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Abstract: Starting from a factorization theorem in effective field theory, we derive a

parton-shower equation for the resummation of non-global logarithms. We have imple-

mented this shower and interfaced it with a tree-level event generator to obtain an auto-

mated framework to resum the leading logarithm of non-global observables in the large-Nc

limit. Using this setup, we compute gap fractions for dijet processes and isolation cone

cross sections relevant for photon production. We compare our results with fixed-order

computations and LHC measurements. We find that naive exponentiation is often not

adequate, especially when the vetoed region is small, since non-global contributions are

enhanced due to their dependence on the veto-region size. Since our parton shower is de-

rived from first principles and based on renormalization-group evolution, it is clear what

ingredients will have to be included to perform resummations at subleading logarithmic

accuracy in the future.
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1 Introduction

In the papers [1, 2] we have derived a factorization formula for exclusive jet cross sections

which allows one to resum the logarithms arising in the limit where the energy Q0 outside

the jets is much smaller than the energy Q inside. In these papers, we have computed

different ingredients of the factorization theorem and verified that the logarithmic structure

is fully reproduced at Next-to-Next-to-Leading Order (NNLO), but no resummation was

performed. Also, for simplicity, we focussed on the Sterman-Weinberg jet cross section,

which is defined for e+e− colliders. In the present paper we follow up on the work [1, 2] and

discuss the resummation of the leading non-global logarithms (NGLs) in detail. We show

that the renormalization group (RG) equation which drives it translates into a parton-

shower equation. Implementing this shower then allows us to resum a variety of non-global

observables.

That the complicated pattern of logarithms for non-global observables can be obtained

from an angular dipole shower was shown already in the original paper by Dasgupta and

Salam who discovered them [3]. Their analysis was based on the properties of strongly-

ordered QCD amplitudes. The connection to parton showers is less immediate in our
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treatment which is based on RG evolution in Soft-Collinear Effective Theory (SCET) [4–6]

(see [7, 8] for a review). Our starting point is a factorization theorem which separates

the hard radiation inside the jets (or outside the isolation cone) from the soft radiation.

The soft radiation is driven by Wilson lines along the directions of the hard partons in the

process. Since there are contributions involving any number of hard partons, we end up

with operators with an arbitrary number of Wilson lines and these operators mix under

renormalization. The corresponding RG equation is complicated, but we will show that it

takes the form of a recursive equation that can be solved using a parton-shower Monte Carlo

(MC) program, which at leading-log accuracy in the large-Nc limit is equivalent to the one

used by Dasgupta and Salam. An advantage of our treatment is that the RG equation is

not limited to leading logarithmic accuracy and we briefly discuss which ingredients and

modifications will be necessary to reach higher precision. There has been a lot of recent

work [9–12] on the general structure of parton showers and how to increase their accuracy.

The problem at hand provides an explicit example of a shower equation derived from first

principles for which it is clear what ingredients are needed to resum sub-leading logarithms.

The leading logarithms can be obtained by starting from the tree-level amplitudes

and running the parton shower to generate the logarithmically enhanced terms. We have

written a dedicated parton-shower code to perform the resummation and use the Mad-

Graph5_aMC@NLO framework [13] to generate the necessary tree-level amplitudes. This

provides an automated framework to perform the resummation, which we use to study

exclusive jet and isolation cone cross sections, both at lepton and hadron colliders. In

particular, we give numerical results for dijet production with a gap between jets and com-

pare to ATLAS measurements [14, 15] and theoretical predictions [16] based on the BMS

equation [17]. We also study isolated photon production and compute the logarithms of

εγ , the energy fraction inside the isolation cone.

The remainder of this paper is organized as follows. In Section 2 we review the factor-

ization theorem for jet cross sections with gaps or isolation cones. In Section 3 we will show

that RG evolution of the associated Wilson coefficients is equivalent to a parton shower,

and we give the necessary ingredients for LL resummation. In Section 4 we will apply

the shower code to obtain some phenomenological predictions, namely gap fraction of dijet

production and isolation cone cross section. We summarize our results and provide some

further discussion in Section 5.

2 Factorization for jet cross sections

Consider an exclusive k-jet cross section at a lepton collider with center-of-mass energy Q

in which radiation is vetoed in an angular region Ωout outside the jets. If the veto has an

associated energy scale Q0, this process fullfils a factorization formula of the form [1, 2]

dσ(Q,Q0) =

∞∑
m=k

〈
Hm({n}, Q, µ)⊗ Sm({n}, Q0, µ)

〉
. (2.1)

The factorization theorem is the leading term in an expansion of the cross section in

β = Q0/Q. Since the soft radiation is sensitive to the directions {n} = {n1, . . . , nm} and
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the color charges of the hard partons, both the soft and hard functions depend on these

quantities. The symbol ⊗ indicates an integral over these directions and 〈 . . . 〉 denotes

the color trace, which is taken after combining the two functions. In (2.1) we indicate the

dependence of the cross section on Q and Q0 explicitly, but it depends on the momenta of

the individual jets. The cross section thus involves several individual hard energy scales,

but we assume that all of them are of order Q and do not indicate them explicitly. Below,

we will compute cross sections as a function of the rapidities and the average transverse

momentum of the jets.

The formula (2.1) covers a variety of situations. The most common is exclusive jet

cross sections, with a veto on additional radiation outside the jets. For low values of the

veto scale Q0, the outside region is also called the “gap” between the jets. The name

“gap” refers to studies of forward dijet processes without any hadrons outside the jets

[18–20], which is of course problematic in a perturbative context [21]. For our work, we

are interested in values of Q0 in the perturbative domain. Note that the radiation inside

the gap is outside the jets; however, throughout our paper “inside” will always refer to the

region of large energy. A second set of observables obeying (2.1) are isolation cone cross

sections for small values of the energy inside the cone, which are relevant e.g. for photon

production. In the above notation Ωout then refers to the angular region of the isolation

cone and Q0 to the hadronic energy inside it.

The ingredients of the formula (2.1) develop large collinear logarithms as the jets

become narrow. We have analyzed this situation in [1, 2] and have shown that the hard

and soft functions factorize further in this limit. This additional factorization allows for

the resummation of the associated logarithms using RG evolution. Concerning the non-

global structure this is a purely technical complication, and for simplicity’s sake, we will

not resum logarithms of the jet radius in the present paper. Such logarithms are of course

of interest and were studied in a number of recent papers, both for exclusive and inclusive

cross sections, see [22–28].

The second, more important limitation of the formula (2.1) is that it was derived for

e+e− collisions. Naively, one would guess that one simply will need to include a convolution

with parton distribution functions (PDFs) to account for incoming partons and generalize

(2.1) to hadron colliders. However, the work of [29, 30] has shown that beyond the large-

Nc limit, the factorization properties become more complicated. The anomalous dimension

which governs the hard function evolution involves Glauber (or Coulomb) phases which no

longer cancel in the hadron collider case. This leads to double logarithms at higher orders

which cannot be absorbed into PDFs. It will be interesting to analyze the low-energy

theory in the presence of these “super-leading” logarithms. In the present work we will

remain in the large-Nc limit where these complications are absent.

The factorization theorem (2.1) is based on the factorization of soft radiation from a

hard amplitude with m partons, which takes the form

S1(n1)S2(n2) . . . Sm(nm) |Mm({p})〉 , (2.2)

where Si(ni) is a Wilson line along the direction of particle i in the appropriate color

representation. The soft functions are given by the matrix element squared of emissions
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from these Wilson lines

Sm({n}, Q0, µ) =

∫
Xs

∑
〈0|S†1(n1) . . . S†m(nm) |Xs〉〈Xs|S1(n1) . . . Sm(nm) |0〉 θ(Q0 − E out) ,

(2.3)

where the states Xs contain an arbitrary number of soft partons. The soft functions depend

on the energy Q0 of the radiation and implicitly also on the shape of the region Ωout in

which the energy is measured. The Wilson-line matrix elements have ultraviolet divergences

which can be renormalized away and this induces a dependence on the renormalization scale

µ.

The hard functions are given by the square of the hard-scattering amplitudes, together

with the phase-space constraints Θin

({
p
})

which restrict the m hard partons to the inside

of the jets,

Hm({n}, Q, µ) =
1

2Q2

∑
spins

m∏
i=1

∫
dEiE

d−3
i

(2π)d−2
|Mm({p})〉〈Mm({p})|

× (2π)d δ
(
Q−

m∑
i=1

Ei

)
δ(d−1)(~ptot) Θin

({
p
})

. (2.4)

For cone jets the phase-space constraint Θin

({
p
})

is defined by cones around the hard

partons. For recombination algorithms, on the other hand, the jet clustering constraints

can be quite complicated in general and can spoil factorization. However, they simplify in

our setup which considers the limit of hard partons together with (infinitely) soft radiation.

This situation was considered in [31] where it was shown that for anti-kT jets, the jet

boundary becomes cone-like so that the theorem (2.1) also applies to this case.

Since the cross section must be independent of the scale µ, the scale dependence among

the hard and soft functions must cancel. The one for the hard function is driven by the

RG equation

d

d lnµ
Hm({n}, Q, µ) = −

m∑
l=k

Hl({n}, Q, µ) ΓHlm({n}, Q, µ) . (2.5)

This evolution equation is formally solved by the path ordered exponential

U({n}, µs, µh) = P exp

[ ∫ µh

µs

dµ

µ
ΓH({n}, µ)

]
, (2.6)

and the resummed cross section is then

dσ(Q,Q0) =

∞∑
l=k,m≥l

〈
Hl({n}, Q, µh)⊗Ulm({n}, µs, µh) ⊗̂Sm({n}, Q0, µs)

〉
. (2.7)

The condition m ≥ l arises because the anomalous dimension matrix is zero below the

diagonal, see below. The hat in ⊗̂ indicates that one has to integrate over the angles of

the (m − l) additional unresolved emissions. For the choice µh ∼ Q and µs ∼ Q0, the

hard and soft functions are free of large logarithms and can be expanded in the respective
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Figure 1. The relation between shower time t, hard scale µh and soft scale µs. We stop the lines

in the plot when µs reaches 1 GeV.

coupling constants αs(µh) and αs(µs). At leading logarithmic accuracy, we only need these

functions at leading power in αs. The soft functions then become trivial Sm = 1 and all

higher-multiplicity hard functions are suppressed, Hm ∼ αm−ks Hk. The cross section thus

simplifies to

dσLL(Q,Q0) =
∞∑
m=k

〈
Hk({n}, Q, µh) ⊗ Ukm({n}, µs, µh) ⊗̂1

〉
, (2.8)

where the evolution factor can be evaluated with the leading-order expression for the

anomalous dimension ΓH . We note that the Born-level cross section is given by

dσ0(Q,Q0) =
〈
Hk({n}, Q, µh)

〉
. (2.9)

This demonstrates that the starting point of the evolution is the tree-level cross section, as

we have indicated earlier. The additional piece of information needed is the color structure

since the evolution changes the colors. The paper [32] has modified the MadGraph code

in such a way that it provides the full color information. We will focus on the large-Nc

limit below and use the color information which MadGraph provides for showering its

tree-level events. We will come back to this point later.

It is convenient to rewrite the exponent of the evolution matrix (2.6) at leading order

in RG-improved perturbation theory in the form∫ µh

µs

dµ

µ
ΓHnm =

∫ α(µh)

α(µs)

dα

β(α)

α

4π
Γ(1)
nm =

1

2β0
ln
α(µs)

α(µh)
Γ(1)
nm . (2.10)

Using the one-loop anomalous-dimension matrix Γ
(1)
nm yields leading logarithmic accuracy

in the evolution. The prefactor

t =
1

2β0
ln
α(µs)

α(µh)
=
αs
4π

ln
µh
µs

+O(α2
s) (2.11)
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is the “evolution time”, which we will call shower time in the context of the parton shower.

We start the evolution at t = 0 and then evolve to larger times, which correspond to lower

scales. Since we will sometimes plot quantities as a function of the shower time t, we show

the relation between t and the ratio of the low scale µs to the high scale µh for different

hard-scattering scales µh in Figure 1. The plot makes it clear that the relevant region for

perturbative calculations is t . 0.1, even after resummation.

3 RG evolution as a parton shower

To obtain a MC implementation of the leading-logarithmic evolution we make use of the

explicit form of the one-loop anomalous dimension [2], which for k-jet production has the

form

Γ(1) =


Vk Rk 0 0 . . .

0 Vk+1 Rk+1 0 . . .

0 0 Vk+2 Rk+2 . . .

0 0 0 Vk+3 . . .
...

...
...

...
. . .

 . (3.1)

The one-loop anomalous dimensions are given by

Vm = 2
∑
(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

∫
dΩ(nl)

4π
W l
ij

− 2 iπ
∑
(ij)

(Ti,L · Tj,L − Ti,R · Tj,R) Πij , (3.2)

Rm = −4
∑
(ij)

Ti,L · Tj,RWm+1
ij Θin(nm+1) .

In [2], they were derived by considering soft limits of the amplitudes. The relevant product

of soft currents leads to a dipole structure for the angular dependence given by the factor

W l
ij =

ni · nj
ni · nl nj · nl

. (3.3)

Before discussing the evolution, let us explain how the anomalous dimension acts on the

functions Hm defined in (2.4). These functions contain both amplitudes |Mm({p})〉 and

their conjugate. The color matrices Ti,L acts on the i-th parton in the amplitude while

Tj,R multiplies the conjugate, for example

(T1,L · T2,L + T3,R · T4,R)Hm = T1 · T2 Hm + Hm T3 · T4 . (3.4)

and Ti,L · Tj,L =
∑

a T
a
i,L · T a

j,L. This is the usual color-space notation [33, 34]. While we

do not indicate this notationally, the color matrices in the real-emission operator Rm are

different. They take an amplitude with m partons and associated color indices and map it

into an amplitude with m+ 1 partons. Explicitly, we have

Ti,L · Tj,RHm = T a
i Hm T a

j . (3.5)
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and the index a is the color of the emitted gluon. Note that there is no sum over the color

a. The color sum will only be taken at the end after multiplying with the soft function.

We nevertheless use the scalar product notation Ti,L · Tj,R since it allows us to suppress

the color indices, which is one of the advantages of the color-space formalism. However,

when applying the real emission operator Rm one needs to keep in mind that one changes

into new color space and that subsequent applications of color matrices can act on the new

color index.

We have explicitly indicated the imaginary part of the virtual diagrams in the anoma-

lous dimension (3.2). The corresponding Glauber phase arises from cutting the two lines

between which the virtual gluon is exchanged and arises when i and j are both incoming or

outgoing, and the factor Πij is defined to be 1 in this case and 0 otherwise. For e+e− colli-

sions, this part immediately vanishes due to color conservation
∑

i Ti = 0 but it is present

in hadronic collisions and induces the super-leading logarithms discovered in [29, 30].

Let us now discuss the solution of the RG at leading logarithmic accuracy. Using the

simple structure of the anomalous dimension matrix (3.1) and changing variables from µ

to t, the RG equation (2.5) reads

d

dt
Hm(t) = Hm(t)Vm + Hm−1(t)Rm−1 , (3.6)

where we have suppressed the dependence on the other variables. The solution of the

homogenous part of the equation is simply an exponential and we can thus rewrite (3.6) as

Hm(t) = Hm(t0) e(t−t0)Vm +

∫ t

t0

dt′Hm−1(t′)Rm−1 e
(t−t′)Vm . (3.7)

This is the form in which parton-shower equations are usually presented: we evolve from

t0 to time t either without an emission (the first part), or by adding an additional emission

to a lower-leg amplitude. In this context e(t−t′)Vm is usually called the Sudakov factor, but

since our problem is single logarithmic, this nomenclature does not quite fit. To map to

expression (2.8), we note that

Hm(t) ≡Hk({n}, Q, µh)Ukm({n}, µs, µh) , (3.8)

and that the initial condition is Hm(0) = 0 for all m > k. To solve the equation for a

process with k jets, one starts with m = k and then uses (3.7) iteratively to generate all

higher functions

Hk(t) = Hk(0) etVk ,

Hk+1(t) =

∫ t

0
dt′Hk(t

′)Rk e
(t−t′)Vk+1 , (3.9)

Hk+2(t) =

∫ t

0
dt′Hk+1(t′)Rk+1 e

(t−t′)Vk+2 ,

Hk+3(t) = . . . .

– 7 –



Rm
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1
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2
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m+ 1
1

m

2
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...

Figure 2. The action of the operator Rm on an amplitude with m legs in the large-Nc limit. The

double and single lines represent gluons and quarks, respectively.

To get the resummed result, one evolves to the appropriate value of t, which is set by the

scales µh and µs in (2.11). The leading-logarithmic cross section is obtained from the sum

dσLL(Q,Q0) =

∞∑
m=k

〈
Hm(t) ⊗̂1

〉
=
〈
Hk(t) +

∫
dΩ1

4π
Hk+1(t) +

∫
dΩ1

4π

∫
dΩ2

4π
Hk+2(t) + . . .

〉
, (3.10)

where we have explicitly written out the angular integrations over the additional emissions

generated by the shower.

To perform the integrations over the intermediate times and the angles of the emissions,

one has to resort to MC methods. Implementing the above equations is difficult because

the hard functions and anomalous dimension are matrices in the color space of the involved

partons and the dimension of this space rapidly grows for higher particle multiplicities. For

this reason a full implementation of color into a parton shower has so far not been achieved,

but there are methods to systematically expand around the large-Nc limit [35–37]. Here,

we will work in the strict large-Nc limit and use the trace basis for the color structure, so

that emissions only arise between neighbouring legs

Ti · Tj → −
Nc

2
δi,j±1 1 , (3.11)

and each loop or real emission simply leads to an additional factor of Nc. We have discussed

this point in detail in [2] and reproduce an illustration from this paper in Figure 2 which

shows how the real-emission operator Rm acts on an amplitude with m legs. The amplitude

at large Nc can be viewed as a set of color dipoles and the real emission operator adds a

new leg, splitting an existing dipole into two new ones. Similarly, the virtual correction

operator (3.2) reduces to a sum of integrals for each dipole involving neighbouring legs

Vm = −4Nc 1
∑
i

∫
dΩ(nl)

4π
W l
i,i+1 (3.12)

in the large-Nc limit. The treatment of color is of course completely standard and exactly

what is implemented in all existing parton-shower programs. In our practical implemen-

tation, we work with Les Houches Event Files (LHEF) [38] obtained by computing the
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tree-level amplitudes with MadGraph5_aMC@NLO. The event files provide the direc-

tions of the hard partons in Hk(t) as well as their color connections. We can thus read out

all the necessary information to start the shower and to generate Hm(t) for m > k.

Individually both Rm and Vm suffer from collinear divergences. These cancel in phys-

ical observables, but need to be regularized in our shower since we want to exponentiate

the virtual corrections, see (3.7). A simple way to achieve this is to regularize the dipole

as

W l
ij →W l

ij θ(nl · ni − λ2) θ(nl · nj − λ2) (3.13)

in both Rm and Vm. The virtual integral (3.12) with this regulator is analyzed in detail

in Appendix A. To efficiently generate the real emissions, it is advantageous to use the

rapidity ŷ and the azimuthal angle φ̂ in the center-of-mass frame of the dipole as integration

variables, the details can again be found in the Appendix A. Another way of regularizing

the integrals is to impose a cut on the rapidity ŷ, as was done by [3]. In Appendix B, we

give a detailed description of the MC algorithm and compare the different cutoffs.

4 Phenomenology of non-global observables

In this section we use our simulation code for phenomenological studies and analyze the

numerical impact of the resummation for gaps between jets and isolation cone cross sections

for photon production. We will also explain why NGLs for jet-veto cross sections are

negligible for the cut parameters used at the LHC.

4.1 Qualitative discussion

Before we perform detailed studies, it is useful to start with a qualitative discussion of the

size and form of the leading NGLs. For concreteness, let us consider a dijet cross section

in e+e− with a gap of size ∆y between the jets, in which radiation above an energy Q0

is vetoed. This interjet energy flow is the poster child of a non-global observable and was

studied for example in [2, 39, 40].

If the soft radiation would arise entirely from the two Wilson lines associated with the

original partons, the leading logarithms would exponentiate as

σLL
GL

σ0
= exp (−8CF t∆y) , (4.1)

where the variable t = αs
4π ln Q

Q0
up to running coupling effects, see (2.11). For dijet pro-

duction, these logarithms arise from S2 and are called global to distinguish them from

the complicated pattern from the operators with more Wilson lines. One observes that

for these global contributions, each large logarithm is multiplied by the size of the gap

∆y, which is of course expected since one has to recover the inclusive cross section as the

gap size becomes zero. In the opposite limit, the prefactor ∆y → ∞ corresponds to the

collinear logarithm which multiplies the soft logarithm present in t. The quantity shown

in (4.1), the ratio of the cross section with a rapidity gap to the inclusive cross section, is

called the gap fraction and corresponds to the fraction of events with radiation in the gap

below the veto-scale Q0.
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Figure 3. Left: Two-loop global and non-global coefficients as a function of the gap size ∆y.

Right: Comparison of the LL resummation and fixed-order results up to four loops, for ∆y = 1.

The leading NGLs to the same observable arise at two-loops and are given by [2, 40]

σLL
NGL

σ0
= 4CFCA

[
−2π2

3
+ 4 Li2

(
e−2∆y

)]
t2. (4.2)

This contribution arises from a hard gluon emission inside one of the jets, which in turn

emits a soft gluon into the gap between the jets. It is encoded in the term H3 ⊗S3 in the

factorization formula (2.1).

In Figure 3, we numerically compare the two-loop global and non-global coefficients

as a function of the gap size ∆y, working in the large-Nc limit. When the veto area

is small, the gap fraction is dominated by the non-global part, but with increasing veto

area the global logarithms become more and more important. Since the two contributions

have opposite sign, cancellations between global and non-global contributions can occur at

intermediate values of the gap size. To understand this behavior better, it is instructive to

expand (4.2) in the small ∆y region

σLL
NGL

σ0
= 4CFCA

[
8 ∆y

(
ln(2∆y)− 1

)
− 4 ∆y2 + . . .

]
t2 . (4.3)

The expansion (4.3) shows that the two-loop non-global logarithmic term is only suppressed

by a single power of ∆y, while the global piece involves two powers. The reason for this

scaling is that in the non-global piece only one gluon is in the gap of size ∆y, while in the

global piece both gluons are. One further observes that in the large-Nc limit the ∆y2 part

of the non-global piece precisely cancels the global piece. Phenomenologically, the limit of

a small gap is for example relevant for isolation cone cross sections, where the veto typically

is only applied in a small angular region. Below, we will see an explicit example where the

higher-order global and non-global effects cancel for a photon isolation cross section.

Interestingly, the leading term in (4.3) involves a logarithm of ∆y. This contribution

corresponds to a collinear enhancement which arises when both the gluon in the gap and

the one outside are close to the boundary. These types of collinear logarithms were studied

in the recent paper [41] which presented a version of the BMS equation which allows for
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Figure 4. Definition of the gap region for a dijet system in the rapidity and azimuthal plane, as

used by ATLAS [14]. If a jet with transverse momentum larger than Q0 is radiated into the gray

region, the event is vetoed. The two dashed red lines indicate the boundary of the approximated

veto region used in [16].

their all-order resummation. It would be interesting to analyze this in our effective field

theory framework. The corresponding effective theory would involve boundary modes to

describe the emissions near the gap boundary. The problem is however challenging because

the gap fraction is suppressed by a power of ∆y in the limit ∆y → 0.

4.2 Gaps between jets

We now perform the resummation for the gap fraction at the LHC, as measured by the

ATLAS experiment [14, 15]. The gap fraction is defined as the fraction of dijet events that

do not have an additional jet with transverse momentum greater than a given veto scale

Q0 in the rapidity interval bounded by the dijet system, and we will study it as a function

of pT , the average transverse momentum of the two leading jets. More explicitly, the gap

fraction is defined as the ratio of the cross sections with and without veto,

R(pT , Q0) =
σ2−jet(pT , Q0)

σ2−jet(pT , Q0 = pT )
. (4.4)

Since pT is computed using the two leading jets, the transverse momentum of the jet inside

the gap is by definition smaller than pT so that the denominator in the formula is simply

the inclusive two jet cross section. Below, we will compute R(pT , Q0) for different gap sizes

defined by the rapidity difference ∆y between the two leading jets. The precise geometry

of the gap is shown in Figure 4. The jets are reconstructed with the anti-kT jet algorithm

with R = 0.6 and are required to have rapidity |y| < 4.4.

The ATLAS paper [14] observed that MC predictions are not always consistent with

ATLAS data. For example the NLO predictions matched to PYTHIA [42] and HERWIG

[43] using POWHEG [44] are lower than the experimental data, especially in the region of

large pT and rapidity difference ∆y between the jets. Specifically, for 210 GeV < pT <

240 GeV and 4 < ∆y < 5, POWHEG+HERWIG underestimates the data by about 40%,

and POWHEG+PYTHIA by about 20%.

For small values of Q0, the gap fraction R(pT , Q0) involves large logarithms of the

form αns lnm pT /Q0. It is interesting to perform systematic soft gluon resummations to

try to understand the difference between theoretical prediction and experimental data.
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The resummation of the leading logarithms has been studied in the papers [16, 45, 46].

In [45, 46] the authors resummed all global logarithms with full colour information and

the non-global effects were included by reweighting with a K factor. The most detailed

theoretical study so far was [16], which resummed all large logarithms at LL in the large-

Nc limit by solving the BMS equation and also compared directly to the experimental

measurement. One limitation of this work is that the veto region was approximated by a

rectangle in the rapidity and azimuthal angle plane, see Figure 4. This made it possible to

obtain all NGLs by boosting the same solution of the BMS equation. In our computation

we will take into account the exact veto region used by ATLAS. Rather than relying on

the BMS equation, we will use our parton shower to resum the large logarithms.

Formula (2.1) was derived for leptonic collisions. The factorization formula for dijet

production at hadron colliders also includes PDFs fa(x, µ) and has the form

dσ(Q0)

d∆y d pT
=

∑
a,b= q,q̄,g

∫
dx1dx2 fa(x1, µ)fb(x2, µ)

×
∞∑
m=2

〈
Hab
m({n}, ŝ, pT , µ) ⊗ Wm({n}, pT , Q0, µ)

〉
, (4.5)

where ŝ = x1x2s is the partonic center-of-mass energy. The functions Wm({n}, pT , Q0, µ)

consist of a matrix element of the Wilson lines in the operator Sm+2 for the incoming and

outgoing partons, together with collinear fields of the two incoming ones. The functions

Wm contain rapidity logarithms due to Glauber gluon exchanges, which induce a depen-

dence on the large scale pT . This dependence has to be present in order to cancel the scale

dependence of the super-leading logarithms mentioned in Section 3. These double loga-

rithms of µ/pT arise from evolving the hard function and have a scale dependence which

cannot cancel against the single-logarithmic scale dependence of the purely soft matrix

element and the PDFs. We will discuss the factorization for hadron-collider observables

in detail in a forthcoming paper. For the moment, we will concentrate on the leading

logarithms in the large-Nc limit, where these complications are absent and the resummed

cross section takes the simple form

dσ(Q0)

d∆y d pT
=

∑
a,b= q,q̄,g

∫
dx1dx2fa(x1, µf )fb(x2, µf )Hab

2 (ŝ,∆y, pT , µh)〈U2m(µs, µh)⊗̂1〉 .

(4.6)

The hard function Hab
2 accounts for the process with two partons in the final state, and all

kinematics and color information is encoded in the hard events generated by MadGraph.

The tree-level generator computes the exact color dependence of the amplitudes, but to

interface with a parton shower such as PYTHIA, it randomly assigns a possible large-

Nc dipole color structure to each tree-level event. We use this color information to start

our shower, which then computes the evolution from 2 partons in the final state to m

partons, as encoded in the matrix elements U2m defined in (2.6). Since we use full tree-

level amplitudes, our hard function also contains terms of subleading color. The paper [32]
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Figure 5. The gap fraction as a function of the jet transverse momentum pT (left plot) and the

gap energy Q0 (right plot). The red line shows the LL result for the gap fraction; the error band is

obtained from scale variation. The ATLAS data is plotted in blue.

has modified MadGraph in such a way that the full color information is written into the

event file. Using this, one could perform a computation in the strict large-Nc limit.

We choose µf = µh = pT as the central values for the factorization and hard scales,

and set the soft scale to be µs = Q0. A lower value of µf would enhance the gap fraction

and bring our results closer to the ATLAS measurements. However, the high value is

appropriate since the hard anomalous dimension has two parts, a soft contribution related

to non-global logarithms and a collinear part inducing the usual Altarelli-Parisi evolution.

In our shower, we only evolve with the soft part of the anomalous dimension and to avoid

the necessity for additional collinear evolution we have to evaluate the PDFs at the high

scale.

In our calculations we use NNPDF23LO [47] PDF sets with αs(mZ) = 0.130 and use

one-loop running for αs. In Figure 5 we show the resummed gap fraction in comparison

with the ATLAS measurements [14]. In the left plot, we keep Q0 = 20 GeV fixed and vary

the transverse momentum pT of the jets, while the right plot shows the gap fraction as a

function of Q0 for 210 GeV < pT < 240 GeV. ATLAS has performed measurements for

different rapidity separations between the jets. We want to avoid collinear enhancements

and focus on fairly central jets, since we do not resum collinear logarithms for the time

being. Specifically, we use 1 < ∆y < 2 in the left plot and 2 < ∆y < 3 in the right one.

To estimate the uncertainty of our predictions we vary the scales µh and µs by a factor of

two around their default values µh = pT and µs = Q0. The µs variation is larger, except

at low pT . In the plots we show the envelope of the two variations. We observe that the

results are marginally compatible with the experimental measurements within the fairly

large uncertainty bands, but it is clear that the theoretical description at LL accuracy is

fairly poor. This should be contrasted to the O(αs) fixed-order result shown in orange

and the result obtained with PYTHIA [48] (solid green line) shown in Figure 6. We will

call the O(αs) prediction leading order (LO), even though strictly speaking the leading-

order gap fraction is R(pT , Q0) = 1. Neither the fixed-order result nor PYTHIA describe
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Figure 6. The gap fraction for different gap energies Q0 as measured by ATLAS (blue) compared

to the fixed-order result at LO (orange) and PYTHIA results (solid green: with hadronization

using Tune 7, dashed green: partonic result without hadronization and underlying event).

the ATLAS perfectly, but both yield a better description than the LL result. (In their

paper ATLAS uses POWHEG matched PYTHIA, which agrees with the data well for this

rapidity range, but starts deviating at higher rapidities.)

Before speculating about the source of the poor agreement of the LL result with the

measurement, it is interesting to compare to [16], which also computed the gap fraction

at LL accuracy and compared to the ATLAS data. Superficially, the results presented

in this paper show better agreement with data. The reason is two-fold. First of all, the

authors not only show the data of the measurement where the gap is defined by the two

most energetic jets, but also the experimental results for the case where the gap and pT is

defined by the two most forward and most backward jets. This second criterion leads to

lower gap fractions, which agree better with the LL resummed result, but – as the authors

of [16] readily admit – is not really appropriate to be compared against the theoretical

predictions. Choosing the two most forward and backward jets to define the gap implies

a veto on further radiation in the forward and backward direction, which is not imposed

in the theoretical computation. Using the highest-pT jets to define the dijet system, also

their gap fractions are below the measurements. They are somewhat higher than our results

because [16] approximates the gap by a rectangular region in the rapidity and azimuthal

angle, see Figure 4, so their veto region is smaller than the experimental gap by about one

unit of rapidity (the jet radius is R = 0.6), which increases their gap fraction and brings

it closer to data. Adopting their definition of the gap region, we find that our results are

consistent with their findings; the remaining small numerical differences can be attributed

to the fact that they work in the strict large-Nc limit, while we include the full result for

the tree-level amplitudes.

Of course, our computation in the large-Nc, leading-logarithmic approximation is

rather crude. There are several sources of corrections which could push the results closer

to the experimental results. They are (a) higher-logarithmic terms, such as the constant

pieces of the one-loop hard and soft functions, (b) power corrections suppressed by Q0/pT ,
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(c) terms of subleading color, or (d) hadronisation and underlying event corrections. Let

us rule out the last possibility first. In the experimental measurement, the gap energy

Q0 is not defined as the total energy or transverse momentum inside the jet, but as the

transverse momentum of the leading jet inside the gap. This definition was chosen to

reduce sensitivity to hadronisation and underlying event. Indeed, running PYTHIA at

the partonic level (dashed green line in Figure 6) yields quite similar results to the full

simulation (solid green line). We also doubt that subleading-color pieces can explain the

difference. Theoretically, the finite-Nc corrections are especially interesting in our case,

because at subleading color one encounters double-logarithmic effects, while the problem is

only single logarithmic in the large-Nc limit. However, since the double logarithmic effects

only arise at α4
s, we do not expect them to be very large. The numerical impact of the

super-leading logarithms was estimated to be small in [49], but one should resum them in

order to properly asses their importance.

This leaves (a) and (b) as explanations. The scale hierarchy in our computation is not

very large Q0/pT & 1/10, nevertheless, we expect the power corrections (b) to be moderate.

To test their size, we compare in Figure 7 the fixed order result at O(αs) to the expansion

of the LL result to the same accuracy. We compute the LO fixed order result using the

relation

R(pT , Q0) = 1− 1

σLO
2−jet(pT )

∫ pT

Q0

dQ′0
dσLO

3−jet(pT , Q
′
0)

dQ′0
. (4.7)

At LO, the integrand in (4.7) is obtained by computing the tree-level three-jet cross section

in which the third jet is inside the gap and has transverse momentum Q0. To see the power

corrections, it is interesting to take the logarithmic derivative of the gap fraction R(pT , Q0)

with respect to Q0. This removes any constant so that we directly see the difference of the

leading-power log term to the full result. As it should be, the full LO result (orange line)

approaches the LL coefficient (red line) for small Q0. At the same time the plot shows

that the LL derivative is completely off at large Q0, where the derivative of the full LO

tends to zero. The fact that R becomes constant at large Q0 implies that power corrections

must cancel against the leading-power terms in this region. More generally, the unitarity

condition R(pT , Q0 = pT ) = 1 links power corrections (b) and higher-logarithmic terms

(a).

One type of power suppressed terms arises from expanding away the soft momenta

in the momentum-conservation δ-functions. In our factorization theorem, the momenta in

the hard functions at the high scale are conserved, but the soft momenta are neglected.

Neglecting the soft momentum ks enhances the three-jet rate in (4.7) because the jets can

then be produced at the low partonic center-of-mass energy ŝ = (pJ1 + pJ1)2 instead of the

correct value ŝ = (pJ1 + pJ1 + ks)
2 at which the PDFs are smaller due to the suppression

of larger momentum fractions. To gauge the size of this effect, we have used our MC code

to compute dR/dQ0 for the first emission with the full ŝ. Since we know the kT = Q0 of

the emission as well as the direction, we can reconstruct the vector k and the associated

ŝ. In practice, we first boost to the partonic center-of-mass frame, correct ŝ and then

boost back. Doing so, we obtain the gray line in Figure 7. The modification due to
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Figure 7. One emission at LL accuracy, compared to the full LO result. The modified LL shown

as a gray line is obtained by implementing momentum conservation for the soft emission.

momentum conservation accounts for about half of the difference between LL and the full

LO. A similar study was performed in [46] who found that they could reproduce the full LO

result with good accuracy with a suitable modification of the parton luminosity. However,

their modification involved parameters which were chosen by hand. Parton showers such

as PYTHIA implement momentum conservation, so that these types of kinematic power

corrections are accounted for and their effect was also studied in the recent paper [50]. It

is significant, but by itself not large enough to account for the difference we observe. It

would be quite interesting to see whether one can modify our shower in such a way that

momentum conservation is fulfilled without modifying the leading power terms but we will

not pursue this issue further for the moment.

What can and certainly should be done is to extend the resummation to subleading

logarithmic accuracy. This will add the virtual corrections to Hab
2 and the function Hab

3

at the high scale, together with the O(αs) corrections for all the soft functions at the

low scale. It will also require the two-loop anomalous dimension in the evolution to lower

scales. Computing these corrections and implementing them into a MC is of course a

major undertaking. To get a feeling for their size, one can first evaluate the NLL result at

O(αs). One reason that the higher-log terms are significant is that we have not resummed

collinear logarithms for the moment, but with ∆y = 3, these are already of the same order

of magnitude as the soft logarithms. Using the results [1, 2] this can be done and we

plan to implement also the collinear resummation in the future. A related issue is that

large rapidity differences lead to forward-scattering kinematics at hadron colliders, which

induces its own logarithmic enhancements. A method to resum these terms was put forward

in [51] and implemented in the HEJ code. Recently, the HEJ results were merged with

PYTHIA [52]. This combines both types of resummations and improves the description of

the ATLAS data, but to improve our understanding of gap observables, it will be important

to perform measurements for kinematical situations in which only a single source of large

logarithms is present so that one can separately study the different effects.

– 16 –



γ
δ0

Econe < Eiso = εγ Eγ

Figure 8. Pictorial representation of the factorization for isolated photon production. The black

lines represent hard partons, while the wavy red lines indicate soft radiation. The energy inside the

isolation cone of half-angle δ0 is restricted to be smaller than εγ Eγ .

4.3 Isolation cone cross sections and photon production

A second important class of non-global observables are cross sections with isolation cones

inside which only soft hadronic radiation is allowed. The most important example is photon

production, where an isolation cone is needed to separate the direct production of a photon

in the underlying hard collision from the photons which arise in hadron decays such as

π0 → γγ. Imposing that Eiso, the hadronic energy inside the cone with half-opening angle

δ0, is much smaller than the photon energy Eγ suppresses energetic photons originating

from decays of boosted hadrons. Similar cuts are also used to isolate leptons, for example

in SUSY searches. Imposing the isolation requirement induces logarithms αns lnn εγ , with

εγ = Eiso/Eγ , into the perturbative computation and in the following we want to study

their resummation.

Already at the parton level, there are two mechanisms to produce a photon. In ad-

dition to the direct emission, one can produce an energetic quark which then fragments

into a photon accompanied by a collinear quark. This second mechanism involves the

fragmentation function, a non-perturbative object which needs to be extracted from data.

In general, the two partonic contributions are not individually well-defined. At NLO, the

direct production suffers from a divergence when the quark becomes collinear to the pho-

ton and this divergence is absorbed into the fragmentation function. The isolation cone

suppresses fragmentation since it limits the amount of radiation which accompanies the

photon. Indeed, Frixione has shown that one can modify the isolation criterion to elimi-

nate fragmentation altogether [53]. For any angle δ < δ0, where δ0 is the isolation cone

angle, he imposes that the energy inside the cone of half-opening angle δ is smaller than

Eiso(δ) = εγEγ

(
1− cos δ

1− cos δ0

)n
, (4.8)

with n > 0. Together with radiation collinear to the photon, this smooth-cone isolation

eliminates the fragmentation contribution, which is centered at δ = 0. This simplifies

the theoretical computations and is appealing because it eliminates the poorly known

fragmentation function. Up to now, all NNLO computations of photon production [54–56]
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rely on the Frixione cone for isolation, while the result with a fixed cone is only known at

NLO in the form of the JetPhox code [57]. Due to the granularity of the calorimeter,

a smooth criterion such as (4.8) cannot be directly implemented in experiments which

therefore use fixed-cone isolation. To compare with experimental data, the NNLO results

tune the parameters εγ and n such that the NLO predictions using (4.8) are numerically

similar to fixed-cone computations including fragmentation. Below, we will derive such a

parameter relation based on the analysis of soft radiation.

The logarithms we want to study become large in the limit εγ → 0. In this limit

the radiation inside the cone becomes very soft. It is well known that the emission of

soft quarks is power suppressed and for this reason, fragmentation is a power suppressed

effect for εγ → 0 which we do not need to consider. (The same holds true for threshold

resummation studied in [58] and implemented into the numerical code PeTeR [59].) As

we discussed above, in the hadron collider case there are some interesting open issues and

we therefore first derive a factorization theorem for e+e−. The kinematics is shown in

Figure 8. One has hard partons outside the cone with energies of the order of the photon

energy Eγ and soft radiation inside the cone. This is precisely the situation captured by

(2.1), except that the soft region is now defined by the photon instead of the hard jets.

Specializing the general formula to the photon case, we have

dσ(εγ , δ0)

dxγ
=

∞∑
m=2

〈Hγ+m ({n}, Eγ , Q, δ0)⊗ Sm ({n}, εγ Eγ , δ0)〉 , (4.9)

where the photon energy is parameterized as Eγ = xγ Q/2. The hard functions Hγ+m

are the squared amplitudes for the photon and m-parton process and are defined as in

(2.4). In addition to the integrals over the energies of the m partons at fixed directions

{n} = {n1, · · · , nm} outside the isolation cone, they include an integral over the photon

phase space together with its constraints (the energy Eγ in the example (4.9)). The soft

functions are given by the Wilson line matrix element (2.3) with the energy constraint

applied to radiation inside the photon cone.

We will use the automated framework of the previous chapter to resum the large

logarithms in the isolation cone cross section, but it is interesting to first analyze the NLO

cross section analytically. The NLO correction to the soft function S2 with two Wilson

lines in d = 4− 2ε dimensions is given by the integral

S2({n1, n2},εγ Eγ , δ, ε) = 1− T1 · T2 g
2
s µ̃

2ε

∫
dd−1k

(2π)d−12ω

2n1 · n2

n1 · k n2 · k
θ(Eiso − ω) , (4.10)

where ω = |~k| is the gluon energy. Note that the soft gluon can also be outside the isolation

cone, but this part of the integration is scaleless and vanishes. Exactly the same integral

is relevant for Sm, which involves a sum over all pairs of hard partons. In Appendix C,

the full computation of S2 is performed analytically. To avoid technicalities and get a

qualitative understanding, we will now perform an approximate computation. Since all

hard partons are outside while the soft gluon is inside the cone, the dipole factor is not

singular. If the cone is narrow and the hard partons are not too close to the cone, we can
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Figure 9. Effect of the isolation cut in e+e− → γ + X. The plot shows a comparison of the

resummed result (red line) with the one-loop contribution (orange line) and the global logarithms

(dashed purple line).

approximate the gluon direction with the photon direction so that

n1 · n2

n1 · k n2 · k
≈ 1

ω2

n1 · n2

n1 · nγ n2 · nγ
=

1

ω2
W γ

12 . (4.11)

The one-loop correction to the soft function then simplifies to

S2 ≈ 1 + CF 1
2g2
s

(2π)d−2
W γ

12

∫ ∞
0

dω

ω

(
µ̃

ω

)2ε ∫
cone

dΩ

4π
θ(Eiso − ω) . (4.12)

For a fixed cone-energy Eiso, the energy integration produces a divergence with an asso-

ciated logarithm, which gets multiplied by the angular area of the cone, in line with the

discussion in Section 4.1. The situation is interesting for isolation cones because the loga-

rithms are typically large (experiments often restrict the isolation energy to a few GeVs),

while the area tends to be small. If we substitute Eiso → Eiso(δ) from (4.8) into (4.12),

we can compute the soft function for the smooth-cone. In the approximation (4.11), we

find that the smooth-cone result is obtained from the fixed cone one-loop result using the

substitution

ln
εγEγ
µ

−→ ln
εγe
−nEγ
µ

. (4.13)

In other words, the smooth-cone isolation is more restrictive than fixed-cone isolation by a

factor en. A computation such as [56] which uses smooth-cone isolation with εγ = 0.1 and

n = 2, therefore has the same size logarithms as a fixed-cone computation with εγ = 0.01.

For photon energies of a few hundred GeVs, this indeed matches up with the fixed-cone

isolation criterion

Eiso
T = 4.8 GeV + 0.0042ETγ (4.14)

used in the ATLAS analysis [60]. ATLAS uses a cone of R = 0.4 in the rapidity and

azimuthal-angle plane. A particle is considered to be inside the cone (and therefore belongs

to the “out”-region), if ∆y2 + ∆φ2 < R2, where ∆y is the rapidity difference and ∆φ the

difference of the azimuthal angle between the particle and the photon.
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Figure 10. Ratio of the pp→ γ +X cross section with isolation to the inclusive one. Left: Ratio

as a function of t (or equivalently εγ) for EγT > 400 GeV. Right: Ratio for the ATLAS isolation

criterion (4.14) as a function of EγT . In both plots we show the resummed result as well as its NLO

and NNLO expansions obtained using the approximation (4.11). The red uncertainty bands are

obtained by scale variations, see text.

As we discussed in Section 4.1 above, the two-loop non-global and global logarithms

can cancel each other out and for photon isolation results displayed in Figure 9, this effect

is quite pronounced. In this plot we consider e+e− → γ + X with an isolation cone with

half-angle δ0 = π/4 and compare the resummed result with the one-loop logarithm and

with the global contribution, which is given by the exponential of the one-loop logarithm.

We observe that higher-order effects are quite small down to relatively low isolation energies

which correspond to larger values of t in the figure. Resumming the global logarithms leads

to a much larger effect, which cancels after accounting also for the non-global contribution.

By now there are many papers in the SCET literature which resum observables up to

non-global contributions. This example demonstrates that such estimates of higher-order

terms are not always reliable. In the present example this incomplete resummation leads

to worse predictions than no resummation at all.

Finally, let us analyze photon isolation in hadronic collisions. Of course, in this case

the same caveats apply that we discussed for gaps between jets: a full factorization analysis

for hadronic collisions is not yet available. We will therefore again work in the large-Nc

limit and resum the leading logarithms captured by evolving the hard function from the

scale µh ≈ EγT down to the soft scale µs ≈ Eiso
T . We need to evaluate the PDFs at the hard

scale µf = µh, as explained in the gaps-between-jets case.

The small angular size R of the veto region suppresses higher-order corrections and the

overall effect of the isolation cone is therefore moderate. At the same time, the typical scale

ratios εγ that arise in experimental measurements can be quite large. We have discussed

in Section 4.1 that the global logarithms scale as αns R
2n lnn(εγ), while the non-global ones

scale as αns R
2 lnn−1(R) lnn(εγ), since they involve only a single gluon in the veto region.

For small R, the non-global logarithms completely dominate the cross section. In order

to verify this, we extract large logarithms up to two-loop from our parton-shower code.
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Explicitly, as is shown in [2], the first two coefficients in the expansion

σ(t)/σ0 = 1 + S(1)t+ S(2)t2 + . . . (4.15)

in the shower time (2.11) take the form

S(1) =− 4Nc

∫
Ω

3outW
3
12,

S(2) =
(4Nc)

2

2!

∫
Ω

[
− 3in 4out

(
P 34

12 −W 3
12W

4
12

)
+ 3Out 4OutW

3
12W

4
12

]
, (4.16)

where the subscript “in” and “out” refer to the radiation inside the jets (outside the

isolation cone) and outside jets (inside the isolation cone), respectively. The coefficient of

the one loop shower time S(1) can be calculated using our MC simulation to generate a

single emission along n3 inside the cone (the “out”-region). To calculate the non-global

part of the two-loop coefficient we approximate n4 with the direction of the photon as we

did in (4.11), and end up with

S(2)
NG ≈ −

(4Nc)
2

2!
Ωcone

∫
Ω

3inW
3
12 (W γ

13 +W γ
23 −W

γ
12) . (4.17)

We then again use our MC simulation to generate vectors n3 outside the cone (in the “in”-

region). Due to exponentiation, the global part of S(2) is one-half of the one loop correction

squared. Our results are shown in the left plot in Figure 10, where we give evolution effects

as a function of shower time as defined in (2.11). The red line shows the LL resumed result,

and the orange and green lines are one-loop- and two-loop-LL contributions, respectively.

The dashed purple line corresponds to the naive exponentiation of one-loop results. To

obtain the red error band, one first calculates µ̃ = µs(t) by inverting (2.11). Varying this

scale by a factor of two, one then obtains two values tlow = t(2µ̃) and thigh = t(1
2 µ̃). The

cross sections σ(thigh) and σ(tlow) are then used to define the uncertainty band. Clearly,

there is a large difference between the one- and two-loop results, which is due to the

lnR dependence of the NGLs which dominate the cross section. On the other hand,

the difference between NNLO and the resummation is moderate. In the right plot, we

show resummation effects as function of photon transverse energy ET for the ATLAS [60]

isolation criterion (4.14). In this case, the red band is obtained by varying the soft scale by

a factor two around the default value µs = Eiso
T . Overall, resummation changes the NLO

result for the isolation effects by about a factor of two. On the other hand, since higher-

oder corrections beyond two loops are moderate, we don’t anticipate large corrections to

the NNLO computation in [56].

Until now we were focussing on logarithms of εγ arising in the limit of small isolation

energy, while keeping the cone radius R fixed. It is also interesting to keep εγ fixed and

consider the limit of small R. That both limits are problematic for fixed-order computations

was stressed already in [57] and the small R case has been studied in detail in [61], after it

was realized that for narrow cones the NLO cross section with isolation [57] becomes larger

than the inclusive one [62], which is of course unphysical. In [61], the leading lnR terms

were resummed using collinear factorization. It was found that the higher-order effects
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are moderate for R & 0.5, but quickly become large for smaller cone radii. The paper

[57] found that ln εγ terms were moderate, but warned that the NLO computation could

underestimate the overall effect. Our results in Figure 10 show that the nonglobal NNLO

terms are as large as the NLO corrections, confirming this suspicion.

Phenomenologically, the double limit εγ → 0 and R → 0 is perhaps most relevant.

We will now consider this situation, in which both types of logarithms are present. The

relevant factorization analysis is quite similar to the one for the narrow-cone Sterman-

Weinberg cross section [1, 2]. In the following we will state and discuss the result; we refer

the reader to [1, 2] for more details regarding its derivation. Explicitly, for small R ∼ δ0

the factorization formula (4.9) turns into

dσ(εγ , δ0)

dEγ
=

dσincl
γ+X

dEγ

+
∑
i=q,q̄,g

∫
dz

dσi+X
dEi

∞∑
l=1

〈Ji→γ+l ({n}, δ0Eγ , z)⊗ U l ({n}, εγ δ0Eγ)〉 .

(4.18)

In this formula, the first term on the right-hand side is the direct photon production cross

section without photon isolation and without fragmentation. This term is obtained when

considering soft radiation at paramatrically large angles δ � δ0 for which one can ignore

the narrow cone. Doing so renders the soft functions trivial and one can integrate over

the directions of the hard partons, which yields the cross section σγ+X . The (perturba-

tive) fragmentation contribution is part of the second term which describes the inclusive

production of a parton i along the photon direction, which then fragments into a photon

plus soft hadronic radiation along the direction of the small isolation cone and energetic

radiation immediately outside the cone. More precisely, the term σi+X in the second line

denotes the inclusive cross section for producing a parton i with energy Ei and momentum

pi along the direction nµ = nµγ of the photon, and the jet functions

n/

2
Ji→γ+l({n}, δ0Eγ ,z) =

∑
spins

l∏
j=1

∫
dEj E

d−3
j

(2π)d−2
|Ml(pi; {pγ , p})〉〈Ml(pi; {pγ , p})|

× 2 (2π)d−1 δ(2 (1− z)Ei − n̄ · pXc) δ(d−2)(p⊥Xc) Θn
cone

({
p
})
. (4.19)

describe the fragmentation of this parton into a photon with energy Eγ = zEi and l

additional energetic partons outside the cone, as enforced by the theta function Θn
cone in

their definition. The function U l describes soft radiation collinear to the isolation cone and

consists of l Wilson lines along the energetic partons plus one additional Wilson line along

the light-cone direction n̄µ conjugate to the one of the photon direction. More details on

this collinear and soft (or “coft”) mode can be found in [1, 2]. Its most important property

is that the typical invariant mass of this type of radiation has the low value Λcoft = δ0 εγ Eγ ,

precisely because it is both soft and collinear. In appendix D, we will evaluate the narrow-

cone isolation cross section at leading order and verify that the QCD result maps onto the

factorization theorem (4.18).
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We note that the two terms in (4.18) are not separately finite: the partonic cross

sections and jet functions must be viewed as Wilson coefficients of the effective theory,

which must be renormalized. To perform the resummation of the large logarithms, one has

to solve the associated RG-evolution equations and first evolve from the hard scale µh ∼ Eγ
down to the jet scale µj ∼ δ0Eγ and finally to the coft scale µ ∼ δ0 εγ Eγ . As we discussed

above, the quantity
∑

l〈Ji→γ+l ⊗ U l〉 describes the fragmentation of the parton i into a

photon plus soft and collinear radiation. It has exactly the same scale dependence as the

standard photon fragmentation function, see [63, 64]. The first step of RG evolution, which

generates the logarithms of R through the ratio µj/µh, is thus governed by the standard

RG evolution of the fragmentation function. Logarithms of εγ are only generated in the

second step, via the evolution from µj ∼ δ0Eγ down to µ ∼ δ0 εγ Eγ . We postpone a study

of the numerical size of the lnR terms to future work.

4.4 Jet-veto cross sections

Rejecting events with hard jets can be important to make precise measurements at hadron

colliders. An example is the process p p → W+W− at the LHC, where the veto is used

to reduce the background from top-quark pair production with subsequent t→ b l ν decay.

The cut used by ATLAS rejects events with jets of pJT > pveto
T = 25 GeV for |ηJ | < 4.5 [65],

while CMS imposes pveto
T = 30 GeV for |ηJ | < 5 [66]. The jet-veto cut introduces logarithms

ln(pveto
T /mH), which can spoil the convergence of perturbative calculations. Much work has

been carried out to resum these large logarithms [67–71]. The resummation at NNLL+NLO

accuracy has been automated for the production of an arbitrary final state with massive

colorless particles within the MadGraph5 aMC@NLO framework [72].

The jet-veto cross section is a non-global observable, since the cross section becomes

fully inclusive in the large rapidity region near the beams, because the veto can only be

imposed where detectors are present. Of course, this problem affects all hadron collider

observables and in particular also hadronic event shapes. The NGLs in the jet-veto cross

section have never been resummed, but [67] has analyzed the rapidity cut dependence in

fixed order and by using parton showers, and concluded that it was small. The paper [73]

pointed out that the non-global effects are power suppressed for the kinematic cuts used at

the LHC. In order to explain this power suppression effects, let us first define two expansion

parameters

β = pveto
T /Q, δ = e−ηc , (4.20)

where ηc is the rapidity cut, and Q represents the hard scale for this process. E.g. for

W+W− production it is the invariant mass of the electroweak final state Q = MW+W− .

For jet-vetoed cross section at the LHC, the hierarchy between the two parameters

is β ∼ 0.1 � δ ∼ 0.01. Analyzing which momentum regions are relevant, one finds

that collinear modes contributing to jet-veto resummation have light-cone components

(n · pc, n̄ · pc, p⊥) scaling as Q(β2, 1, β), where nµ and n̄µ are light-cone vectors along the

beams. The typical rapidity of these particles is much smaller than the cut ηc ∼ 5 used at

the LHC. Contributions sensitive to the rapidity cut ηcut are therefore power suppressed
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by δ/β. This parametric suppression is consistent with the small size of the fixed-order

corrections computed in [67].

One can also consider the opposite hierarchy β � δ � 1, as analyzed in [73]. At LHC

energies, the low pveto
T scale related with β would be non-perturbative in this situation,

so it is currently only of theoretical interest. To capture the physics in the low-energy

region one needs modes with the same scaling behavior as the coft mode introduced in

[1]. The paper [73] analyzed the factorization for rapidity-dependent jet-veto cross sections

but their analysis was restricted to global logarithms. We recently developed the necessary

framework to deal with soft-recoil sensitive non-global observables in [74] and it would be

interesting to derive the full formula in our framework.

5 Conclusion

In this paper, we have used RG methods in effective field theory to obtain a parton shower

for the resummation of large logarithms in non-global observables. Our result provides an

explicit example of a parton-shower equation derived from first principles which can be

systematically improved. At LL level in the large-Nc limit, our shower is equivalent to

the Dasgupta-Salam dipole shower. We have implemented it and have interfaced it with

MadGraph5_aMC@NLO to obtain a flexible framework to perform resummations. The

tree-level generator is used to produce a LHE file containing the kinematic configuration

and color structure of the hard partons. This information is then passed to the shower to

perform the RG evolution to lower scales.

With this method we have investigated gap fractions in dijet production and isolation

cone cross sections. We find that non-global contributions are especially important when

the veto region is small, because the higher-order global contributions are suppressed by

higher powers of the size of the veto region, while this suppression is absent for the non-

global terms. We observe that the LL predictions suffer from large uncertainties, and it

will be important to extend the resummation to higher accuracy in the future. In addition,

there are also several other issues, which can and should be studied already at the leading

logarithmic level, such as the role of momentum conservation to reduce power corrections

and the resummation of collinear logarithms. For exclusive jet cross sections, we have

shown in earlier work how the collinear logarithms arising for small jet radius can be

resummed, and in the present work we have extended the relevant factorization to small

isolation cones. As in the case of small-radius jets, we find that momentum modes are

relevant, which are both soft and collinear to the cone.

To resum next-to-leading logarithms, one needs higher-order corrections to the anoma-

lous dimension matrix and the matching coefficients. Specifically, one will need to include

i.) the one-loop soft functions Sm for any m, ii.) the one-loop correction to the Born-level

hard function Hk and the tree-level result for Hk+1, the hard function with one additional

emission. In addition, one also needs iii.) the two-loop anomalous dimension. In earlier

papers, we have computed i.) and ii.) for specific processes and iii.) should have a close

relation to the result of Caron-Huot in the density matrix formalism [76]. While our RG

framework makes it clear which ingredients are necessary to improve the logarithmic ac-
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curacy, it will likely be nontrivial to implement these into a MC framework similar to the

one we employed at LL. Nevertheless, it is important to pursue this line of research, not

only to reduce the uncertainties in the observables studied here, but also because it can

provide a first example of a parton shower with higher logarithmic accuracy.

Our shower code is currently restricted to the large-Nc limit, but it would be inter-

esting to go beyond this approximation, especially for hadron-collider processes, where

contributions from Glauber phases arise at finite Nc. Without accounting for these in

the low-energy theory, the factorization theorem would not be RG invariant because the

double-logarithmic evolution of the hard functions, which produces the “super-leading” log-

arithms, could not be matched by the evolution of the operators in the low-energy theory.

A detailed discussion of these effects will be given in a forthcoming paper.
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A Angular integration with a collinear cutoff

With a collinear cutoff λ the angular integration in the anomalous dimensions Vm and Rm

in (3.2) takes form

I(λ, ni, nj) =

∫
dΩ(nl)

4π

ni · nj
ni · nl nl · nj

θ(nl · ni − λ2)θ(nl · nj − λ2) . (A.1)

The cutoff amounts to putting small cones around the emitting partons to avoid the

collinear singularity. In the lab frame any vector nl can be parametrised as

nl = (1, sech yl sinφl, sech yl cosφl, tanh yl) . (A.2)

In order to compute (A.1), we transform the integration into the Center-Of-Mass (COM)

frame of ni and nj , where it takes the form

I(λ,M) =

∫ ∞
−∞

dŷl

∫ 2π

0

dφ̂l
2π

θ

[
M2(1− tanh ŷl)

4(1− β cos φ̂l sech ŷl)
− λ2

]
θ

[
M2(1 + tanh ŷl)

4(1− β cos φ̂l sech ŷl)
− λ2

]
.

(A.3)

Here M2 = 2ni ·nj is the invariant mass of the ni and nj dipole, and β =
√

1−M2/4. The

new integration variables ŷl and φ̂l are the rapidity and azimuthal angle of the emission in
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the COM frame. The components nµl = (1, nx, ny, nz) in the lab frame can be expressed in

terms of ŷl and φ̂l as

nx =
El
M

[(
1− cos φ̂l sech ŷl

β

)(
sech yi sinφi + sech yj sinφj

)
+ tanh ŷl

(
sech yi sinφi

− sech yj sinφj
)

+
sech ŷl sin φ̂l

β
(cosφi sech yi tanh yj − cosφj sech yj tanh yi)

]
,

ny = nx(sinφi,j → cosφi,j , cosφi,j → − sinφi,j) ,

nz =
El
M

[(
1− cos φ̂l sech ŷl

β

)
(tanh yi + tanh yj) + tanh ŷl (tanh yi − tanh yj)

+
1

β
sech yi sech yj sech ŷl sin(φi − φj) sin φ̂l

]
. (A.4)

with M/El = 2 − 2β cos φ̂l sech ŷl. The result for the components will be useful for the

phase-space generation for the real emissions. To obtain the virtual corrections, we now

evaluate (A.3). As long as the two cones around ni and nj do not touch each other, i.e.

for M2 > 8λ2 − 4λ4, the integration constraints implemented by the θ-function in (A.3)

reduce to

I1(λ,M) =

∫ 2π

0

dφ̂l
2π

∫ ymax(φ̂l)

−ymax(φ̂l)
dŷl , (A.5)

with

ymax(φ̂l) = ln

(
β cos φ̂l +

√
α+ β2 cos2(φ̂l)

)
, (A.6)

where α = (M2 − 2λ2)/(2λ2). Performing these integrations, one obtains the analytical

result

I1(λ,M) = ln

(
M2

2λ2
− 1

)
. (A.7)

In the region 2λ2 < M2 < 8λ2 − 4λ4 the integration boundary can be simplified to

I2(λ,M) =

∫ δ

0

dφ̂l
π

∫ ymax(φ̂l)

−ymax(φ̂l)
dŷl , (A.8)

with cos δ = (1− α)/(2β). Because the two cones overlap, the azimuthal angle integration

is now restricted. After performing integration by parts, I2 can be reduced to a one-

dimensional elliptic integral

I2(λ,M) =
2β

π

∫ δ

0
dφ̂l

φ̂l sin φ̂l√
α+ β2 cos2 φ̂l

. (A.9)

– 26 –



Since we do not have an analytical result, we use numerical interpolation for I2(λ,M) in

our parton-shower code.

The form of the collinear cutoff is of course not unique. A simpler form of the virtual

integral is obtained by imposing the cutoff in the COM frame by putting a cut on ŷ. The

angular integration then reads

Ĩ(λ,M) =

∫ 2π

0

dφ̂l
2π

∫ ỹmax

−ỹmax

dŷl , (A.10)

with ỹmax = ymax(0) = ln
(
β +

√
α+ β2

)
, so that Ĩ(λ,M) = 2ỹmax. This regularization

scheme was used by Dasgupta and Salam [3]. We will compare MC results based on the

two cutoff schemes (A.1) and (A.10) in Appendix B.

B Details of the MC algorithm

In this appendix we will describe the MC algorithm in detail, working with the interjet

energy flow in e+e− for concreteness. For this observable, the lowest multiplicity hard

function has two energetic partons along back-to-back directions n1 and n2. We can thus

set k = 2 in the equations in Section 3. For more complicated observables, such as hadron

collider dijet events, we start with k > 2 partons, whose directions are read from an event

file produced by the MadGraph tree-level generator. The tree-level generator also assigns

large-Nc dipole color structure to each event, which we use as the starting point of our

shower.

We will first spell out the algorithm and then show how it arises from the iterative

solution of the RG-evolution equation of the hard functions in (3.9). The basic ingredient

of the MC algorithm is a list of events. Each event E occurs at a time t, has a weight w and

contains a list of m vectors {n1, ni1 , . . . , nim−2 , n2}. This list defines the color dipoles of

the events, which are given by neighbouring pairs of vectors so that the associated virtual

correction is

VE = V1i1 + Vi1i2 + · · ·+ Vim−22 , (B.1)

with

Vij =

∫
dΩ(nl)

4π
Rlij . (B.2)

The integrand is the real-emission matrix element

Rlij = 4NcW
l
ij θ(nl · ni − λ2)θ(nl · nj − λ2) . (B.3)

The angular integration in the presence of a collinear cutoff λ was discussed in detail in

Appendix A. Note that the quantity Vij defined here is positive, while Vm in (3.12) is

negative.

The MC algorithm described in the following produces a histogram of V12 σveto(Ω0, t)/σ0.

To get the gap fraction that one has to divide the result by V12, the virtual correction as-

sociated with the original dipole. The algorithm involves the following steps:
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Figure 11. Diagrammatic representation of the lowest hard functions contributing to (B.5).

1. Start at shower time t = 0 from an initial event with vectors {n1, n2} and weight

w = 1.

2. Generate a random time step ∆t according to the probability distribution PE(t) =

VE exp(−VE∆t), and insert the event weight w into the histogram at time t+ ∆t.

3. Choose a dipole associated with a pair of neighbouring vectors ni and nj in E with

probability Vij/VE . Generate a new random vector nk and multiply the weight by

the factor Rkij/Vij , expressed in the random variables chosen to generate the direction

of the new vector nk, see (B.4) below.

4. If nk is inside the veto region, go to Step 1 and start a new event, otherwise add this

new vector into E′ = {n1, · · · , ni, nk, nj , · · · , n2}, multiply the weight by a factor

VE/VE′ and return to Step (2).

To keep the weights w close to one, one works in the COM variables ŷk and φ̂k introduced

in Appendix A to generate the direction of the new parton. In the dipole COM frame the

integrand becomes trivial in these variables, see (A.5). However, with a lab-frame cut, the

integration boundary ymax(φ̂k) in the rapidity integration depends on φ̂k. Mapping the

boundary to a square introduces a weight factor

w =
2ymax(φ̂k)φmax

Vij/(4Nc)
. (B.4)

If one follows Dasgupta and Salam [3] and introduces the collinear cutoff in the COM

frame, the integration region is rectangular and w = 1. A second advantage of this cutoff

is that the weight factor in Step 4 is always smaller than one, VE/VE′ < 1. One can thus

implement this factor by throwing away the event in Step 4 with probability VE/VE′ . Once

this is done, one has unweighted events. In contrast, with a lab-cone cutoff a small fraction

of events has VE/VE′ > 1.

To derive the above MC algorithm, we rewrite RG evolution solution (3.9) in a form

which makes the four steps of the algorithm manifest. According to (3.10), after evolving
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the hard functions to the soft scale Q0, the veto cross section takes the form

σ̂veto(Ω0, t) =
V12

σ0
σveto(Ω0, t) = Ĥ2(t) +

∫
dΩ3

4π
Ĥ3(t, n3) +

∫
dΩ3

4π

dΩ4

4π
Ĥ4(t, n3, n4) + · · · ,

(B.5)

where the hat indicates the factor V12/σ0 by which we have multiplied the cross section and

the hard functions Hm in order to work with the same normalization as the MC simulation.

In Figure 11 we show their diagrammatic representations. The first term Ĥ2 represents no

emission down to the veto scale Q0, corresponding to shower-time evolution from 0 to t.

This purely virtual contribution takes the form

Ĥ2(t) = P2(t) = V12 e
−t V12 . (B.6)

As shown in Figure 11, the second term Ĥ3 corresponds to a situation, where no

emission occurs until the shower evolves to t′, at which time a new parton is emitted along

the direction n3, after which the system evolves without further emissions to t. This yields

the expression

Ĥ3(t) =

∫ t

0
dt′ Ĥ2(t′)R3

12 e
−(t−t′)V3 , (B.7)

where the new virtual part is V3 = V13 + V32. We now rewrite (B.7) in terms of factors

which can be viewed as probabilities

Ĥ3(t) =

∫ t

0
dt′ P2(∆t)

R3
12

V2

V2

V3
P3(∆t′) , (B.8)

with ∆t = t′ and ∆t′ = t − t′. To get an emission probability, we normalized the angular

integral to V2. Introducing the probability P3 for the second time step, we are then left

with a factor V2
V3

which arises as a weight in Step 4 of the algorithm.

Starting from Ĥ4, each hard function is a sum of several terms, which correspond to

the different dipoles which can emit. Specifically, for Ĥ4 we have

Ĥ4(t) = Ĥ(1)
4 (t) + Ĥ(2)

4 (t) , (B.9)

where Ĥ(1)
4 corresponds to inserting a new parton into the dipole formed by n1 and n3 and

has the form

Ĥ(1)
4 (t) = R4

13

∫ t

0
dt′′ Ĥ3(t′′) e−(t−t′′)V (1)

4 , (B.10)

with V
(1)

4 = V14 + V43 + V32. The second term H(2)
4 arises from inserting a new parton

between n3 and n2. We rewrite (B.9) in the same form as (B.8) and get

Ĥ4(t) =

∫ t

0
dt′′ Ĥ3(t′′)

[
R4

13

V13

V13

V3

V3

V
(1)

4

P(1)
4 (∆t′′) +

R4
32

V32

V32

V3

V3

V
(2)

4

P(2)
4 (∆t′′)

]
, (B.11)
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Figure 12. Numerical comparison between MC simulations and analytical calculations. The

histograms represent MC simulations with different collinear cutoffs ηcut = 1 (black), 3 (red) and 5

(blue). The dots are from numerically integrating their analytical expressions.

where ∆t′′ = t − t′′. Compared to (B.8) we encounter additional factors V13/V3 and

V32/V3, which represent the probability of choosing one of the two dipoles. These factors

are implemented in Step (3) of the MC algorithm. No additional complications arise at

higher multiplicities.

In order to check our MC simulation step by step, we can calculateHm directly from its

definition, and then compare with simulation results. We show the results for H3 and H4

in Figure 12. The histograms represent the simulation results while the dots are calculated

directly. For simplicity we set the veto region to zero which means that we do not veto any

radiation. We write the collinear cutoff in the form λ2 = 1− tanh ηcut and choose different

values of ηcut. We observe excellent agreement between the numerical integration and the

simulation results. As a second consistency check we have verified the unitarity of the

shower, i.e. we ran the full shower with the veto region to zero and checked σveto(t) = σ0

within the numerical accuracy.

We will also compare our simulation algorithm to the one used by Dasgupta and Salam

[3]. As mentioned in Appendix A, they impose the collinear cutoff in the COM rather than

the lab frame. Furthermore, instead of computing the cross section directly, they formulate

a shower for the derivative dσveto/dt. This form can be derived from the differential form

(3.6) of the RG equation. Specifically, we have

− 1

σ0

d

dt
σveto =

∫
Ω

3out

[
V2 e

−tV2
]R3

12

V2

+

∫
Ω

4out3in

∫ t

0
dt′
[
V2 e

−t′V2
] R3

12

V2

[
V3 e

−(t−t′)V3
] R4

132

V3

+

∫
Ω

5out 4in 3in

∫ t

0
dt′
∫ t′

0
dt′′
[
V2 e

−t′′V2
] R3

12

V2

[
V3 e

−(t′−t′′)V3
] R4

13

V13

×

{
V13

V3

[
V

(1)
4 e−(t−t′)V (1)

4

] R5
1432

V
(1)

4

+
V32

V3

[
V

(2)
4 e−(t−t′)V (2)

4

] R5
1342

V
(2)

4

}
+ · · · , (B.12)
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Figure 13. Numerical comparison between different simulation algorithms and collinear regular-

ization methods (lab-cone versus center-of-mass cone). The curves labelled S(t) are obtained from

simulating the cross section, the ones labelled S′(t) are obtained after simulating the derivative and

integrating. The two COM curves are completely overlapping.

with
∫

Ω lout =
∫ dΩ(nl)

4π Θout(nl) and the abbreviation Rl1i1i2···im2 = Rl1i1 +Rli1i2 + · · ·+Rlim2.

Equation (B.12) immediately translates into a shower algorithm. One starts with the

original dipole at t = 0 as before. Then, for any event E one generates a time-step

according to PE , selects a dipole of the event with probability
Vij
VE

, and inserts a new vector

into the dipole, splitting it into two. This is repeated until the new vector lies outside the

jets (inside the veto region) at which point the shower is terminated and the value of t is

inserted into the histogram. This is the shower used in [3].

A numerical comparison of the different shower formulations and cutoff schemes is

shown in Figure 13. Scheme S(t) represents the algorithm we explain at the beginning of

this appendix, and S′(t) is the dipole shower of [3] corresponding to the MC simulation

of (B.12). For each algorithm, we show the two different ways to regularize the collinear

divergence discussed in Appendix A. The curves labelled LAB apply the cutoff (A.1) in

the lab frame, the ones labelled COM impose a rapidity cut in the center-of-mass frame of

the emitting dipole. The two COM curves are nearly indistinguishable, while the curves in

LAB cutoff scheme display small deviations beyond t & 0.1. Comparing the different MC

runs, we observe significant noise using the LAB cutoff at larger t. While the individual

weights are close to one, larger-time entries involve many steps and we end up with some

events with large weight which make the simulations noisy; conversely there are also many

events with low weight which makes them inefficient. While any of the algorithms work well

in the phenomenologically relevant region t < 0.1, the COM scheme is clearly performing

better at large t and the algorithm simulating S′(t) is especially well suited to get results
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at large t. A disadvantage of the S′(t) scheme is that one needs to run it without any

cutoff on t in order to be able to reconstruct the function from the derivative. In contrast,

one can restrict t to the phenomenologically relevant region determined by the minimum

value of Q0 when directly generating the cross section. Also, when working with the cross

section instead of the derivative, one can use the algorithm as an exclusive event generator

and only impose the veto constraints at the end, after event generation.

C NLO expansion for isolated photon production

In this appendix we give analytical expressions for the lowest-order hard function and the

NLO soft logarithm for isolated photon production at e+e− colliders.

If we expand to NLO, the factorization formula (4.9) truncates at m = 3 since the

hard functions scale as Hγ+n ∼ αn−2
s . Expanding the ingredients in αs and using that the

lowest-order soft functions are trivial Sm = 1 +O(αs), the cross section reads

dσ

dxγ
= 〈H(0)

γ+2 ⊗ 1〉+
αs
4π

[
〈H(0)

γ+2 ⊗ S(1)
2 〉+ 〈H(1)

γ+2 ⊗ 1〉+ 〈H(1)
γ+3 ⊗ 1〉

]
, (C.1)

where the superscripts of H(n)
γ+m and S(n)

m indicate the order in αs.

The hard function H(0)
γ+2 describes the final state with one quark, one antiquark (with

momenta p1 and p2) and one isolated photon (with momentum pγ) in the final state. Using

momentum conservation and introducing the variable y1 = (p1+pγ)2/(xγ Q
2), we can write

the LO hard function as

H(0)
γ+2 (y1, Q, xγ , δ0, ε) = σ0

αQ2
q

2π

eγEε

Γ(1− ε)

(
µ

Q

)2ε

x̄−εγ x−1−2ε
γ

× (y1 ȳ1)−1−ε [2 x̄γ + x2
γ (y2

1 + ȳ2
1 − ε)

]
, (C.2)

with x̄γ = 1−xγ , ȳ1 = 1−y1, Qq is the charge of the quark flavour emitting the photon and

σ0 the associated Born cross section. Here we eliminated the bare fine-structure constant

using α0 = µ̃2εα =
[
eγEµ2/(4π)

]ε
α. The Born cross section for the decay γ∗ → qq̄ is given

by

σ0 = Nc αQ
2
q Q

eγEε Γ(2− ε)
Γ(2− 2ε)

(
µ

Q

)2ε

. (C.3)

The dependence on y1 is the leftover angular integration after taking momentum con-

servation into account and enters the convolution with the soft function. The angular

constraint, which enforces that the hard partons are outside the isolation cone, translates

to an integration boundary in terms of yc =
(1−cos δ0)(1−xγ)
2−(1−cos δ0)xγ

as follows:

H(0)
γ+2 ({n1, n2}, Q,Eγ , δ0)⊗S2 ({n1, n2}, εγEγ , δ0)

=

∫ 1−yc

yc

dy1 H(0)
γ+2 (y1, Q, xγ , δ0)S2 (y1, xγ , εγ , δ0) . (C.4)
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As the soft function is trivial at LO (first term on the right hand side of (C.1)), we

can immediately perform the integration over y1, take the trace in color space and obtain

the differential LO cross section as

dσ(0)

dxγ
=

∫ 1−yc

yc

dy1 〈H(0)
γ+2〉

= σ0

αQ2
q

π

[
2− 2xγ + x2

γ

xγ
ln

(
1− yc
yc

)
− (1− 2 yc)xγ

]
, (C.5)

in agreement with the result in [75].

The second term 〈H(0)
γ+2⊗S

(1)
2 〉 in (C.1) can be obtained by evaluating the soft function

S(1)
2 for one soft gluon inside the cone radiated off one of the Wilson lines along {n1, n2},

whose direction is parameterized by the variable y1. The soft function reads

S(1)
2 = −8CF

1

ε

(
µ

εγEγ

)2ε

I(ε) 1 , (C.6)

with the angular integral

I(ε) =

∫
dΩk

4π

ni · nj
ni · nk nk · nj

θ(1− cos δ0 − nk · nγ) . (C.7)

To extract the divergent part of the soft function, it is sufficient to evaluate the angular

integral for d = 4, where it can be rewritten in the form

I(0) =

∫ xmax

xmin

dx

[
1 +

2

π
arcsin

(
(1− 2y1) sinhx− ξ coshx

2
√
ȳ1y1

)]
, (C.8)

after boosting to the center-of-mass frame of the emitting dipole. We have introduced the

abbreviation

ξ =
(2− xγ) cos δ0 + xγ
2− (1− cos δ0)xγ

, (C.9)

and the integration boundaries which restrict the gluon to the inside of the isolation cone

have the form

xmin =
1

2
ln

[
1 + (1− 2y1)ξ − 2

√
ȳ1y1(1− ξ2)

1− (1− 2y1)ξ + 2
√
ȳ1y1(1− ξ2)

]
, (C.10)

xmax =
1

2
ln

[
1 + (1− 2y1)ξ + 2

√
ȳ1y1(1− ξ2)

1− (1− 2y1)ξ − 2
√
ȳ1y1(1− ξ2)

]
. (C.11)

The one-loop corrections of H(1)
γ+2 and H(1)

γ+3 could be extracted in numerical form

using the results of [75]. However, we are only interested in the logarithmic piece, so that

the divergent part of the combination is sufficient. Since the cross section is finite, the

divergence must be equal and opposite to the one in 〈H(0)
γ+2 ⊗ S(1)

2 〉. Explicitly, we must

find that it takes the form

〈H(1)
γ+2 ⊗ 1〉+ 〈H(1)

γ+3 ⊗ 1〉 = 8CF
1

ε

(
µ

Eγ

)2ε ∫ 1−yc

yc

dy1 〈H(0)
γ+2〉 I(0) . (C.12)

– 33 –



Adding the one-loop ingredients, we then obtain the NLO logarithmic terms as

dσ(1)

dxγ
= 16CF ln(εγ)

∫ 1−yc

yc

dy1 〈H(0)
γ+2〉 I(0) . (C.13)

D Narrow-cone limit of photon isolation

To verify the factorization theorem for narrow isolation cones (4.18), we apply the method

of regions to the integral which arises in the computation of the differential cross section

at leading order (C.5). To apply the method, we write (C.5) in the form

dσ(0)

dxγ
= σ0

αQ2
q

2π

eγEε

Γ(1− ε)

(
µ

Q

)2ε

x̄−εγ x−1−2ε
γ I (D.1)

with the dimensionally regularized angular integral

I =

∫
dy1 (y1 ȳ1)−1−ε [2 x̄γ + x2

γ (y2
1 + ȳ2

1 − ε)
]
θ(1− yc − y1)θ(y1 − yc). (D.2)

For a narrow cone we have yc ≈ δ2
0 x̄γ/4 � 1. The expansion of the integral I gets

contributions from three regions of the integration variable y1: the hard region h, where

y1 is large yc � y1 ≈ 1; the region c, where the photon is emitted collinear to the quark

(yc ≈ y1 � 1); and finally the region c̄, where the photon is emitted collinear to the

antiquark (yc ≈ ȳ1 = 1 − y1 � 1). By expanding the integrand in each region to leading

power and evaluating the resulting integrals, we get

Ih =

∫ 1

0
dy1 (y1 ȳ1)−1−ε [2 x̄γ + x2

γ (y2
1 + ȳ2

1 − ε)
]

= −
2(2 x̄γ + x2

γ)

ε
+O(ε) (D.3)

for the hard region, and for the collinear regions we have

Ic = Ic̄ =

∫ ∞
yc

dy1 y
−1−ε
1

[
2 x̄γ + x2

γ(1− ε)
]

=
y−εc
ε

[
2 x̄γ + x2

γ(1− ε)
]
, (D.4)

because I is symmetric under y1 ↔ ȳ1. Adding up the different contributions, we obtain

dσ(0)

dxγ
= σ0

eγEε

Γ(1− ε)
αQ2

q

2π

(
µ

Q

)2ε

x̄−εγ x−1−2ε
γ (Ih + Ic + Ic̄)

= σ0

αQ2
q

π

{
Pγ←q(xγ)

[
−1

ε
+ ln

(
x̄γx

2
γ

)
− ln

µ2

Q2

]
+

Pγ←q(xγ)

[
+

1

ε
− ln

(
x̄γx

2
γ

)
+ ln

µ2

ycQ2

]
− xγ

}
+O(ε) , (D.5)

where we show the hard and the collinear contributions separately in the second and third

line. The divergences of the individual terms in (D.5) are proportional to the splitting

function

Pγ←q(z) =
1 + (1− z)2

z
, (D.6)
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confirming our earlier statement that the two parts renormalize in the same way as the

fragmentation function. Adding up the two pieces one ends up with the final result

dσ(0)

dxγ
= σ0

αQ2
q

π

[
Pγ←q(xγ) ln

(
1

yc

)
− xγ

]
. (D.7)

This agrees with the expansion of the full result (C.5) to leading power in yc, verifying our

region expansion.

The contributions of the different momentum regions to (D.5) are in one-to-one corre-

spondence to terms in the factorization theorem, which at leading order reduces to

dσ(0)

dxγ
=

dσincl.
γ+q+q̄

dxγ
+ 2σ0 〈Jq→γ+q ({n}, δ0Eγ , xγ)⊗ 1〉 , (D.8)

where the factor of two in front of the second term accounts for the identical contribution

from the anti-quark. The hard region is the first term in (D.8) and corresponds the cross

section without isolation on the photon. The collinear region in the second line of (D.5)

corresponds to the second term in (D.8) which describes the production of a qq̄ pair,

followed by fragmentation of the quark. We thus confirm the factorization theorem (4.18)

at LO.
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[53] S. Frixione, Phys. Lett. B 429, 369 (1998) doi:10.1016/S0370-2693(98)00454-7

[hep-ph/9801442].

[54] S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Phys. Rev. Lett. 108, 072001

(2012) Erratum: [Phys. Rev. Lett. 117, no. 8, 089901 (2016)]

doi:10.1103/PhysRevLett.108.072001, 10.1103/PhysRevLett.117.089901 [arXiv:1110.2375

[hep-ph]].

[55] J. M. Campbell, R. K. Ellis, Y. Li and C. Williams, JHEP 1607, 148 (2016)

doi:10.1007/JHEP07(2016)148 [arXiv:1603.02663 [hep-ph]].

[56] J. M. Campbell, R. K. Ellis and C. Williams, Phys. Rev. Lett. 118, no. 22, 222001 (2017)

doi:10.1103/PhysRevLett.118.222001 [arXiv:1612.04333 [hep-ph]].

[57] S. Catani, M. Fontannaz, J. P. Guillet and E. Pilon, JHEP 0205, 028 (2002)

doi:10.1088/1126-6708/2002/05/028 [hep-ph/0204023].

[58] T. Becher and M. D. Schwartz, JHEP 1002, 040 (2010) doi:10.1007/JHEP02(2010)040

[arXiv:0911.0681 [hep-ph]].

[59] T. Becher, G. Bell, C. Lorentzen and S. Marti, JHEP 1402, 004 (2014)

doi:10.1007/JHEP02(2014)004 [arXiv:1309.3245 [hep-ph]].

[60] G. Aad et al. [ATLAS Collaboration], JHEP 1608, 005 (2016)

doi:10.1007/JHEP08(2016)005 [arXiv:1605.03495 [hep-ex]].

[61] S. Catani, M. Fontannaz, J. P. Guillet and E. Pilon, JHEP 1309, 007 (2013)

doi:10.1007/JHEP09(2013)007 [arXiv:1306.6498 [hep-ph]].

[62] L. E. Gordon and W. Vogelsang, Phys. Rev. D 48, 3136 (1993).

doi:10.1103/PhysRevD.48.3136

[63] M. Glück, E. Reya and A. Vogt, Phys. Rev. D 48, 116 (1993) Erratum: [Phys. Rev. D 51,

1427 (1995)]. doi:10.1103/PhysRevD.51.1427, 10.1103/PhysRevD.48.116

[64] L. Bourhis, M. Fontannaz and J. P. Guillet, Eur. Phys. J. C 2, 529 (1998)

doi:10.1007/s100520050158 [hep-ph/9704447].

[65] G. Aad et al. [ATLAS Collaboration], Phys. Rev. D 87, no. 11, 112001 (2013) Erratum:

[Phys. Rev. D 88, no. 7, 079906 (2013)] doi:10.1103/PhysRevD.87.112001,

10.1103/PhysRevD.88.079906 [arXiv:1210.2979 [hep-ex]].

[66] S. Chatrchyan et al. [CMS Collaboration], Eur. Phys. J. C 73, no. 10, 2610 (2013)

doi:10.1140/epjc/s10052-013-2610-8 [arXiv:1306.1126 [hep-ex]].

[67] A. Banfi, G. P. Salam and G. Zanderighi, JHEP 1206, 159 (2012)

doi:10.1007/JHEP06(2012)159 [arXiv:1203.5773 [hep-ph]].

[68] T. Becher and M. Neubert, JHEP 1207, 108 (2012) doi:10.1007/JHEP07(2012)108

[arXiv:1205.3806 [hep-ph]].

[69] A. Banfi, P. F. Monni, G. P. Salam and G. Zanderighi, Phys. Rev. Lett. 109, 202001 (2012)

doi:10.1103/PhysRevLett.109.202001 [arXiv:1206.4998 [hep-ph]].

[70] T. Becher, M. Neubert and L. Rothen, JHEP 1310, 125 (2013)

doi:10.1007/JHEP10(2013)125 [arXiv:1307.0025 [hep-ph]].

– 38 –



[71] I. W. Stewart, F. J. Tackmann, J. R. Walsh and S. Zuberi, Phys. Rev. D 89, no. 5, 054001

(2014) doi:10.1103/PhysRevD.89.054001 [arXiv:1307.1808 [hep-ph]].

[72] T. Becher, R. Frederix, M. Neubert and L. Rothen, Eur. Phys. J. C 75, no. 4, 154 (2015)

doi:10.1140/epjc/s10052-015-3368-y [arXiv:1412.8408 [hep-ph]].

[73] A. Hornig, D. Kang, Y. Makris and T. Mehen, JHEP 1712, 043 (2017)

doi:10.1007/JHEP12(2017)043 [arXiv:1708.08467 [hep-ph]].

[74] T. Becher, R. Rahn and D. Y. Shao, JHEP 1710, 030 (2017) doi:10.1007/JHEP10(2017)030

[arXiv:1708.04516 [hep-ph]].

[75] Z. Kunszt and Z. Trocsanyi, Nucl. Phys. B 394, 139 (1993)

doi:10.1016/0550-3213(93)90104-W [hep-ph/9207232].

[76] S. Caron-Huot, JHEP 1803, 036 (2018) doi:10.1007/JHEP03(2018)036 [arXiv:1501.03754

[hep-ph]].

– 39 –


	1 Introduction
	2 Factorization for jet cross sections
	3 RG evolution as a parton shower
	4 Phenomenology of non-global observables
	4.1 Qualitative discussion
	4.2 Gaps between jets
	4.3 Isolation cone cross sections and photon production
	4.4 Jet-veto cross sections

	5 Conclusion
	A Angular integration with a collinear cutoff 
	B Details of the MC algorithm 
	C NLO expansion for isolated photon production
	D Narrow-cone limit of photon isolation 

