Splitting Strip Detector Clusters in Dense Environments

Ben Nachman, Wm. Patrick McCormack, Maurice Garcia-Sciveres

On behalf of the ATLAS Collaboration March 21, 2018 Connecting the Dots

Image inspired from: Journal of Physics: Conference Series 119 (2008) 032014

.....

BERKELEY LAB

Splitting Strip Detector Clusters in Dense Environments

Ben Nachman, Wm. Patrick McCormack, Maurice Garcia-Sciveres LBNL/UC Berkeley

On behalf of the ATLAS Collaboration March 21, 2018 Connecting the Dots

Image inspired from: Journal of Physics: Conference Series 119 (2008) 032014

Tracking in ATLAS

ATLAS

Inner

Detector

Tracking in ATLAS - Pixels

Tracking in ATLAS - Strips

Tracking in ATLAS - Track finding

6

Output Tracks

Dense Environments

High p_T , three-prong taus are a good "lab" for high-density tracking – distance scales as $1/p_T$

Dense Environments

- In dense environments, merged clusters can dramatically affect tracking
- Cluster-splitting for pixels has been effective at improving reconstruction
- Strip clusters are important for momentum measurements due to lever-arm

What can strip cluster-splitting do for you?

Definition: "**Shared**" cluster = cluster used by more than track

What can strip cluster-splitting do for you?

Large loss in efficiency for high $p_T \tau$'s

10

Note: plot on previous slide required ≤ 2 shared clusters on truth tracks, meaning an artificially under-dense system

What can strip cluster-splitting do for you?

The key question: Can we improve efficiency without dramatically increasing fake rate?

11

Merged clusters should be shared without penalty!

How can we split strip clusters?

Pixels can use charge to split merged clusters.

... but strips do not have charge information!

Use idea from ATLAS study of δ -rays:

- Determine cluster expected width We from geometry
- Merged clusters are wider than expected

Delta Ray CONF Note: ATLAS-CONF-2013-005

Discrimination power

Discrimination power

Discrimination power

Watching the ROC

Don't be too accepting!

Don't be too accepting!

N.B.: there is no pile-up in these samples. Duplicate rate in high- μ samples needs to be studied.

Conclusions and Outlook

- Comparing expected cluster widths to the observed width is effective for splitting strip clusters
- Allowing tracks to share strip clusters with 1 extra strip increases efficiency in dense environments, without increasing duplicate rate
- Will **improve searches & measurements** using tracks inside τ 's & jets

Questions?

Cumulative distribution function

We can consider multiple variables to improve efficiency

Can we recover marginal truth vs width splitting loss at high p_T ? (and check jets)

Example input variables:

- 1. W_e - W_o (of course)
- 2. Cluster layer, more merging in inner layers
- 3. Track p_T ; higher p_T can mean more merging
- 4. τ p_T
- 5. Number of split pixel clusters on track
- 6. W_e - W_o of cluster on other strip layer

For example: use two sides

If both sides are not merged, both will most likely not have an extra strip If both sides are merged, both will most likely have an extra strip

Getting a sense of the merging rate

Renormalized CDF

A cut in this area would make sense!