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A phenomenological analysis of the scalar glueball and scalar meson spectra is carried out by using
the AdS/QCD framework in the bottom-up approach. The resulting spectra are in good agreement
for glueballs with lattice QCD results and for mesons with PDG data. We make use of the relation
between the mode functions in AdS/QCD and the wave functions in Light-Front QCD to discuss
the mixing of glueballs and mesons. The results of our investigation point out that above 2 GeV
scalar particles will appear in almost degenerate pairs of unmixed glueball and mesons states leading
to an interesting phenomenology whereby gluon dynamics could be well investigated.
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I. INTRODUCTION

Glueballs have been a matter of theoretical study and experimental search since the formulation of the theory of
the strong interaction Quantum Chromodynamics (QCD) [1, 2], QCD sum rules [3, 4], QCD based models [4] and
Lattice QCD computations both with sea quarks [5] and in the pure glue theory [6–8] have been used to determine
their spectra and properties. However, due to the lack of phenomenological support much debate has been associated
with their properties [4]. Glueballs, if they exist, will mix with meson states of the same quantum numbers, and
therefore their direct characterization is difficult to disclose.

A fruitful strategy to investigate non perturbative features of glueballs is the use of QCD models inspired by the
holographic conjecture. Recently we have used these so called AdS/QCD models to study the glueball spectrum [9, 10].
The holographic principle relies in a correspondence between a five dimensional classical theory with an AdS metric
and a supersymmetric conformal quantum field theory with NC → ∞. Since the latter is different from QCD, an
approach called bottom-up is usually adopted [11–14]. It consists in properly modifying the five dimensional classical
theory to resemble QCD as much as possible. The different models constructed in this way differ in the strategy
to break conformal invariance. Since the mesons masses are O(N0

c ) these models reproduce the essential features of
the meson spectrum [15–17]1. Two of the most widely used models are the hard-wall (HW) and the soft-wall (SW)
models. The former consists in introducing an explicit cut off in the fifth coordinate z, 0 ≤ z ≤ zmax = 1/ΛQCD.
However, the HW model is not able to reproduce the Regge trajectories of the mesonic spectrum. To this aim,
in the SW model, a dilaton field is introduced to softly break conformal invariance. Since the glueball masses are
also O(N0

C) these models were extended to study the glueball spectrum [10, 19, 20]. Keeping in mind the relation
between AdS/QCD models and the 1/NC expansion of QCD other observables of O(N0

C) have been investigated.
In fact, since in the the planar limit (NC → ∞) hadrons are stable and non-interacting, these AdS/QCD models
are appropriate to evaluate structure functions and spectra. For example form factors (ffs), parton distribution
functions (PDFs), generalized parton distribution functions and transverse dependents PDFs have been calculated
with reasonable agreement with the data [21–26]. All these analyses were inspired by the investigation on hard deep
inelastic scattering at small x within AdS/QCD [27]. In addition, O(1/N2

C) observables like the pomeron contribution
to proton-proton scattering [28, 29] and the elastic cross section [30] have been also described with holographic inspired
models.

Following our investigations on the scalar glueball spectrum, we discuss in what follows some phenomenological
consequences by comparing theoretical results with data. The experimentally determined scalar ”mesons” with spin
parities JPC = 0++ are known as the f0 mesons [31]. Our aim is to describe the glueball lattice spectrum by means
of the AdS/QCD correspondence and to compare it with the spectrum of f0’s. Only when the masses of the glueballs

1 Large NC behavior of observables can be found in the lectures by J.L. Goity [18] and references therein.
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and the f0’s are close mixing is to be expected [32]. However, if the masses are close, but the dynamics generating
the resonance states is different, mixing will not happen [33]. Therefore, we are looking for meson and glueball states
with similar masses but generated by different dynamics. These scalar particles will appear in the phenomenological
spectrum as mostly glueball or mostly meson.

We use for our analysis the bottom-up approach of the AdS/QCD correspondence [11–13]. This approach describes
glueball and meson dynamics in a very transparent fashion [10, 14, 15, 19]. In section II we describe the scalar glueball
spectrum and the meson spectrum in several AdS/QCD approaches. In section III we will discuss glueball-meson
mixing and finally in the conclusions we extract some consequences of our analysis.

II. SCALAR GLUEBALL AND SCALAR MESON SPECTRUM IN A BOTTOM-UP APPROACH

The botton-up approach on the AdS/CFT correspondence starts from QCD and attempts to construct its five-
dimensional holographic dual. One implements duality in nearly conformal conditions defining QCD on the four
dimensional boundary and introducing a bulk space which is a slice of AdS5 whose size is related to ΛQCD [11–
13, 15].

The metric of this space can be written as

ds2 =
R2

z2
(dz2 + ηµνdx

µdxν) +R2dΩ5, (1)

where ηµν is the Minkowski metric and the size of the slice in the holographic coordinate 0 < z < zmax is related to
the scale of QCD, zmax = 1

ΛQCD
. This is the so called hard wall approximation. Later on, in order to reproduce the

Regge trajectories, the so called soft wall approximation was introduced [14, 20]. Within the bottom-up strategy and
in the soft wall approach, glueballs arising from the correspondence of fields in AdS5 have been studied in ref. [19].
In our recent work we have described the scalar glueball spectrum as that of a graviton in AdS5 with a modified soft
wall metric [10]. In Fig. 1 we reproduce the results of these references for the glueball spectrum.
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FIG. 1: Glueball spectrum obtained with the soft wall model (dashed-dotted) [19] and soft wall graviton model (solid) [10].
These calculations were reported in ref. [10]. The lattice data are from refs. [6–8] as shown in Table I. The dots label the
scalar glueballs and the triangles the tensor glueballs.

In order to clarify the discussion of the present investigation let us recall the formalism to describe glueballs and
mesons in AdS/QCD soft wall models.

A. The glueball in a soft wall model

For a scalar glueball, the dilaton the action is:
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S =

∫
d5x
√
−ge−φ(z)

[
gMN∂MG ∂NG+M2

5gG
2
]
, (2)

where here gMN is the metric of eq. (1), G the scalar glueball field, M2
5g is the AdS5 mass and the dilaton function

is φ(z) = z2. In the case of scalars, the boundary operator conformal dimension ∆, is related to M5 as follows [20]:

∆ = 2±
√

4 +R2M2
5 . (3)

In the case of the scalar glueball, ∆ = 4 thus M5g = 0. The equation of motion from eq. (2) for the glueball field
reads:

∂M

[√
−ge−φ(z)gMN∂NG

]
= 0 . (4)

The above equation can be rewritten as a Schrödinger like equation:

−Ψ′′(z) +
[
z2 +

15

4z2
+ 2
]
Ψ(z) = µ2Ψ(z) , (5)

where here

G(z, x) = eiq·xΨ(z)
( z
R

)3/2

ez
2/2 . (6)

In the above relation, x is a four vector in the Minkowski space and −q2 = µ2 with µ an adimensional glueball mass.
As can be seen in ref. [19] the solution of eq. (5) leads to the following mode spectrum

µ2
k = 4k + 8, (7)

where k = 0, 1, 2, . . .. The corresponding normalized mode function for mode number k = ng is can be written as:

Ψng (z) =
√

(ng + 1)(ng + 2)/2 e−z
2/2 z5/2

1F1(−ng, 3, z2) . (8)

B. The scalar meson in the soft wall model

For a scalar meson, the dilaton the action is:

S =

∫
d5x
√
−ge−φ(z)

[
gMN∂MS ∂NS +M2

5mS
2
]
, (9)

where S the scalar meson field and M2
5m is the AdS5 mass. The conformal dimension for the scalar meson field is

∆ = 3 thus M2
5gR

2 = −3. The equation of motion from eq. (9) for the scalar meson field reads [17],:

−Ψ′′(z) +
[
z2 +

3

4z2
+ 2
]
Ψ(z) = µ2Ψ(z) , (10)

where here

S(z, x) = eiq·xΨ(z)
( z
R

)3/2

ez
2/2 . (11)

In the above relation −q2 = µ2 with µ an adimensional scalar meson mass. The solution of this equations [17] leads
to the following mode spectrum, by

m2
k = 4k + 6, (12)

where k = 0, 1, 2, . . .. The normalized mode function for mode number k = nm is

Ψnm
(z) =

√
2(nm + 1) e−z

2/2 z3/2
1F1(−nm, 2, z2) . (13)
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C. The soft wall graviton model

In ref. [10], we discussed the possibility that the glueball field is dual to a graviton. However, in order to recover
the above results for the scalar meson, it is convenient to generalize the background metric to

ḡMN = e−α
2z2/R2

gMN , (14)

with α2 < 0 in order to have bound states. The equation of motion is obtained by solving the Einstein equation for
the above metric [10]. Setting R = 1 this equation reads

d2φ

dz2
+

(
α2z − 3

z

)
dφ

dz
+

(
8

z2
+ 6α2 + µ2 + 4α2z2

)
φ− 8

z2
e−α

2z2φ = 0. (15)

In this case one can also obtain a Schrödinger like equation by performing the change of function

φ(z) = eα
2z2/4

(
z2

α2

) 3
2

Ψ(z) (16)

which using the adimensional variable t = az/
√

2 where a = iα becomes

−Ψ′′(t) +
[8e2t2

t2
− 17

4t2
+ 14− 15t2

]
Ψ(t) =

2µ2

a2
Ψ(t) , (17)

The mode spectrum has no analytical solution and was obtained numerically [10]. We take a =
√

2, t = z and the
equation resembles those of the other approaches with µ an adimensional glueball mass.

D. Phenomenological analysis

As we have just recalled the AdS/QCD models provide us with a succession of mass modes of differential equations,
which in general, one has to obtain numerically. In the case of glueballs an exception is the standard soft wall model
where the expression turns out to be analytic, µ2(ng) = 4ng + 8, where ng is the corresponding mode number [19].
In order to reach the experimental results we have to multiply the adimensional modes µ(ng) by an energy scale ε,
i.e. m2(ng) = ε2µ2(ng) To determine ε we use here the technique, developed in ref. [10] . We display the spectrum
obtained by fitting one AdS mode to a physical state, for example in the case of glueballs we fit the lowest mode to the
lowest lying glueball and determine an initial value for ε. We then proceed by seeding the rest of the lattice data on
the plot and by varying slightly ε we get a best fit to the whole spectrum. The lattice data used are shown in Table I
[6–8] 2. We also use for the fit the results for the tensor glueball states since the theory predicts degeneracy between
the scalar an the tensor glueball for the soft wall models. In Fig. 1 we show the results for all models analyzed. The
best fit for the soft wall model is obtained for ε′ = 710 MeV. The soft wall graviton model has no analytical mode
solution, it is given by a numerical function m(ng) = ε′′f(ng)), and the shown fit is for ε′′ = 370 MeV. Both models
lead to a reasonable fit of the data. The difference between them arises for heavy states. The soft wall dilaton model
has a quadratic behavior that softens the slope at high energies. The soft wall graviton model has an almost linear
behavior showing no softening of the slope in the region analyzed.

JPC 0++ 2++ 0++ 2++ 0++ 0++

MP 1730 ± 94 2400 ± 122 2670 ± 222
YC 1719 ± 94 2390 ± 124

LTW 1475 ± 72 2150 ± 104 2755 ± 124 2880 ± 164 3370 ± 180 3990 ± 277

TABLE I: Glueball masses [MeV] from lattice calculations by MP [6], YC [7] and LTW [8] .

2 We have not included the lattice results from the unquenched calculation [5] to be consistent, which however, in this range of masses
and for these quantum numbers are in agreement with the shown results within errors.
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Meson f0(500) f0(980) f0(1370) f0(1500) f0(1710) f0(2020) f0(2100) f0(2200)
PDG 475 ± 75 990 ± 20 1350 ± 150 1504 ± 6 1723 ± 6 1992 ± 16 2101 ± 7 2189 ± 13

TABLE II: Scalar meson masses [MeV] from PDG [31]
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FIG. 2: We plot the f0 PDG meson spectrum [31] as a function of mode number. The lower curve considers the f0(500) as
the lowest mass meson, while the upper curve omits this resonance and considers the f0(980) as the lowest mass meson. These
curves arise by choosing the adequate energy scale in the meson spectrum of the soft wall model [17].

In Fig. 2 we show the soft wall model fit to the PDG meson spectrum which we recall in Table II. Many authors
have argued that the f0(500) is not a conventional meson state but a tetraquark or a hybrid [4, 34]. The figure shows
that once the f0(500) is taken out of the meson spectrum the soft wall model fit is excellent for ε = 410 MeV. From
now on we omit the f0(500) from our discussion.

Note the similarity of the scales for mesons and glueballs in the soft wall graviton model. On the contrary in the
soft wall model studied despite having extremely similar equations of motion the mass scales are very different. This
feature has to do with the shape of the spectra. While the meson spectrum is quadratic in the region under scrutiny,
the glueball spectrum is almost linear. From this feature one may conclude that the soft wall graviton model describes
well the glueball spectra.

It might surprise that the scale factors for glueballs and mesons are different. Note that we are not approximating
the same theory for mesons and glueballs. Fitting the mesons with PDG data we are approximating QCD, while
fitting the glueballs with lattice QCD results we are approximating Gluodynamics. However, we feel that these scales
should not be vastly different, an additional reason for our liking of the soft wall graviton model. Recall that this
model leads to an energy scale for glueballs of 370 MeV and for mesons of 410 MeV, which for the mass scales involved
are very similar despite the different dynamics. Lastly, remember that our fits are O(N−1

C ) and higher orders should
be added to obtain a precise value. However, the fact that the fits are quite good suggest that the contribution of the
higher order terms might be small.

In Fig. 3 we show the meson data (lower points) and the glueball lattice data (upper points). We have used to fit the
meson data the soft wall model [10, 17]. To fit the data for the glueballs we have used on the left the soft wall model
[19] and on the right figure the soft wall graviton model [10]. An interesting feature of the comparison of spectra
that can be seen in Fig.3 is that the glueball masses with a certain mode number are equal to the meson masses with
a larger mode number. For example, the glueball masses for ng = 0, 1, 2 are similar to the scalar meson masses for
nm = 4, 7, 10 respectively. The difference in mode numbers grows as the masses of the glueballs increase due to the
different slopes. Thus besides the reasonable quality of the fits, the result we would like to stress is the difference
between the slopes of the glueball and meson fits for large mode numbers. The mode numbers are associated with
the behavior of the mode functions. Thus, the mode function for a meson will oscillate more than that for a glueball
of approximately the same mass. Therefore, despite having a similar mass the large difference in mode numbers leads
one intuitively to expect that mixing will not be very strong between the heavy states. We proceed to analyze the
consequences of this observation quantitatively in what follows.
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FIG. 3: Left panel: fits of glueball spectrum (full upper line) and scalar meson spectrum (full lower line) obtained within the
dilaton soft wall model of refs. [17, 19]. The dark dots represent glueball spectrum obtained within lattice QCD [6–8]. The
light dots represent the scalar meson spectrum obtained from experimental data [31]. Right Panel: the same as in the left
panel but the fits result from the soft wall graviton model of ref. [10].

III. GLUEBALL-MESON MIXING

One of the problems in glueball phyics is the fact that glueball candidates always appear strongly mixed with
mesons states [4, 33]. Mixing usually occurs if two states have similar masses and the same quantum numbers. Thus
the scalar glueballs might mix with scalar mesons. The study of the f0 spectrum from this perspective has led to
the result that if glueballs exist, and there is no reason for its non-existence, either the f0(1500) or the f0(1710)
might have a large glueball component (see [4, 33] and references therein). Our aim here is not to contribute to this
discussion, but in view of the structure of the spectra, to look for dynamical regions were mixing is not favorable and
therefore states with mostly gluonic valence structure might exist. The presence of almost pure glueball states and
the study of their decays would help in understanding many properties of QCD related to the physics of gluons.

In order to proceed with the discussion let us consider the holographic light-front representation of the equation of
motion, in AdS space. The latter can be recast in the form of a light-front Hamiltonian [12]

HLC |Ψk >= M2
k |Ψk > . (18)

where k represents the mode number of the corresponding particle. In the AdS/QCD light-front framework the above
relation becomes a Schrödinger type equation

(
− d2

dz2
+ V (z)

)
Ψ(z) = M2

kΨ(z) (19)

where z and M2
k in this equation are adimensional. The holographic light-front wave function are defined by Ψk(z) =

< z|Ψk > and are normalized as

< Ψk|Ψk >=

∫
dz|Ψk(z)|2 = 1 (20)

The eigenmodes of Eq.(19) determine the mass spectrum. In order to fit the spectrum dimensional constants have to
be introduced, e.g. the ε’s of previous section, which might be different for glueballs and mesons. These dimensional
constants do not affect the adimensional variables and therefore do not affect the properties of the properly normalized
wave functions. Thus the mode functions describe properties like probability distributions independently of those
scales in terms of the adimensional variables as seen in Eq.(20).

Let us discuss mixing in a two dimensional Hilbert space generated by a meson and a glueball states, {|Ψm >, |Φg >}.
Mixing occurs when the hamiltonian is not diagonal in the subspace. Let us recall the discussion of two state mixing.
For notational simplicity we use a linear hamiltonian model. A matrix representation of the hamiltonian in a two
dimensional meson-glueball subspace is given by
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[H] =

(
m1 β
β m2

)
, (21)

where β =< Ψm|H|Φg >, m1 =< Ψm|H|Ψm > and m2 =< Φg|H|Φg >. We are assuming m2 > m1 and for simplicity

α real and positive. Large NC QCD tells us that m1,m2 ∼ O(N0
C) and β ∼ O(N

−1/2
C ) [18, 32]. After diagonalization

the eigenstates have a mass

M± = m±
√
β2 + (∆m)2, (22)

where m = (m1 +m2)/2 and ∆m = (m2 −m1)/2 and its wave functions are proportional to

∼
(
M± −m2

β

)
Thus in the starting base the physical meson, which we assume to be the lightest of the two eigenvectors, has a

wave function given by

|Ψphy >=
1√

β2 + (M− −m2)2
((M− −m2)|Ψm > +β|Φg >). (23)

In our fit we have fixed the meson spectrum to the experimental values and therefore |Ψphy > represents a physical
meson state. On the other hand we have fixed the glueball spectrum to the lattice values, i.e., to the spectrum of
pure gluodynamics, therefore the glueball state is our initial state |Φg >, thus

| < Ψphy|Φg > |2 =
β2

(M− −m2)2 + β2
. (24)

We conclude that the mixing probability is proportional to the overlap probability of these two wave functions.
Despite the large Nc analysis previously presented one might suspect that for Nc = 3, the overlap probability might

not be as small as required to produce small β values. The value of β certainly depends on the modes it connects.
For the lower modes it has been estimated in the linearized form of Eq.(21) to be β ∼ 40 MeV [35], while the meson
and glueball masses are at the level of ∼ 2000 MeV. The heavier meson-glueball states have smaller overlap factors,
as we next show, and larger masses. Therefore the β values will be even smaller.

In the case of the standard soft wall dilaton model, the overlap factor is defined as

0 2 4 6 8
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

z

Ψ
(z
)

0 2 4 6 8
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

z

Ψ
(z
)

FIG. 4: We plot the glueball for mode number ng = 2 (solid) and the meson for mode number n = 10 (dashed). The figure
on the left corresponds to the soft wall dilaton model while the figure on the right to the soft wall graviton model.

< Ψnm
|Φng

>=< G|M >=
√

2(nm + 1)(ng + 1)(ng + 2)

∫ ∞
0

dze−z
2

z4
1F1(−ng, 3, z2) 1F1(−nm, 2, z2), (25)
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and the overlap probability for no mixing PGM = 1 − | < G|M > |2. For the soft wall graviton model the overlap
factor must be obtained numerically.
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FIG. 5: We plot the probability of no mixing for the glueball with mode numbers ng = 0 (solid),1 (dashed), 2 (dotted), 3
(dot-dashed), 4 (solid) as a function of meson mode number nm. The left figure is for the soft wall dilaton model while the
right figure is for the soft wall graviton model.

We would like to show that meson and glueball wave functions whose mode numbers are very different, despite
having almost equal masses, lead to small overlap probabilities and therefore to small mixing. To do so let us an
example. We choose a glueball of mode number ng = 2 and a meson of mode number nm = 10. They can be considered
as candidates for mixing because, using in the soft wall model Eqs. (7,12), the glueball mass m(k = 2) ∼ 2840 MeV
and the meson mass m(k = 10) ∼ 2781 MeV. Thus this example can be considered as a prototype for a mixing scenario
for heavy particles. In Fig.4 we show the mode functions for the ng = 2 glueball mode and that for the nm = 10
meson mode for both the soft wall and soft wall graviton models. The figure shows the big difference between the
glueball modes in both the soft wall and soft wall graviton models. The extension of the glueball mode in the soft wall
graviton model is determined by the exponential in the potential and therefore all modes die at z ∼ 2 irrespective of
their mode number. In the case of the soft wall model the extension is governed by the mode number. This difference
in structure implies that in the soft wall graviton model the overlap factor is oscillating and extends over many modes
even reaching large meson mode numbers n, while in the dilaton model only a few modes close to ng are contributing
to the overlap as shown in Fig. 5.

Looking at Figs. 3 and 5, the favorable mixing scenario is mostly excluded in the case of heavy glueballs and
mesons, since the mass condition is satisfied for very different mode numbers. For example ng = 2, 3, 4 the favorable
meson modes of almost equal masses occur for nm ∼ 10, 13, 17 in the soft wall model 3. As can be seen in Fig. 5 this
condition reduces the overlap probability for mixing dramatically. In the soft wall model the overlap probability is
extremely small for the required mode number differences, while in the soft wall graviton model it oscillates at the
level of maximum 10% percent overlap probabilities. The outcome of our analysis is that the AdS/QCD approach
predicts the existence of almost pure glueball states in the scalar sector in the mass range above 2 GeV. The no
mixing scenario is experimentally very appealing. It predicts the existence of pairs of almost degenerate states with
very different decay properties. The pure glueball decays to mesons are Zweig forbidden, i.e. small widths and an
increase in the proportion of strange mesons to non-strange mesons [4, 36–38]. On the contrary the pure meson states
will have a large width since they have a lot of phase space for decaying and larger decay rates to non-strange mesons
than to strange mesons.

IV. CONCLUSION

We have performed a phenomenological analysis of the scalar glueball and scalar meson spectrum based on the
AdS/QCD correspondence within the soft wall dilaton and soft wall graviton approaches. Theoretical outcomes have

3 In the soft wall graviton model the difference is even larger since the slope of the glueball fit is larger than that of the soft wall model.
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been compared with lattice QCD data in the case of the glueballs and the experimental f0 spectrum of the PDG
tables in the case of the mesons. We have noted that the slope of the glueball spectrum as a function of mode number
is bigger that that of the meson spectrum in both approaches and therefore for heavy almost degenerate glueball
and meson states, their mode numbers differ considerably. Assuming a light-front quantum mechanical description
of AdS/QCD correspondence we have shown that the overlap probability of heavy glueballs to heavy mesons is small
and thus one expects little mixing in the high mass sector. Therefore, this is the kinematical region to look for almost
pure glueball states. The scenario is phenomenologically very appealing because it implies the existence of pairs of
almost degenerate states with very different decay properties.
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