄s45Þ

× log
ξ̄s45ðξs15 þ ξ̄s34Þ
ξs15ðξs13 þ ξ̄s45Þ

: ð20Þ

Integrating over ξ, we find that the anomaly equation,
Eq. (10) takes the form

Fα
123f ¼ ½14�½23�h45i

X4
i¼1

λαi
ai
ri
; ð21Þ

where ai are pure functions of weight three, and where

r1 ¼ h15iðs23 − s45Þ; r2 ¼ h25is23;
r3 ¼ h35is23; r4 ¼ h45iðs23 − s15Þ: ð22Þ

Projecting Eq. (21) onto its independent components, we
can write

d̃f¼ a1d̃ logx1þa4d̃ logx2

þa2d̃ log
1−x1x2

ð1þx2Þðx3−1Þx4þð1þx1Þðx3x4−1Þ
þa3d̃ log

1−x1x2
ð1þx2Þx3x4þð1þx1Þðx3x4−1Þ ; ð23Þ

with d̃ ¼ dx1∂x1 þ dx2∂x2 . We note that the integrability
condition d̃2f ¼ 0 yields a nontrivial cross-check on the
calculation of the anomaly terms ai appearing in Eq. (23).
Equation (23) determines f up to an arbitrary function
gðx3; x4Þ. We now give two ways of fixing the latter.
Onemethod follows the one-loop example above. Using a

Feynman parameter representation of the integral Eq. (19),
one can show that lims14→0f ¼ fðx1 ¼ x2 ¼ −1Þ ¼ 0, while
keeping x3, x4 constant, i.e., gðx3; x4Þ ¼ 0.
This remarkable fact is not a coincidence and leads us to

a second method of fixing the boundary data. Imagine that
we have already found the correct solution for f. We argue
that any additional, nontrivial function gðx3; x4Þ would
introduce unphysical analytic behavior, such as branch cuts
depending on the holomorphic variables x3, x4 only. This
argument also explains the existence of some values of x1,
x2 [in our case (−1, −1)], for which f and hence g are
independent of x3, x4.
We can write the solution for f by integrating, e.g., ∂x1f

from the boundary point x1 ¼ −1, in close analogy with
Eq. (18), but this time with contributions from a1, a2, a3. To
see this, one notices that the parameter representations
[Eq. (20)] satisfy a1ðx1;−1;x3;x4Þ¼a4ð−1;x2;x3;x4Þ¼0.
For convenience, we focus on the kinematic region
si;iþ1 < 0, s13 < 0, s24 < 0, for which f is real-valued.
Some care is required, as the boundary point x1 ¼ −1 lies
outside the above region. The integration is performed
analytically using Ref. [21] and evaluates to weight four
multiple polylogarithms [22]. The final expression is given in
Supplemental Material [23].
In principle, one could rewrite the answer in terms of a

minimal function basis, see Ref. [20]. We have checked that
it involves nonclassical polylogarithms, e.g., Li2;2, in
addition to classical polylogarithms. We leave this rewrit-
ing and the study of suitable function arguments [24] for
future work.
Let us discuss checks of our result. The symbol of the

result agrees with Ref. [14]. The function has disconti-
nuities [22] only at expected values of the sij, and not at
values depending on the holomorphic variables x3, x4.
Finally, we compared the numeric evaluation [25] to that of
an integral representation.
Let us study the symbol of our answer in light of the

structure suggested by the differential equation, Eq. (23),
which constrains the possible last entries. Four of the last
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entries simply correspond to the arguments of the loga-
rithms of Eq. (23). In terms of the fWig alphabet, i ¼
1;…; 31 of Ref. [14], they are given byW14=W5,W2=W20,
W2=W18 andW12=W4. Other last entries must be functions
of x3, x4 only. There are only 5 such letters in the alphabet
of Ref. [14], namely, W5W17W26=ðW1W4Þ, and cyclic. We
find that the symbol of our answer can indeed be written in
terms of eight of those nine last entries.
Discussion.—In this Letter we took first steps towards

finding implications of superconformal symmetry for loop-
level amplitudes.We derived powerful superconformalWard
identities for finite scattering amplitudes in a model ofN ¼
1 supersymmetric matter. The essential reason for the
presence of the anomaly lies in the on-shell external legs,
which makes singular collinear configurations possible.
We obtained a first-order differential equation for a given

L-loop integral, with the right-hand side expressed as a
single parameter integral over certain (L − 1)-loop inte-
grals. This is to be contrasted with the traditional differ-
ential equations approach (see, e.g., Ref. [26]), which
involves a large system of equations, and whose generation
typically requires considerable computer algebra. Being
first order, our equations are very powerful. Their kernel is
easily seen to contain only holomorphic functions. We
argued that the absence of unphysical analytic behavior is
enough to fix this freedom.
It is important to note that our method applies equally to

planar and nonplanar amplitudes. We illustrated this by
evaluating a nonplanar two-loop five-particle Feynman
integral.
The differential equations shed light on the class of

special functions needed. This information can be valuable
input for “bootstrap” approaches that have been success-
fully used in several cases, such as amplitudes in N ¼ 4
super Yang-Mills theory [27,28] and rapidity anomalous
dimensions [29]. Additionally, we expect that the classes of
special functions defined by our differential operators will
be of interest to mathematicians.
The class of integrals considered here is generated byN ¼

1 matter supergraphs without propagator corrections. An
avenue for future research is to extend the present method to
includeN ¼ 1 gauge superfields to cover the full spectrumof
massless particles. We expect that this will allow the
applicationof themethod to the “local” integrals for scattering
amplitudes in maximally supersymmetric Yang-Mills theory
[19]. Thiswill also enable us to elucidate the relationshipwith
the powerful Wilson loop approach of Refs. [9–11] and seek
applications to more general amplitudes.
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discussions. The authors were supported in part by the
PRISMA Cluster of Excellence at Mainz university. This
project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020

research and innovation programme (Grant Agreement
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