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1 Introduction

It is a classic result in the field of scattering amplitudes that supersymmetric Ward identities

force gluon and graviton tree-level amplitudes to vanish if all particles carry the same

helicities or at most one state of opposite helicity [1],

An(±,+,+, . . . ,+) = Mn(±,+,+, . . . ,+) = 0 . (1.1)

While this result holds at tree level in any quantum field theory, in the presence of su-

persymmetry the vanishing persists to all loops. In non-supersymmetric field theories, in

particular in the “pure” Yang-Mills and gravity theories, the above amplitudes are very

interesting as they receive their leading contributions at one loop and are remarkably

simple — resembling tree-level expressions, although with more subtle factorization prop-

erties [2]. Their unitarity cuts vanish in four dimensions since the helicity configuration of

any two-particle cut of the one-loop expressions in (1.1) implies that there is at least one

vanishing tree-level piece. Hence, these one-loop amplitudes are finite rational functions of

the momentum invariants.

– 1 –



J
H
E
P
0
9
(
2
0
1
8
)
0
1
1

In the case of pure Yang-Mills theory they were efficiently constructed through their

analytic properties and even the all-multiplicity expression has been established in the

all-plus case [3, 4], resulting in a remarkably compact formula

A1-loop
n (1+, . . . , n+) =

iNp

96π2

∑
1≤k1<k2<k3<k4≤n

〈k1k2〉[k2k3]〈k3k4〉[k4k1]

〈12〉〈23〉 · · · 〈n1〉
, (1.2)

using spinor helicity variables.1,2 These one-loop amplitudes are also generated by the

self-dual Yang-Mills theory and represent their only non-vanishing amplitudes [8–10]. The

single-minus gluon amplitudes at one loop are also known for all multiplicities and have been

constructed using Berends-Giele type [11], as well as BCFW-type recursion relations [2].

Their form is considerably more involved.

All-plus and single-minus helicity amplitudes have also been constructed in pure grav-

ity. A conjecture for the all-plus graviton amplitude at any multiplicity exists [12] and

agrees with explicit constructions at n ≤ 7 points. Again, this infinite series of graviton

amplitudes is identical to one-loop self-dual gravity. For the single-minus amplitudes, an

explicit, yet not very compact expression has been recently derived [13] using a spin-off of

the BCFW method known as augmented recursion [14], following earlier work in [15–17].

As is often the case, the analytic structure, in particular consistency of soft and collinear

limits, helped to constrain the ansatz.

In this work we focus on explicit S-matrix elements for mixed graviton and gluon

scattering in Einstein gravity minimally coupled to Yang-Mills theory, or EYM for short. In

the 1990s EYM amplitudes in four dimensions for the maximally-helicity violating (MHV)

case, i.e. two negative-helicity states, were given at tree level in [18, 19]. Only rather

recently modern approaches to scattering amplitudes based on the scattering equation

formalism of CHY [20, 21], or the color-kinematic duality relations [22, 23], were applied

to the realm of EYM amplitudes, leading to a number of explicit results. Double-copy

constructions for gluon-graviton scattering in supergravity theories were given in [24–26].

However, the most efficient way of establishing EYM amplitudes is by expanding them in a

basis of pure gluon amplitudes multiplied by kinematic numerators to be determined (also

featuring in color-kinematic duality):

Atree
EYM(1, 2, . . . , n;h1, . . . , hm) =

∑
β∈Perm(2,...,n−1;h1,...,hm)

n(1, {β}, n)Atree
YM(1, {β}, n) . (1.3)

This form was initially presented by a string-based construction for one graviton and n-

gluon scattering in [27], the field theory proof followed shortly thereafter [28, 29] and

was further lifted to the sector of three gravitons in [28] employing the CHY formalism. A

color-kinematic duality based construction extended this to amplitudes involving up to five

gravitons [30]. The complete recursive solution for the numerators n(1, {β}, n) has recently

been constructed in the single-trace sector in [31, 32] and for multi-traces in [33]. This,

together with the existing result for all tree-level color-ordered gluon amplitudes [34–36],

constitutes the complete solution for the EYM S-matrix at tree level.

1Np is the color weighted number of bosonic minus fermionic states circling in the loop.
2See [5–7] for comprehensive reviews.
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Figure 1. Contributions to the one-loop EYM amplitude A3+1(1, 2, 3;h) at different orders in κ

and g. Only the top line of the O(κ g3) contribution of the amplitude is constructible by replacing

the gluon by a (massive) scalar from (1.5) in the rational case.

This state of affairs sets the stage for the investigation of the present paper. Here

we compute the remaining rational amplitudes of the EYM theory at the leading one-

loop level at multiplicity four. These are the three all-plus helicity amplitudes involving

one, two or three gravitons, as well as the six single-minus amplitudes involving one, two

or three gravitons. An elegant way to determine such amplitudes consists in employing

two-particle unitarity cuts in D = 4 − 2ε dimensions [37] (see also [38] for the first uses

of D-dimensional generalized unitarity). The main idea is that a rational term in four

dimensions, R, will in D dimensions acquire a discontinuity, but to a higher order in the

dimensional regularization parameter ε. Schematically,

R → R(−s)−ε = R
[
1− ε log(−s)

]
+ · · · . (1.4)

Technically, the calculation is greatly simplified by using the general supersymmetric Ward

identity of (1.1) at the one-loop order, which implies that the contribution of an arbitrary

state in the loop is proportional to that from a scalar circulating in the loop,

Aany state in loop
n+m (1, 2, . . . , n;h1, . . . , hm) = NpA

scalar in loop
n+m (1, 2, . . . , n;h1, . . . , hm) . (1.5)

It is important to realize that “any state in loop” refers to a “pure” contribution of a definite

quantum field excitation (e.g. graviton or gluon) propagating in the loop. This relation

may therefore be straightforwardly applied to the EYM situation of a gluon circulating

inside the loop of a mixed gluon-graviton amplitude, see figure 1 for a four-point example:

a one-loop single-graviton three-gluon amplitude will have one-loop contributions of order

κg3 and κ3g. A generic one-loop m-graviton and n-gluon amplitude will have g-leading

contributions of order gnκm representing only gluons in the loop, whereas the g-subleading

contributions gn−2kκm+2k reflect contributions where 2k gluon propagators are turned into

graviton propagators. Note that there is no single-gluon l-graviton vertex.

For the contributions to the amplitude maximizing the powers of the gauge coupling

constant, i.e. the contributions to An+m(1, 2, . . . , n;h1, . . . , hm) at order gnκm, we only

have gluons running in the loop, and the relation (1.5) applies with Np = 1, i.e. this

contribution may be computed upon replacing the gluon inside the loop by a scalar. The

– 3 –
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cuts are performed in D dimensions, where a generic loop momentum L satisfies L2 =

0 = l2(−2ε)− l
2
(4) = 0, where l(−2ε) and l(4) represent the (−2ε)- and four-dimensional part

of L. Because the external kinematics is four-dimensional, at one loop there is just one

l(−2ε). Setting l2(−2ε) :=µ2, one then has l2(4) =µ2, i.e. all internal D-dimensional scalar can

effectively be treated as four-dimensional massive scalar with uniform mass µ2, over which

one integrates at the end [37].

The “non-pure” contributions of order gn−2kκm+2k, however, have a mixture of gluons

and gravitons running inside the loop. Here the situation is less clear, as (1.5) does not hold.

A simple dimensional analysis also reveals that the mixed graviton-gluon contributions in

the loop are not represented by (1.5).

Hence in this work we only aim at finding the maximal g contributions to the one-loop

rational amplitudes in EYM theory. Here we find intriguingly simple results, to wit3

A(1)(1+, 2+, 3+; 4++)
∣∣∣
κg3

= 0 ,

A(1)(1+, 2+, 3+; 4−−)
∣∣∣
κg3

= − i

(4π)2

[12][34]

〈12〉〈34〉
(〈42〉[23]〈34〉)3 s

2 + t2 + u2

6 s2 t2 u2
,

A(1)(1−, 2+, 3+; 4++)
∣∣∣
κg3

=
i

(4π)2

[24][34]

〈24〉〈34〉
1

〈23〉[21][31]

1

6
(s2 + u2) , (1.6)

A(1)(1+, 2+; 3++, 4++)
∣∣∣
κ2g2

=
i

(4π)2

[12]

〈12〉
[34]2

〈34〉2
s

6
,

A(1)(1−, 2+; 3++, 4++)
∣∣∣
κ2g2

=
i

(4π)2

[24]2[34]2〈14〉2

〈34〉2
s

6 t u
,

A(1)(1+, 2+; 3++, 4−−)
∣∣∣
κ2g2

=
i

(4π)2

[1 2][1 3]4〈1 4〉4

〈1 2〉
t2 + u2

6 s t2 u2
,

A(1)(1±; 2++, 3++, 4++)
∣∣∣
κ3g

= 0 ,

A(1)(1+; 2++, 3++, 4−−)
∣∣∣
κ3g

= 0 .

The rest of our paper is organized as follows. In the next section we collect all rel-

evant tree-level amplitudes involving gluons, gravitons and massive scalars entering the

cuts needed to compute the rational amplitudes we are interested in. Sections 3.1–3.3 are

devoted to the calculation of all one-loop amplitudes with one graviton and three gluons. A

particularly interesting case is that of section 3.1, where we find that the all-plus amplitude

〈1+2+3+4++〉, although non-vanishing in terms of the higher dimensional integral basis,

actually vanishes in the four-dimensional limit. Sections 3.4–3.6 discuss the derivation of

the amplitudes with two gravitons and two gluons, while sections 3.7–3.8 contain the (van-

ishing) amplitudes with three gravitons and one gluon. Finally in section 4 we rederive

the curiously vanishing single-graviton all-plus amplitude from a double-copy construction.

Two appendices complete the paper. In appendix A we list the D-dimensional expressions

of the relevant integrals and the appropriate limits contributing to the amplitudes of inter-

est, while in appendix B we derive all the four-point tree-level amplitudes with two massive

scalars and gluons/gravitons using recursion relations.

3In our conventions we have s = 〈12〉[21], t = 〈23〉[32] and u = 〈13〉[31].
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2 Relevant tree-level amplitudes

In this section we collect all the tree-level amplitudes entering our calculation. The ba-

sic building blocks are the three-point amplitudes involving a gluon or graviton and two

massive scalars. The color-ordered gluon-scalar-scalar amplitudes are [39]

A(1+, 2φ, 3φ̄) = i
〈q|3|1]

〈q1〉
, A(1−, 2φ, 3φ̄) = i

〈1|3|q]
[1q]

, (2.1)

where p2
2 = p2

3 = µ2, and µ is the mass of the scalar particles. In these formulae, λq and λ̃q
are reference spinors, and the amplitudes themselves are independent of their choice. The

amplitudes involving a graviton are similarly given by the square of the previous ampli-

tudes4

A(1++; 2φ, 3φ̄) = i
[
A(1+, 2φ, 3φ̄)

]2
, A(1−−; 2φ, 3φ̄) = i

[
A(1−, 2φ, 3φ̄)

]2
. (2.2)

We will also need four-point amplitudes involving two gluons/gravitons and two scalars.

The amplitudes involving gluons have been derived in [39] using BCFW recursion rela-

tions [41, 42] applied to massive scalars, and the relevant amplitudes with gravitons can

be obtained similarly (see appendix B for details). We quote here the expression of the

relevant Yang-Mills amplitudes with two gluons and two scalars:

A(1+, 2+, 3φ, 4φ̄) = µ2 [12]

〈12〉
i

(p4 + p1)2 − µ2
, (2.3)

A(1−, 2+, 3φ, 4φ̄) =
〈1|4|2]2

s12

i[
(p4 + p1)2 − µ2

] , (2.4)

while for the amplitudes involving a graviton, a gluon and two scalars we have:5

A(1+, 2φ, 3φ̄; 4++) = −µ2 [14]

〈14〉2
〈1|3|4]

[
i

(p3 + p4)2 − µ2
+

i

(p2 + p4)2 − µ2

]
, (2.5)

A(1−, 2φ, 3φ̄; 4++) = −〈1|3|4]3

s14 〈14〉

[
i

(p3 + p4)2 − µ2
+

i

(p2 + p4)2 − µ2

]
, (2.6)

A(1+, 2φ, 3φ̄; 4−−) = −〈4|3|1]3

s14 [41]

[
i

(p3 + p4)2 − µ2
+

i

(p2 + p4)2 − µ2

]
. (2.7)

We have also double-checked these amplitudes through a direct Feynman diagrammatic

calculation. The two-graviton/two-scalar amplitudes in turn read

A(2φ, 3φ̄; 4++, 1++) = −µ4 [41]2

〈41〉2

[
i

(p3 + p4)2 − µ2
+

i

(p2 + p4)2 − µ2

]
, (2.8)

A(2φ, 3φ̄; 4++, 1−−) = −〈1|3|4]4

s2
14

[
i

(p3 + p4)2 − µ2
+

i

(p2 + p4)2 − µ2

]
. (2.9)

Note that (2.3), (2.5) and (2.8) manifestly vanish if the scalars are massless.

4We have confirmed this calculation also from Feynman rules, for which a good source is [40].
5The derivation of (2.5), (2.6) and (2.8) is presented in appendix B.
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Figure 2. The s- and t-channel cuts of the all-plus single-graviton amplitude. Cyclic permutations

of the labels (1, 2, 3) should also be added.

For later convenience we shall split up (2.5)–(2.9) into a sum of two partial amplitudes

which treat the single graviton effectively as if it were color ordered, in the sense that

A(1±, 2φ, 3φ̄; 4++) := A(4++, 1±, 2φ, 3φ̄) +A(1±, 4++, 2φ, 3φ̄) , (2.10)

with

A(4++, 1+, 2φ, 3φ̄) = µ2 [41]

〈41〉2
〈1|3|4]

i

(p3 + p4)2 − µ2
, (2.11)

A(1+, 4++, 2φ, 3φ̄) = µ2 [41]

〈41〉2
〈1|3|4]

i

(p3 + p1)2 − µ2
, (2.12)

A(4++, 1−, 2φ, 3φ̄) =
〈1|2|4]3

〈14〉 s14

i

(p3 + p4)2 − µ2
, (2.13)

A(1−, 4++, 2φ, 3φ̄) =
〈1|2|4]3

〈14〉 s14

i

(p3 + p1)2 − µ2
, (2.14)

and similarly for the other amplitudes. In the unitarity-based construction of the one-loop

amplitudes to be discussed, we then symmetrize explicitly in the graviton leg(s) attached.

3 One-loop amplitudes

3.1 The 〈1+ 2+ 3+ 4++〉 amplitude

We begin our investigation with the four-point same-helicity amplitude with one graviton

and three gluons. We will derive the integrand of this amplitude, as well as its four-

dimensional limit. We anticipate the interesting outcome of this computation, namely that

this amplitude is zero in the four-dimensional limit — a result that we will also confirm

from the double-copy perspective in section 4.6

To organize the computation efficiently, we employ the effective “color”-ordered gravi-

ton partial amplitudes introduced in the previous section. The diagrams to be considered

are shown in figure 2. As all gluons carry the same helicity, we need only to evaluate the

first diagram in figure 2; the final result will then be obtained by adding the terms obtained

by cycling (1, 2, 3) in the partial result.

For the configuration (1234) of figure 2 there are two two-particle cuts, in the s12 = s

and s23 = t channels. We start with the t-channel cut which is given by the product of the

6We thank Henrik Johansson and Radu Roiban for confirming the vanishing of this amplitude in four

dimensions from the double-copy approach implemented in [30].
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two partial amplitudes:

A(1)(4++; 1+, 2+, 3+)
∣∣∣
(1234),t

= A(4++, 1+, l1,φ, l2,φ̄)A(2+, 3+,−l2,φ,−l1,φ̄) (3.1)

= 2µ4 [41][23]

〈41〉〈23〉
〈1|l2|4]

〈14〉
i

(l2 + p4)2 − µ2

i

(l1 − p2)2 − µ2
,

where the explicit expressions of the tree-level amplitudes entering the cut are given in (2.3)

and (2.5), and the factor of two arises from summing of the possible assignment (φ, φ̄ and

φ̄, φ) for the internal scalar particles.

For the s-channel cut of the (1234)-configuration, one similarly arrives at an integrand

A(1)(4++; 1+, 2+, 3+)
∣∣∣
(1234),s

= A(3+, 4++, l3,φ, l4,φ̄)A(1+, 2+,−l4,φ,−l3,φ̄) (3.2)

= 2µ4 [43][12]

〈43〉〈12〉
〈3|l4|4]

〈12〉
i

(l4 + p3)2 − µ2

i

(l3 − p1)2 − µ2
.

The strategy to find the integrand is now to rewrite the t-channel expression in such a way

as to reproduce the s-channel expression modulo terms that vanish on the s-cut. For this

we first introduce a uniform parametrization of the (1234) box diagram in terms of a single

loop momentum l:

l1 = l − p1 , l2 = −l − p4 , l3 = l , l4 = p1 + p2 − l , (3.3)

with

Di = (l − qi)2 − µ2 , q0 = 0, q1 = p1 , q2 = p1 + p2 , q3 = −p4 . (3.4)

Using these the, s- and t-channel cuts take the compact forms

A(1)(4++; 1+, 2+, 3+)
∣∣∣
(1234),t

= 2iµ4 [12][34]

〈12〉〈34〉
〈1|l|4]

〈14〉

[
(2π)δ(D1)

] [
(2π)δ(D3)

]
D0D2

, (3.5)

A(1)(4++; 1+, 2+, 3+)
∣∣∣
(1234),s

= 2iµ4 [12][34]

〈12〉〈34〉
〈3|l|4]

〈34〉

[
(2π)δ(D0)

] [
(2π)δ(D2)

]
D1D3

, (3.6)

where we have explicitly indicated the cut propagators. From this it is obvious that we

need to relate 〈1|l|4] to 〈3|l|4]. The trick to do this is to exploit the identity

〈3|l|4] =
[12]

[23]
〈1|l|4] +

[24]

[32]
sl4 , (3.7)

where sl4 = 〈4|l|4] = 2 (l · p4), which in turn may be written as

sl4 = (l + p4)2 − µ2 − (l2 − µ2) = D3 −D0 =̂ D3

∣∣∣
on s-cut

. (3.8)

We also note the identity

〈3|l|4]

〈34〉
=
〈1|l|4]

〈14〉
+

[24]

[32]〈34〉
(D3 −D0) . (3.9)

– 7 –
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Inserting this into the s-cut expression (3.6) and dropping the D0 term gives us an integrand

which may be lifted off the cuts (with the usual replacement (2π)δ(D) → i/D for the

cut propagators):7

A(1)(4++;1+,2+,3+)
∣∣∣
1234

=−2i
[12][34]

〈12〉〈34〉

∫
d4l

(2π)4
d−2εµ

(2π)−2ε

µ4

D0D1D2D3

[ 〈1|l|4]

〈14〉 +
[24]

[32]〈34〉D3

]
.

(3.10)

The partial one-loop amplitude is thus given by a linear box integral and a scalar triangle.

The final step is to now reduce the linear box integral. Here we use the Mathematica

package FeynCalc [43, 44], which efficiently implements the Passarino-Veltman reduction

algorithm [45]. Doing this we arrive at the final result8

A(1)(1+,2+,3+;4++) =
2

(4π)2−ε
[41][42][43]

〈41〉〈23〉
t

u

[
1

2
I4[µ4;s, t]+

1

t
I3[µ4; t]+

1

s
I3[µ4;s]

]
+perms ,

(3.11)

where by “perms” we indicate the two permutations (2314) and (3124) of (1234), which

interchange the Mandelstam invariants as (s, t, u) → (t, u, s) and (s, t, u) → (u, s, t), re-

spectively. However, we need not do this explicitly as taking the four-dimensional limit

using the relations in (A.7) we get a vanishing result:

A(1)(1+, 2+, 3+; 4++) = 0 . (3.12)

It would be desirable to understand the deeper reason for this curious vanishing.

We also quote an alternative expression of the amplitude in terms of a higher dimen-

sional scalar integral basis which is given by:

A(1)(1+, 2+, 3+; 4++) =
2

(4π)2−ε
[12] [34]

〈12〉 〈34〉
1

〈41〉[12]〈42〉

[
s t

2
I4[µ4; s, t]− sI3[µ4; s] + perms

]
,

(3.13)

where the two permutations are the same as in (3.11). The vanishing of (3.13) is of

course obtained again upon using the formulae of appendix A. We also comment that

this integrand is manifestly odd under the exchange of any two same-helicity gluons. In

color space this means that this amplitude is proportional to fa1a2a3 , with no da1a2a3

contribution. We will see that the same property is shared by all amplitudes involving

three gluons computed in this paper — they only come with an fa1a2a3 color factor.

3.2 The 〈1− 2+ 3+ 4++〉 amplitude

Constructing this amplitude is a slightly harder task, hence as an introduction we will first

re-derive the four-point gluon amplitude with a single negative-helicity gluon of [37] and

then apply a similar procedure to the more complicated EYM case. The form of the four-

gluon integrand is also of use for a double-copy based construction of the EYM amplitudes.

7The factor of −1 in the following expression arises from reinstating two (uncut) propagators.
8The integral functions appearing in (3.11) and in the rest of the paper are defined in appendix A,

following the conventions of [37] up to a minus sign for the I3 integrals.

– 8 –



J
H
E
P
0
9
(
2
0
1
8
)
0
1
1


 






�




 �










Figure 3. The s- and t-channel cuts of the A(1)(1−, 2+, 3+, 4+) amplitude in pure Yang-Mills.

Warmup. As for the case of the all-plus amplitude derived in the previous section, we

work with two-particle cuts. Because only gluons are involved, color ordering leaves us

with only two channels to consider, see figure 3. For the s-channel we have

A
(1)
4 (1−, 2+, 3+, 4+)

∣∣∣
s

= A(3+, 4+, l1,φ, l3,φ̄)A(1−, 2+,−l3,φ,−l1,φ̄)

= µ2 [34]

〈34〉 (l24 − µ2)

−〈1|l1|2]2

〈12〉[21] (l22 − µ2)
, (3.14)

whereas the t-channel cut reads

A
(1)
4 (1−, 2+, 3+, 4+)

∣∣∣
t

= A(4+, 1−, l2,φ, l4,φ̄)A(2+, 3+,−l4,φ,−l2,φ̄)

= − 〈1|l4|4]2

〈41〉[14] (l21 − µ2)
µ2 [23]

〈23〉 (l23 − µ2)
. (3.15)

The strategy to find the integrand is now to rewrite the t-channel expression in such a way

to reproduce the s-channel one modulo terms that vanish on the s-cut. For this, we will

make use of the following identity to rewrite the numerator in (3.15):

〈1|l1|4] =
1

〈34〉

[
〈13〉 sl11 + 〈1|l1|2] 〈23〉

]
, (3.16)

where sl11 = 〈1|l1|1] = 2 l1 · p1, which in turn may be written as

sl1 = (l21 − µ2)− (l22 − µ2) =̂ (l21 − µ2)
∣∣∣
on t-cut

. (3.17)

This last expression holds on the t-channel cut. Inserting the expression (3.16) for 〈1|l1|4]

into the t-channel cut amplitude A4|t of (3.15) then yields an expression which may straight-

forwardly be lifted off the cut. Thus we get an integrand9

A(1)(1−, 2+, 3+, 4+) = −
∫

d4l

(2π)4

d−2εµ

(2π)−2ε

(
− µ2

〈34〉2

) [
〈1|l|2]2

+ 2
〈13〉
〈23〉

D0 〈1|l|2] +
〈13〉2

〈23〉2
D0 sl1

]
1

D0D1D2D3
, (3.18)

where we have chosen the loop momentum parametrization as l = l1, and

D0 = l2−µ2 , D1 = (l−p1)2−µ2 , D2 = (l−p1−p2)2−µ2 , D3 = (l+p4)2−µ2 . (3.19)

Note that there is an ambiguity in treating the last term in (3.18). By the logic laid

out above we could have also replaced sl11 by D0 as the resulting expression would agree

9Again, the minus sign in front of the following expression arises from two cut propagators.
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with (3.15) and (3.14) on the respective cuts. However, only the choice quoted above does

reproduce the result in the literature.10 The final step is to now reduce the tensor integrals

appearing in (3.18), which we do again using the Mathematica package FeynCalc [43, 44].

Doing this we find

A(1)(1−, 2+, 3+, 4+) =
2i

(4π)2−ε
〈1|4|2]2

〈34〉2
s

tu

[
I4[µ4; s, t] +

st

2u
I4[µ2; s, t] +

s(u− t)
tu

I3[µ2; t]

+
t(s− u)

su
I3[µ2; s] +

u− s
t2

I2[µ2; t] +
u− t
s2

I2[µ2; s]

]
. (3.20)

This result agrees with the result in the literature [37].11

Single graviton amplitude. After this warmup let us now consider the EYM amplitude

for a single graviton and three gluons with one negative-helicity state. Again we shall

construct the integrand from two-particle cuts. Now, due to the presence of the graviton

4++ which we here include with the effectively colored ordered tree-amplitudes A of (2.10),

we will have to consider three distinct type of two-particle cut diagrams. These follow from

the particle configurations (1234), (1243) and (1423) pushing the graviton leg 4++ through

the color-ordered gluons. The full amplitude is then divided into three parts,

A(1)(1−, 2+, 3+; 4++) = A(1234) +A(1243) +A(1423) , (3.21)

which we now construct in turn from two-particle cuts.

Diagram (1234). Here we encounter an s-channel and a t-channel cut. For the s-channel

of the (1234)-configuration we find

A(1234)|s =


 










= A(1−, 2+, φl3 , φ̄l1)A(3+, 4++, φ−l1 , φ̄−l3)

= 2µ2i2
[12][34]

〈12〉〈34〉
〈3|l1|4] 〈1|l1|2]2

[12]2 〈34〉

[
(2π)δ(D0)

] [
(2π)δ(D2)

]
D1D3

, (3.22)

where for the diagram (1234) we use the following loop momentum assignments:

D0 = l21 − µ2 =: l2 − µ2 , D1 = l22 − µ2 = (l − p1)2 − µ2 ,

D2 = l23 − µ2 = (l − p1 − p2)2 − µ2 , D3 = l23 − µ2 = (l + p4)2 − µ2 . (3.23)

10It would be valuable to understand this seeming ambiguity better. Such an ambiguity does not appear

in the procedure of merging cuts employed in later sections, which we have used to confirm all calculations

of this paper. In the latter procedure, vanishing integrals are omitted, which may obscure a double-copy

interpretation of the results.
11Had we taken D2

0 instead of D0 sl1 in the last term of (3.18) we would on top find a term proportional

to [u/(st)] I3[µ4] in the above, in disagreement with [37].
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Note that we have set l1 = −l. The t-channel cut of the (1234)-configuration on the other

side takes the form

A(1234)|t =


 










= A(4++, 1−, φl2 , φ̄l4)A(2+, 3+, φ−l4 , φ̄−l2)

= −2µ2i2
[12][34]

〈12〉〈34〉
〈1|l|4]3

[41]2 〈14〉

[
(2π)δ(D1)

] [
(2π)δ(D3)

]
D0D2

. (3.24)

We now lift the two expressions (3.22) and (3.24) off the cuts by the same strategy that

was applied previously. We rewrite the two l-dependent spinorial expressions in A(1234)|s as

〈3|l|4] =
[12]

[23]
〈1|l|4] +

[42]

[23]
sl4 , 〈1|l|2] =

〈34〉
〈23〉

〈1|l|4] +
〈31〉
〈23〉

sl1 . (3.25)

Using these relations, we observe the identity

〈3|l|4] 〈1|l|2]2 =
[12]〈34〉2

s23 〈32〉
〈1|l|4]3 +

[24]〈23〉
s23

sl4 〈1|l|4]2

+
[12]〈31〉
s23〈32〉

sl1 〈1|l|4]
(
〈34〉 〈1|l|4] + 〈23〉 〈1|l|2]

)
. (3.26)

Inserting this into the s-cut amplitude (3.22), and rewriting the Mandelstam invariants

sli = 2(l · pi) as

sl4 = D3 −D0 =̂ D3

∣∣∣
on s-cut

, sl1 = D0 −D1 =̂ −D1

∣∣∣
on s-cut

, (3.27)

leads us to an expression for the A(1234) integrand manifestly agreeing with both cuts (3.22)

and (3.24),

A(1234) = 2i2
[12][34]

〈12〉〈34〉

∫
d4l

(2π)4

d−2εµ

(2π)−2ε

{
〈1|l|4]3

[41]2 〈14〉
− [42]

〈14〉[12]3
D3 〈1|l|2]2 (3.28)

− 〈31〉 〈1|l|4]

〈14〉[41]2〈34〉2
D1

(
〈34〉 〈1|l|4] + 〈23〉 〈1|l|2]

)} µ2

D0D1D2D3
.

This expression may be straightforwardly reduced to scalar integrals using e.g. FeynCalc.

As a matter of fact, one quickly sees that the second term in the above vanishes upon in-

tegration.

An alternative representation for A(1234) is obtained if one rewrites the t-cut expres-

sion (3.24) in terms of the s-cut one plus D0 terms, arriving at

A′(1234) = 2i2
[12][34]

〈12〉〈34〉

∫
d4l

(2π)4

d−2εµ

(2π)−2ε

{
〈3|l|4]〈1|l|2]2

[12]2 〈34〉
+

[24]

[14][12]s23
D0 〈1|l|4]2 (3.29)

+
〈13〉 [23] 〈3|l|4]

[12][41]〈34〉2 s23
D0

(
〈34〉 〈1|l|4] + 〈23〉 〈1|l|2]

)} µ2

D0D1D2D3
,
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which upon Passarino-Veltman reduction indeed matches A(1234) of (3.29). The result after

reduction reads:

A(1234) =
2i

(4π)2−ε
[24][34]

〈24〉〈34〉
1

[12]〈23〉[31]

[
−3

2
stI4[µ4;s, t]− s

2t2

2u
I4[µ2;s, t]

− s
2(s+3u)

t2
I3[µ4; t]−

s2
(
s2+3st+3t2

)
tu

I3[µ2; t]+
t(u−s)
s

I3[µ4;s]+
s2t

u
I3[µ2;s]

+
s2(2t−u)+u3

2st
I2[µ2;s]− s(2s−u)(s+3u)

2t2
I2[µ2; t]

]
. (3.30)

Diagram (1243). For the (1243)-contribution we have a u-channel and a s-channel cut,

which read

A(1243)|u =


 










= A(3+, 1−, φl2 , φ̄l3)A(2+, 4++, φ−l3 , φ̄−l2)

= 2µ2i2
[12][34]

〈12〉〈34〉
〈2|l|4] 〈1|l|3]2

〈24〉 [31]2

[
(2π)δ(D0)

] [
(2π)δ(D2)

]
D1D3

, (3.31)

and

A(1243)|s =


 










= A(1−, 2+, φl4 , φ̄l1)A(4++, 3+, φ−l1 , φ̄−l4)

= −2µ2i2
[12][34]

〈12〉〈34〉
〈3|l|4] 〈1|l − p3|2]2

〈34〉 [21]2

[
(2π)δ(D1)

] [
(2π)δ(D3)

]
D0D2

, (3.32)

where we have introduced the loop parametrization l := −l3 along with

D0 = l23 − µ2 =: l2 − µ2 , D1 = l21 − µ2 = (l − p3)2 − µ2 ,

D2 = l22 − µ2 = (l − p1 − p3)2 − µ2 , D3 = l24 − µ2 = (l + p4)2 − µ2 . (3.33)

The s-cut expression may now be lifted off the cut by using the identities

[31] 〈3|l|4] = [12] 〈2|l|4] + [14] sl4 , 〈42〉 〈1|l − p3|2] = 〈34〉 〈1|l|3] + 〈14〉 2(l − p3) · p1 .

(3.34)

On the s-cut (where D1 = D3 = 0) we may replace sl4 = D3−D0 =̂ −D0 as well as 2(l−p3)·
p1 = D2−D1 =̂ D2. Using this we arrive at the integrand for the (1243)-type contribution,

A(1243) = 2i2
[12][34]

〈12〉〈34〉

∫
d4l

(2π)4

d−2εµ

(2π)−2ε

{
〈2|l|4]〈1|l|3]2

〈24〉[31]2
− [14]

[12]〈24〉[31]2
D0 〈1|l|3]2 (3.35)

− 〈14〉
[12]2〈24〉2〈34〉

D2 〈3|l|4]
(
〈34〉〈1|l|3]+〈42〉〈1|l−p3|2]

)} µ2

D0D1D2D3
.

Again we have an expression in terms of box and triangle tensor integrals amenable to

standard integral reduction techniques. An alternative and more compact expression may
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derived if one rewrites the u-cut in terms of the s-cut followed by a shift in the integration

variable l→ l + p3. One then finds

A′(1243) = 2i2
[12][34]

〈12〉〈34〉

∫
d4l

(2π)4

d−2εµ

(2π)−2ε

{
〈3|l|4] 〈1|l|2]2

〈34〉[12]2

− 〈14〉
[12]2〈24〉2〈34〉

D1 〈3|l|4]
(
〈34〉 〈1|l|3] + 〈42〉 〈1|l|2]

)} µ2

D0D1D2D3
,

(3.36)

where now

D0 = (l+p3)2−µ2 , D1 = l2−µ2 , D0 = (l−p1)2−µ2 , D0 = (l+p3+p4)2−µ2 . (3.37)

Passarino-Veltman reducing (3.35) or (3.36), one arrives at

A(1243) = − 2i

(4π)2−ε
[24][34]

〈24〉〈34〉
1

[12]〈23〉[31]

[
− us

2
I4[µ4;u, s] +

s2

u
I3[µ4;u] (3.38)

+
u2

s
I3[µ4; s]− tu

2s
I2[µ2; s]− st

2u
I2[µ2;u]

]
.

Diagram (1423). The remaining (1423)-contribution carries a u-channel and a t-channel

cut. These read

A(1423)|t =


 










= A(3+, 1−, φl4 , φ̄l3)A(4++, 2+, φ−l3 , φ̄−l4)

= −2i2µ2 〈1|l|4]3

〈14〉〈23〉2

[
(2π)δ(D0)

] [
(2π)δ(D2)

]
D1D3

, (3.39)

and

A(1423)|u =


 










= A(2+, 3+, φl1 , φ̄l2)A(1−, 4++, φ−l2 , φ̄−l1)

= −2i2µ2 〈2|l|4] 〈1|l − p2|3]2

〈24〉3

[
(2π)δ(D1)

] [
(2π)δ(D3)

]
D0D2

, (3.40)

where we identified the loop momentum as l := −l2 and used the inverse propagators

suitable for diagram (1423),

D0 = l22 − µ2 =: l2 − µ2 , D1 = l23 − µ2 = (l − p2)2 − µ2 ,

D2 = l21 − µ2 = (l − p2 − p3)2 − µ2 , D3 = l24 − µ2 = (l + p4)2 − µ2 . (3.41)

However, by inspection we see that A(1423) may be obtained from the (1234)-configuration

by simply swapping 2↔ 3 (or s↔ u). Hence we conclude that

A(1423) =A(1234)

∣∣∣
2↔3

=− 2i

(4π)2−ε
[24][34]

〈24〉〈34〉
1

[12]〈23〉[31]

[
3

2
utI4[µ4;u,t]+

u2t2

2s
I4[µ2;u,t]

+
u2(u+3s)

t2
I3[µ4; t]+

u2
(
u2+3su+3s2

)
ts

I3[µ2; t]+
t(u−s)
u

I3[µ4;u]− u2t

s
I3[µ2;u]

− u2(2t−s)+s3

2ut
I2[µ2;u]+

u(2u2+5us−3s2)

2t2
I2[µ2; t]

]
. (3.42)

– 13 –



J
H
E
P
0
9
(
2
0
1
8
)
0
1
1

Final result. Adding all the three contributions A(1234) + A(1243) + A(1423) leads to the

final compact form in terms of higher dimensional scalar integrals:

A(1)(1−, 2+, 3+; 4++) = − 2i

(4π)2−ε
[24][34]

〈24〉〈34〉
1

[12]〈23〉[31]

{
−3

2
stI4[µ4; s, t]− s2t2

2u
I4[µ2; s, t]

+
1

2
suI4[µ4;u, s]− 3

2
tuI4[µ4;u, t]− t2u2

2s
I4[µ2;u, t] +

s2 − 2u2

s
I3[µ4; s] +

s2t

u
I3[µ2; s]

+ t I3[µ4; t] +
s4 + 2s3u+ s2u2 + 2su3 + u4

su
I3[µ2; t] +

u2 − 2s2

u
I3[µ4;u]

+
tu2

s
I3[µ2;u] +

t(u− s)
s

I2[µ2; s] +
s2 + u2

t
I2[µ2; t] +

t(s− u)

u
I2[µ2;u]

}
. (3.43)

Taking the four-dimensional limit yields the compact final expression

A(1)(1−, 2+, 3+; 4++) =
i

(4π)2

[24][34]

〈24〉〈34〉
1

〈23〉[21][31]

1

6
(s2 + u2) . (3.44)

3.3 The 〈1+ 2+ 3+ 4−−〉 amplitude

We now consider the rational one-loop amplitude with a single negative-helicity graviton

and three positive-helicity gluons A(1)(1+, 2+, 3+; 4−−). For amplitudes containing progres-

sively more negative helicities, the procedure described in previous sections to construct the

integrand becomes tedious. Hence, from now on, rather than constructing the integrand,

we will use the standard approach of [46, 47] where we directly merge all two-particle cuts

into a single function. The case at hand is particularly simple given the very symmetric

helicity configuration chosen. Using the tree-level amplitudes in section 2, we find that the

s-cut of the amplitude is given by

s-cut:


 










= −i2µ2 [12]

〈12〉
〈4|l1|3]3

s[34]
(3.45)

·
[ 








 



+









 

 ]
.

This amplitude also has t- and u-cuts which are obtained by simply cycling the labels

(312) → (123) and (312) → (231), respectively. As in the previous sections, we use

FeynCalc [43, 44] to perform efficiently all relevant Passarino-Veltman reductions of the

three-tensor box in (3.45) (and its permutations). We work first in the s-cut, and focus on

the tensor box with particle ordering (1234). We lift the integral off the cut, and perform a

Passarino-Veltman reduction. This will generate scalar boxes with particle ordering (1234)

(and powers of the (−2ε)-momentum µ in the numerator), whose coefficient(s) we will

then confirm from the t-cut. It will also generate one-mass triangles and bubbles in the

s-channel (again with powers of µ in the numerator), which we keep, as well as spurious

one-mass triangles and bubbles with a t-channel discontinuity, which we drop. We then
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repeat the same operation for the two other box topologies with particle orderings (1243)

and (1324). Merging all contributions thus obtained, we arrive at our final result:

A(1)(1+, 2+, 3+; 4−−) = 2i2
[12][34]

〈12〉〈34〉
(〈42〉[23]〈34〉)3

[
f(s, t, u) + perms

]
, (3.46)

where

f(s, t, u) =
i

(4π)2−ε
1

stu2

[
3

2
I4[µ4; s, t]− t(s− 2u)

s3
I3[µ4; s]− s(t− 2u)

t3
I3[µ4; t]

+
st

2u
I4[µ2; s, t] +

s
(
s2 − 3tu

)
t2u

I3[µ2; t] +
t
(
t2 − 3su

)
s2u

I3[µ2; t]

+
(s− 2u)(u− 2t)

2s3
I2[µ2; s] +

(u− 2s)(t− 2u)

2t3
I2[µ2; t]

]
.

(3.47)

As in the case of the 〈4++1+2+3+〉 amplitude computed in section 3.1, by “perms” we

denote the two permutations 2314 and 3124 of 1234, with the Mandelstam invariants

interchanged as (s → t, t → u, u → s) and (s → u, t → s, u → t). Performing the

four-dimensional limit using the results of appendix A, we find:

f(s, t, u)→ − i

(4π)2

3t2 + 3tu+ 2u2

24 s3t3
. (3.48)

Adding the permutations, we arrive at a very compact final result:

A(1)(1+, 2+, 3+; 4−−) = − i

(4π)2

[12][34]

〈12〉〈34〉
(〈42〉[23]〈34〉)3 s

2 + t2 + u2

6 s2 t2 u2
. (3.49)

Note that the kinematic function in (3.49) is an odd function under any exchange of two

gluons, and hence the complete amplitude is even under such an exchange (including a

minus sign from the colour factor fabc), as it should.

3.4 The 〈1+ 2+ 3++ 4++〉 amplitude

In this section we move on to amplitudes which contain two gravitons and two gluons. The

simplest case to consider occurs when all particles have the same helicity — a particularly

symmetric configuration.

We briefly describe the outline of the derivation, similarly with previous calculations.

As usual there are three cut diagrams to consider, in the s-, t- and u-channels. These cuts

will give rise to tensor boxes with particle ordering (1234), (1243) and (1324). These are

given by:

s-cut: A
(
3++, 4++, l1,φ̄, l2,φ

) [
A
(
1+, 2+,−l2,φ̄,−l1,φ

)
+ 1↔ 2

]
,

t-cut: A
(
4++, 1+, l1,φ̄, l2,φ

)
A
(
2+, 3++,−l2,φ̄,−l1,φ

)
,

u-cut: A
(
3++, 1+, l1,φ̄, l2,φ

)
A
(
2+, 4++,−l2,φ̄,−l1,φ

)
.

(3.50)

Note that on the right-hand side of the s-cut in (3.50) we have to include the sum of

two color-ordered amplitudes, A
(
1+, 2+,−l2,φ̄,−l1,φ

)
and A

(
2+, 1+,−l2,φ̄,−l1,φ

)
. Indeed,
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since the left-hand side of the cut is an amplitude with a colorless (two-graviton) external

state, both terms contribute to the same color ordering. This will be a recurrent feature

of all cuts where one side of the cut is colorless. Moreover, there will be an additional

contribution from the cut obtained by swapping φ with φ̄, which will double up the result

of the previous cuts, as usual.

Using the tree-level amplitudes given in section 2, we work out the expressions of these

cuts, which give rise to three tensor boxes with the different particle orderings (1234),

(1243) and (1324). Inspecting all cuts we can reconstruct the amplitude. We find the

following results:

s-cut:


 










= 2µ6 [34]2

〈34〉2
[12]

〈12〉
(3.51)

[ 







 



+









 



+









 



+









 

 ]
,

t-cut:


 










= 2µ4 [41]

〈41〉2
[32]

〈32〉2
〈1|l1|4]〈2|l2|3] (3.52)

·
[ 












+













+













+











 ]
,

u-cut:


 










= 2µ4 [31]

〈31〉2
[42]

〈42〉2
〈1|l1|3]〈2|l2|4] (3.53)

·
[ 












+













+













+











 ]
.

Note that our cut integrand contains tensor boxes with cut momenta l1 and l2 as well as

the same contribution but with l1 and l2 flipped. At the level of the integral, this will be

taken into account by doubling up the contribution of a single copy.

The next step consists in combining all cuts, which we will do for each box topology

separately. Doing so, we arrive at the following result for the topology (1234):

(1234) : − i

(4π)2−ε
[12]

〈12〉
[34]2

〈34〉2
· 4
(
I4[µ6; s, t]− 1

t
I2[µ4; t]

)
, (3.54)

which is obtained from combining the relevant terms in the s-cut given in (3.51) and the

t-cut of (3.52). The topology (1243) is simply obtained by swapping 3 ↔ 4, or s→ s, t→
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u, u→ s in the previous result:

(1243) : − i

(4π)2−ε
[12]

〈12〉
[34]2

〈34〉2
· 4
(
I4[µ6; s, u]− 1

u
I2[µ4;u]

)
. (3.55)

The last topology to consider is (1324), which is obtained from combining the relevant

terms from the s- and u-cuts, given in (3.51) and (3.53). Doing so we get:

(1324) : − i

(4π)2−ε
[12]

〈12〉
[34]2

〈34〉2
(3.56)

· 4
(
I4[µ6;u, t] +

ut

2s
I4[µ4;u, t]− t

s
I3[µ4; t]− u

s
I3[µ4;u] +

I2[µ4; t]

t
+
I2[µ4;u]

u

)
.

Finally we take the four-dimensional limit:

4

(
I4[µ6; s, t]− 1

t
I2[µ4; t]

)
→ − s

15
, (3.57)

while

4

(
I4[µ6;u,t]+

ut

2s
I4[µ4;u,t]− t

s
I3[µ4; t]−u

s
I3[µ4;u]+

I2[µ4; t]

t
+
I2[µ4;u]

u

)
→− s

30
. (3.58)

Combining all terms we arrive at a remarkably simple final result:

A(1)(1+, 2+; 3++, 4++) =
i

(4π)2

[12]

〈12〉
[34]2

〈34〉2
s

6
. (3.59)

We note that (3.59) is symmetric under the exchange of the two gluons. This is consistent

with the colour factor δab of this amplitude — indeed, the complete, color-dressed result

should be symmetric under a swapping of the two gluons.

We also quote the compact expression of the full result using a higher dimensional

scalar integral basis:

A(1)(1+, 2+; 3++, 4++) = − 4i

(4π)2−ε
[12]

〈12〉
[34]2

〈34〉2

{
I4[µ6; s, t] + I4[µ6; s, u] + I4[µ6;u, t]

+
tu

2s
I4[µ4;u, t]− t

s
I3[µ4; t]− u

s
I3[µ4;u]

}
. (3.60)

3.5 The 〈1− 2+ 3++ 4++〉 amplitude

Here we follow the same strategy as in the previous section, and derive the complete

amplitude from merging two-particle cuts. As we will see, this procedure will now give rise

to three tensor boxes with different particle orderings as before, with numerators that are

up to quartic order in the loop momenta. These will then be Passarino-Veltman reduced

as usual.
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We now compute the three possible two-particle cuts of the amplitude. We also include

the usual factor of two from swapping φ and φ̄ in the loop. The s-cut is given by

s-cut:


 










= 2µ4 [34]2

〈34〉2
〈1|l1|2]2

s
(3.61)

·
[ 








 



+









 



+









 



+









 

 ]
,

arising from A(3++, 4++, l1,φ, l2,φ̄)
[
A(1−, 2+,−l2,φ,−l1,φ̄) +A(2+, 1−,−l2,φ,−l1,φ̄)

]
. Again,

the appearance of two terms on the right-hand side of the cut, with two different gluon

orderings, is due to the fact that the amplitude on the left-hand side of the cut contains a

colorless external state. The next cut to look at is:

t-cut:


 










= 2µ2 [32]

〈32〉2〈14〉
〈1|l1|4]3〈2|l1|3]

t
(3.62)

·
[ 












+













+













+











 ]
,

obtained from A(4++, 1−, l1,φ, l2,φ̄)A(2+, 3++,−l2,φ,−l1,φ̄). Finally,

u-cut:


 










= 2µ2 [42]

〈42〉2〈13〉
〈1|l1|3]3〈2|l1|4]

u
(3.63)

·
[ 












+













+













+











 ]
,

from A(3++, 1−, l1,φ, l2,φ̄)A(2+, 4++,−l2,φ,−l1,φ̄). We also define a convenient spinor pref-

actor which has the correct spinor weights for the given amplitude:

J =
[2 4]2[3 4]2〈1 4〉2

〈3 4〉2
. (3.64)

We are now ready to merge the different cuts. From the topology (1234) we get:

(1234) :
4i

(4π)2−ε J

{
−I4

[
µ6;s, t

]( 1

ut

)
−I4

[
µ4;s, t

]( s

2u2

)
+I3

[
µ4; t

](s2 (2s+3t)

u2t3

)
+I3

[
µ4;s

](−(2s+t)

su2

)
+I2

[
µ4; t

]((t−2s)(4s+3t)

3ut4

)
+I2

[
µ4;s

]((s+2t)

uts2

)
+I2

[
µ2; t

]( s

3t3

)}
.

(3.65)
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The box topology (1243) is simply obtained from the topology (1234) in (3.65) by swapping

3 ↔ 4, or (s, t, u) → (s, u, t). Note that J is invariant under this swap, hence the result

for the (1243) topology is immediately found to be:

(1243) :
4i

(4π)2−ε J

{
−I4

[
µ6;s,u

]( 1

ut

)
−I4

[
µ4;s,u

]( s

2t2

)
+I3

[
µ4;u

](s2 (2s+3u)

t2u3

)
+I3

[
µ4;s

](−(2s+u)

st2

)
+I2

[
µ4;u

]((u−2s)(4s+3u)

3tu4

)
+I2

[
µ4;s

]((s+2u)

uts2

)
+I2

[
µ2;u

]( s

3u3

)}
.

(3.66)

Note that in (3.65) and (3.66) the I2[µ2] functions only appear in the u- and t-channel.

The last topology is (1324), for which we obtain

(1324) :
4i

(4π)2−ε J

{
−I4

[
µ6;u,t

]( 1

ut

)
−I4

[
µ4;u,t

](2

s

)

+I3

[
µ4; t

](−2
(
3t2+3ut+u2

)
st3

)
+I3

[
µ4;u

](−2
(
3u2+3ut+t2

)
su3

)

+I2

[
µ4; t

]((t+4u)(3t+2u)

3ut4

)
+I2

[
µ4;u

]((4t+u)(2t+3u)

3tu4

)
−I4

[
µ2;u,t

]( ut

2s2

)
+I3

[
µ2;u

]( u
s2

)
+I3

[
µ2; t

]( t

s2

)
−I2

[
µ2; t

](11t2+7ut+2u2

6st3

)
−I2

[
µ2;u

](2t2+7ut+11u2

6su3

)}
. (3.67)

The expression (3.67) is symmetric in u↔ t.

Finally we take the four-dimensional limit of (3.65), (3.66) and (3.67) using (A.7),

thus getting

i

(4π)2
J (t+ 2u)

30 t2
,

i

(4π)2
J (u+ 2t)

30u2
,

i

(4π)2
J s3

15u2 t2
, (3.68)

respectively. Thus, we arrive at the final result for the four-dimensional limit of the ampli-

tude (using the expression of J in (3.64)):

A(1)(1−, 2+; 3++, 4++) =
i

(4π)2

[2 4]2[3 4]2〈1 4〉2

〈3 4〉2
s

6 t u
. (3.69)

The D-dimensional answer is easily obtained by adding (3.65), (3.66) and (3.67).

3.6 The 〈1+ 2+ 3++ 4−−〉 amplitude

We proceed similarly to the previous sections and study all two-particle cuts of this ampli-

tude. As in earlier examples, we find three box topologies with tensor numerators. In this
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case, an appropriate spinor prefactor which has the correct spinor weights for the given

amplitude is

J =
[1 2][1 3]4〈1 4〉4

〈1 2〉
. (3.70)

We construct the two-particle cuts of this amplitude using the tree-level expressions in

section 2. The corresponding cuts will again give rise to three tensor boxes with differ-

ent particle orderings and numerators which are now quartic in the loop momenta. The

expression of the relevant cut diagrams are:

s-cut : A(3++, 4−−, l1,φ, l2,φ̄)
[
A(1+, 2+,−l2,φ,−l1,φ̄) + 1↔ 2

]
,

t-cut : A(4−−, 1+, l1,φ, l2,φ̄) A(2+, 3++,−l2,φ,−l1,φ̄) ,

u-cut : A(3++, 1+, l1,φ, l2,φ̄) A(2+, 4−−,−l2,φ,−l1,φ̄) .

(3.71)

As in the cases studied in sections 3.4 and 3.5, the s-cut integrand includes the sum of two

color-ordered tree amplitudes on the right-hand side of the cut, which contribute to the

same color-ordered amplitude, given that the external state on the left-hand side of the

cut is colorless. Using the expressions of the relevant tree-level amplitudes and including a

factor of two from the two possible assignments from the internal scalar fields, we obtain

the following expressions for the cuts:

s-cut:


 










= 2µ4 [12]

〈12〉
〈4|l1|3]4

s2
(3.72)

·
[ 








 



+









 



+









 



+









 

 ]
,

t-cut:


 










= 2µ2 [32]

〈32〉2[41]

〈4|l1|1]3〈2|l1|3]

t
(3.73)

·
[ 












+













+













+











 ]
,

and finally,

u-cut:


 










= 2µ2 [31]

〈31〉2[42]

〈4|l1|2]3〈1|l1|3]

u
(3.74)

·
[ 












+













+













+











 ]
.
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As usual, we now merge the cuts focusing separately on the three different box integrals.

Merging the s- and t-cut for the topology (1234) we get:

(1234) :
4i

(4π)2−ε J

{
−I4

[
µ6;s, t

]( 1

u2t2

)
−I4

[
µ4;s, t

]( 2s

tu3

)

+I3

[
µ4; t

](2
(
t3+u3

)
t4u3

)
+I3

[
µ4;s

](2
(
6s2+8st+3t2

)
s3u3

)

+I2

[
µ4; t

]((2u−t)(4u+3t)

3t5u2

)
+I2

[
µ4;s

]((s+2t)
(
3s2−8st−8t2

)
3s4t2u2

)

−I4

[
µ2;s, t

]( s2

2u4

)
+I3

[
µ2; t

]( s
u4

)
−I3

[
µ2;s

]((2s+t)
(
2s2+2st+t2

)
s2u4

)

−I2

[
µ2; t

](s(6t2−3tu+2u2
)

6t4u3

)
+I2

[
µ2;s

](11s3+59s2t+64st2+22t3

6s3tu3

)}
.

(3.75)

The topology (1243) can be obtained by swapping 3 ↔ 4 in (3.75), or (s, t, u) → (s, u, t).

Noting that J is invariant under this swap we get:

(1243) :
4i

(4π)2−ε J

{
−I4

[
µ6; s, u

]( 1

u2t2

)
− I4

[
µ4; s, u

]( 2s

ut3

)
(3.76)

+ I3

[
µ4;u

](2
(
t3 + u3

)
u4t3

)
+ I3

[
µ4; s

](2
(
6s2 + 8su+ 3u2

)
s3t3

)

+ I2

[
µ4;u

]((2t− u) (4t+ 3u)

3u5t2

)
+ I2

[
µ4; s

]((s+ 2u)
(
3s2 − 8su− 8u2

)
3s4t2u2

)

− I4

[
µ2; s, u

]( s2

2t4

)
+ I3

[
µ2;u

] ( s
t4

)
− I3

[
µ2; s

]((2s+ u)
(
2s2 + 2su+ u2

)
s2t4

)

− I2

[
µ2;u

](s (6u2 − 3tu+ 2t2
)

6u4t3

)
+ I2

[
µ2; s

](11s3 + 59s2u+ 64su2 + 22u3

6s3ut3

)}
.

Next, we merge the u- and t-cuts for the topology (1324):

(1324) :
4i

(4π)2−ε J

{
−I4

[
µ6;u,t

]( 1

u2t2

)
−I4

[
µ4;u,t

]( 1

2sut

)
+I3

[
µ4; t

](2u+3t

st4

)
+I3

[
µ4;u

](2t+3u

su4

)
+I2

[
µ4; t

]((t−2u)(3t+4u)

3u2t5

)
+I2

[
µ4;u

]((u−2t)(4t+3u)

3t2u5

)
+I2

[
µ2;u

]( s

3u4t

)
+I2

[
µ2; t

]( s

3ut4

)}
. (3.77)

As expected, the expression (3.77) is symmetric in u↔ t.
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Finally we take the four-dimensional limit of (3.75), (3.76) and (3.77). These are

given by

− i

(4π)2
J (3t2 + ut+ u2)

15 s2 t3
, − i

(4π)2
J (3u2 + ut+ t2)

15 s2 u3
, − i

(4π)2
J s(2t2 + ut+ 2u2)

30u3 t3
,

(3.78)

respectively. Thus, we arrive at the final result for the four-dimensional limit of the ampli-

tude, using the expression for J in (3.70),

A(1)(1+, 2+; 3++, 4−−) =
i

(4π)2

[1 2][1 3]4〈1 4〉4

〈1 2〉
t2 + u2

6 s t2 u2
. (3.79)

The full result in terms of higher dimensional scalar integral basis is obtained by

adding (3.75), (3.76) and (3.77).

3.7 The 〈1++ 2++ 3++ 4± 〉 amplitudes

We now move on to consider the one-loop amplitudes with three gravitons and a gluon,

beginning with the amplitude with three same-helicity gravitons and one gluon. It is easy

to show that this amplitude vanishes upon integration. Consider for instance the s-cut

diagram of the 〈1++ 2++ 3++ 4+〉 amplitude. Its expression is

µ2 [34]

〈34〉2
〈4|l2|3]

[
i

(l2+p3)2−µ2
+l1↔ l2

]
µ4 [12]2

〈12〉2

[
−i

(l1−p1)2−µ2
+p1↔ p2

]
, (3.80)

or

s-cut:


 










= −µ2 [34]

〈34〉2
〈4|l2|3] µ4 [12]2

〈12〉2
(3.81)

·
[ 








 



+









 



+









 

 







 

 ]
.

Although the integrand does not vanish, the integrated expression does because it is an odd

function under the exchange of l1 ↔ l2. The t- and u-cut are simply given by permutations

of the s-cut and hence combining the three cuts one obtains a vanishing integrated expres-

sion. Finally, using (2.10) it is immediate to see that also the 〈1++ 2++ 3++ 4−〉 amplitude

vanishes for the same reason. In conclusion,

A(1)(1++, 2++, 3++; 4±) = 0 . (3.82)
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3.8 The 〈1+ 2++ 3++ 4−−〉 amplitude

Similarly to the previous section, we can easily show that the amplitude 〈1+ 2++ 3++ 4−−〉
vanishes upon integration. Consider for instance its s-channel cut. This is given by

s-cut:


 










=A(3++,4−−, l1,φ, l2,φ̄)A(1+,2++,−l2,φ,−l1,φ̄)

=

[
−〈4|l2|3]4

s2

[ i

(l2+p3)2−µ2
+l1↔ l2

]][
µ2 [21]

〈21〉2
〈1|−l1|2]

[ i

(l1−p2)2−µ2
+l1↔ l2

]]

=µ2 [21]

〈21〉2
〈4|l2|3]4〈1|l2|2]

s2

·
[ 








 



+









 



+









 

 







 

 ]
. (3.83)

Again, the integrated expression is an odd function under l1 ↔ l2 and hence it vanishes.

The same holds true for the t- and u- channel cuts. In summary, we get

A(1)(1+; 2++, 3++, 4−−) = 0 . (3.84)

4 The 〈1+ 2+ 3+ 4++〉 amplitude from the double copy

The color-kinematic duality or double copy [22, 23] was extended in the works [24–26, 30]

also to the domain of mixed graviton-gluon amplitudes in the Einstein-Yang-Mills theory.

In particular [30] exposed explicitly how to construct an Einstein-Yang-Mills amplitude

through a double copy from Yang-Mills and Yang-Mills + φ3 theory:

AEYM = AYM ⊗AYM+φ3 . (4.1)

The latter Yang-Mills-Scalar theory contains biadjoint scalars φAâ next to the gluons Aâµ
and is defined through the Lagrangian

LYM+φ3 =− 1

4
F âµνF

µν â +
1

2
(Dµφ

A)â(DµφA)â +
1

3!
λ g FABC f âb̂ĉ φAâ φBb̂ φCĉ

− g2

4
f âb̂d̂ f d̂ĉd̂ φAâ φBb̂ φAĉ φBd̂ .

(4.2)

As a one-loop application of (4.1), we wish to derive the vanishing of the 〈1+ 2+ 3+ 4++〉
amplitude, which we observed with a direct computation in section 3.1. Thus we need to

construct integrands for the two amplitudes A(1)(1+, 2+, 3+, 4+) and A(1)(1A1
φ , 2A2

φ , 3A3
φ , 4+)

where color ordering is performed in both cases with respect to the hatted gauge group

index. The first one, the all-plus helicity four-gluon amplitude, is well-known and takes
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the form

A(1)(1+, 2+, 3+, 4+) =





 



=
[12][34]

〈12〉〈34〉

∫
d4l

(2π)4

d−2εµ

(2π)−2ε

µ4

D0D1D2D3
.

(4.3)

As this is a pure box-integral, in the construction of the one-loop YM + φ3 amplitude inte-

grand we only need to construct the box-contribution to the A(1)(1Aφ , 2
B
φ , 3

C
φ , 4

+) amplitude

as well:

A(1)(1A1
φ ,2A2

φ ,3A3
φ ,4+)

∣∣∣
boxes

=





 





 






= i

∫
d4l

(2π)4

d−2εµ

(2π)−2ε

fA1A2A3

D0D1D2D3

〈q|l|4]

〈q4〉

+cycl(1,2,3) . (4.4)

Here we have simply inserted the scalar-scalar-on-shell-gluon vertex of (2.1) in the south-

east corner with a reference spinor λq. The numerator emerging from this integrand respects

color-kinematics duality as it is built entirely from three-valent graphs. Employing the

double-copy prescription [30] of (4.1) we are therefore led to the following representation

of the all-plus single-gluon EYM-amplitude

A(1)(1+
A1
, 2+
A2
, 3+
A3
, 4++) = ifA1A2A3

[12][34]

〈12〉〈34〉

∫
d4l

(2π)4

d−2εµ

(2π)−2ε

µ4

D0D1D2D3

〈q|l|4]

〈q4〉
+ cycl(1,2,3) .

(4.5)

Passarino-Veltman reducing the integral one arrives at the full expression in terms of higher

dimensional scalar integral basis

A(1)(1+
A1
, 2+
A2
, 3+
A3
, 4++) = ifA1A2A3

[12][34]

〈12〉〈34〉
1

〈q4〉
1

u

{
1
2(t〈q|3|4]− s〈q|1|4])I4[µ4; s, t]

+ 〈q|2|4] (I3[µ4; s]− I3[µ4; t])
}

+ cycl(1,2,3) . (4.6)

Going to four dimensions simplifies this result considerably, and one arrives at

A(1)(1+
A1
, 2+
A2
, 3+
A3
, 4++) = ifA1A2A3

[12][34]

〈12〉〈34〉
1

〈q4〉
1

12

{
〈q|3|4] + 1

2〈q|2|4]
}

+ cycl(1,2,3) = 0 .

(4.7)

The expression above vanishes as the prefactor is invariant under cyclic shifts in (1, 2, 3) and

obviously the bracketed terms sum to zero, as 〈q|3|4] + cycl(1,2,3)= 〈q| p1 + p2 + p3 |4]=0.

Hence, we have reproduced the vanishing result of section 3.1.

Finally, we comment on the question whether the amplitude relations of Stieberger

and Taylor [27, 48] relating pairs of collinear gluons to gravitons extend to the one-loop

level for the one-loop rational amplitudes we have considered in this paper.
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We will test this for the simplest case of the all-plus amplitude with one graviton.

For such a relation to be true, the vanishing four-dimensional result must follow from the

specific collinear limit proposed by Stieberger and Taylor on the five-point all-plus rational

amplitude in pure Yang-Mills. In analogy to the tree-level relation, in four dimensions we

expect to have:

A
(1)
EYM;ST(1+, 2+, 3+, P++)

?
=

κ

g2
G(x) lim

p4‖p5
s24A

(1)
YM(1+, 5+, 2+, 4+, 3+) + cycl(1, 2, 3) ,

(4.8)

where the equality would hold in the collinear limit {p4 → xP, p5 → (1 − x)P} on the

right-hand side of (4.8), and G(x) is an undetermined function of the momentum splitting

fraction x which is expected to be independent of the helicities of the particles. Note

that G(x) has been determined for tree amplitudes in [48]. We have also added cyclic

permutations of the three gluons to secure cyclic symmetry in these particles. Using the

well-known expression for the all-plus five-point rational amplitude in Yang-Mills [49], we

see that the right-hand side of (4.8) contains the factor

s24A
(1)
YM(1+, 5+, 2+, 4+, 3+) = s24

i

48π2

−s15s52 − s13s43 + 〈5 2〉〈4 3〉[2 4][3 5]

〈1 5〉〈5 2〉〈2 4〉〈4 3〉〈3 1〉
. (4.9)

Performing the above-mentioned collinear limit on (4.9), followed by a cyclic permutation

of the three gluon legs in order to reflect the anticipated color structure, and relabelling

P → p4 (with p4 being the momentum of the graviton leg), we arrive at

lim
p4‖p5

s24A
(1)
YM(1+, 5+, 2+, 4+, 3+) + cycl(1, 2, 3) =

[
1

(1− x)
− 2x

]
1

2
(st+ ut+ su)A0 ,

(4.10)

with

A0 :=
i

48π2

〈2|1|4]

〈2 4〉
1

〈1 2〉〈2 3〉〈3 4〉〈4 1〉
. (4.11)

Clearly this does not vanish and hence invalidates the conjecture (4.8). However we note

the following rather intriguing similarity: consider again our full result for this amplitude in

terms of scalar integrals as obtained in (3.11), and focus only on the pure box contribution;

evaluated in the D→4 limit, it gives

6A0

[
st

2
I4[µ4; s, t]

] ∣∣∣∣∣
D=4

+ perms = −1

2
(st+ ut+ su)A0 . (4.12)

This is curiously proportional to the x-independent part of the right-hand side of (4.10),

which was obtained from the Stieberger-Taylor collinear limit. Given the vanishing of our

final result in four dimensions, also the triangle contribution in (3.11) can be written in a

similar way:

6A0

[
sI3[µ4; t] + tI3[µ4; s]

]∣∣∣∣∣
D=4

+ perms =
1

2
(st+ ut+ su)A0 . (4.13)

In conclusion, even though the amplitude (3.11) vanishes in four dimensions, we find the

similarities between (4.12) (or (4.13)) and (4.10) intriguing, and worth further investigation.
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5 Summary and conclusions

In the present paper we initiate a systematic study of loop amplitudes in the Einstein-

Yang-Mills(EYM) theory. Due to recent progress in computing tree-level amplitudes in

string theory as well as from novel formulations like CHY, it has been understood that

interesting relations exist between amplitudes involving gravitons and gluons and the ones

involving only gluons- which in turn inspired us to start exploring the structure of mixed

amplitudes at loop level.

We have studied and provided the complete results for all four point mixed gluon-

graviton amplitudes at one loop that have only rational contributions at the leading gauge

coupling order. These are amplitudes with one, two or three gravitons. We have used

the on-shell unitarity technique to compute these amplitudes. Here we utilized a super-

symmetric decomposition which allows us to compute the complete rational amplitude at

the relevant perturbative order from the unitarity cuts with massive scalars traversing the

loop. We provide the explicit result in terms of higher dimensional integral basis of boxes,

triangles and bubbles. The final results of all computed four point amplitudes in four di-

mensions are remarkably simple functions of the Mandelstam invariants (1.6). In section 3

we give a detailed description of the calculations. As noted in this section, the symmetry

property of the final results reflect the appropriate behavior expected from the color-factor

structure of each amplitude. A very important observation is an unexpected vanishing of

the all-plus(three gluons and one graviton) amplitude (3.12).

The EYM theory have also recently been an interesting playground from the color-

kinematics duality and double copy perspective. In section 4 we provide the sytematics of

such a double-copy approach where by EYM amplitudes are obtained from double-copying

a pure YM and a biadjoint scalar theory. As an example we re-derive the double copied

integrand for the all plus amplitude which finally integrates to zero as expected from our

previous unitarity based computation. Moreover, as a probe of a possible loop extension

for a tree-level conjecture [27, 48], relating amplitudes in EYM to linear combinations

of those in YM, we use our all-plus amplitude result to show that this does not hold at

the level of the integrated amplitude. However, our double-copy example of the all-plus

amplitude does verify the proposed formula connecting such amplitudes at the level of the

integrand in [30].

A very exciting direction in future will be to extend these techniques to study one-

loop amplitudes at four points which have non-analytic behavior, especially a thorough

understanding of the UV divergence in this theory with gravity coupled to matter will be

very interesting. It will also be rather fruitful to compute just the rational amplitudes

at higher multiplicities and study whether they have a compact form for all multiplicities

like the YM or gravity rational amplitudes. An exciting possibility here will be to find a

suitable BCFW-like recursion relation for this purpose. It would be interesting to construct

the contributions to the rational four-point one-loop amplitudes at higher orders in κ as

well, where one has gravitons running inside the loop, even though they will be numerically

subleading at energies well below the Planck mass. This could be possible using the double-

copy techniques initiated in [30] and used herein. The most interesting observation of this
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paper has been the vanishing of the all-plus amplitude and it will be very important to

check if this is also true for higher multiplicities and also at two loop order. Vanishing of an

amplitude unexpectedly usually signifies some hidden symmetry and a proper explanation

of this case may provide us some new structures of the EYM S-matrix. It would also be

illuminating to understand these mixed EYM amplitudes within the context of loop-level

extensions of the CHY [50] or the ambitwistor formalism [51, 52].
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A Integrals

The integral functions used in this paper are defined as:∫
d4−2εL

(2π)4−2ε

µm

L2 · · ·
[
(L−

∑n−1
i=1 pi)

2]
=

∫
d4l

(2π)4

d−2εµ

(2π)−2ε

µm

(l2 − µ2) · · ·
[
(l −

∑n−1
i=1 pi)

2 − µ2
]

:=
i

(4π)2−ε In[µm] , (A.1)

where L2 = L2
(4) + L2

(−2ε) := l2 − µ2.12 The exact expressions for the bubble, one-mass

triangle and zero-mass box integral functions in 4 − 2ε dimensions following from the

definition (A.1) are

I2[1; s] = rΓ
(−s)−ε

ε(1− 2ε)
, (A.2)

I3[1; s] = −rΓ

ε2
(−s)−1−ε , (A.3)

for the bubble and one-mass triangle, while for the zero-mass box function one has [53, 54]

I4[1; s, t] = rΓ
2

st

[
(−s)−ε

ε2
2F1

(
1,−ε, 1− ε; 1 +

s

t

)
+

(−t)−ε

ε2
2F1

(
1,−ε, 1− ε; 1 +

t

s

)]
,

(A.4)

12Our definition (A.1) differs from [37] in that we do not include a factor of (−)n on the right-hand side

of this equation. Hence, note the minus sign on the right-hand side of (A.3), in contradistinction with

e.g. (I.4) of [47].
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where

rΓ :=
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)
. (A.5)

The results (A.2), (A.3) and (A.4) are exact to all orders in ε, and the expression of the

corresponding integral functions in a different number of dimensions can be obtained by

simply replacing ε to the appropriate value, for instance ε → ε − 1 and ε → ε − 2 for

D = 6 − 2ε and D = 8 − 2ε, respectively. The dependence on the relevant kinematic

invariants is indicated in brackets along with the power of µ. Using [37]

ID=4−2ε
n [(µ2)p] = −ε(1− ε)(2− ε) · · · (p− 1− ε) ID=2p+4−2ε

n , (A.6)

along with the expressions (A.2), (A.3) and (A.4), which are correct in any number of

dimensions, one easily arrives at the following result, used widely in this paper:

I2[µ2; s] = −s
6

+O(ε) , I2[µ4; s] = − s
2

60
+O(ε) ,

I3[µ2; s] =
1

2
+O(ε) , I3[µ4; s] =

s

24
+O(ε) ,

I4[µ2; s, t] = O(ε) , I4[µ4; s, t] = −1

6
+O(ε),

I4[µ6; s, t] = −s+ t

60
+O(ε) ,

I4[µ8; s, t] = − 1

840

(
2s2 + st+ 2t2

)
+O(ε) ,

(A.7)

in complete agreement with results of [12, 37] (after taking into account the opposite sign

in the definition of triangle functions compared to those papers).

B Tree-level amplitudes via recursion relations

In this appendix we derive the relevant tree amplitudes involving gravitons, gluons and

massive scalars which enter the one-loop calculations in EYM performed in earlier sections.

The A(4++, 1+, 2φ, 3φ̄) amplitude. We use a BCFW recursion relation with a 〈4 1]

shift, i.e. we perform a shift

λ̂4 = λ4 + zλ1 ,
ˆ̃
λ1 = λ̃1 − zλ̃4 . (B.1)

There are two recursion diagrams to compute, A and B. The first one is

AA(4++, 1+, 2φ, 3φ̄) = A(4̂++, P̂φ, 3φ̄)
i

(p3 + p4)2 − µ2
A(1̂+, 2φ,−P̂φ̄) . (B.2)

In accordance with (2.1) and (2.2) we have

A
(

4̂++, P̂φ, 3φ̄

)
= −i 〈q1|3|4]2

〈q14̂〉2
,

A
(

1̂+, 2φ,−P̂φ̄
)

= i
〈q2| − P̂ |1̂]

〈q21〉
,

(B.3)
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with P̂ = p̂1 + p2. The reference spinors q1 and q2 can be conveniently chosen to be q2 = 4̂

and q1 = 1. Using

〈1|3|4]2 〈4̂| − P̂ |1̂] = −µ2 s14 〈1|3|4] , (B.4)

one quickly arrives at the result

AA
(
4++, 1+, 2φ, 3φ̄

)
= −i2 µ2 [41]

〈41〉2
〈1|3|4]

i

(p3 + p4)2 − µ2
. (B.5)

The second diagram corresponds to swapping the position of the graviton with the gluon,

to account for the fact that the graviton is colour blind. We have

AB
(
4++, 1+, 2φ, 3φ̄

)
= A

(
1̂+, P̂φ, 3φ̄

) i

(p2 + p4)2 − µ2
A
(

4̂++, 2φ,−P̂φ̄
)
. (B.6)

With the same choice of reference spinors, we get

AB
(
4++, 1+, 2φ, 3φ̄

)
= −i2 µ2 [41]

〈41〉2
〈1|3|4]

i

(p2 + p4)2 − µ2
, (B.7)

and hence the result for the complete amplitude is

A(4++, 1+, 2φ, 3φ̄) = µ2 [41]

〈41〉2
〈1|3|4]

[
i

(p3 + p4)2 − µ2
+

i

(p2 + p4)2 − µ2

]
. (B.8)

Note that this amplitude vanishes for µ2 = 0.

Soft limits of the A(4++, 1+, 2φ, 3φ̄) amplitude. It is an interesting check to confirm

that the amplitude obtained in this way has the correct soft limits. To this end we consider

the case with gluon 1+ becoming soft. We then expect the amplitude to factorize as

A(4++, 1+, 2φ, 3φ̄) −−−→
p1→0

S
(0)
1 A(4++; 2φ, 3φ̄) , (B.9)

where the soft function is

S
(0)
1 =

p2 · ε(p1)√
2(p2 · p1)

− p3 · ε(p1)√
2(p3 · p1)

. (B.10)

Using ε
(+)
ν (p1) = 〈ξ|ν|1]/(

√
2〈ξ 1〉), where |ξ〉 is a reference spinor, and choosing for conve-

nience ξ = 4, we get

S
(0)
1 A(4++; 2φ, 3φ̄) = i

〈4|3|1]

〈41〉

[
1

2(p2 · p1)
+

1

2(p3 · p1)

]
〈q|3|4]2

〈q 4〉2
. (B.11)

In the soft limit, one easily finds that

〈4|3|1]〈q|3|4] −−−→
p1→0

−µ2〈q4〉[41] , (B.12)

and choosing the arbitrary spinor q to be equal to 1, we finally get

S
(0)
1 A(4++; 2φ, 3φ̄) −−−→

p1→0
i µ2 [41]

〈41〉2
〈1|3|4]

[
1

2(p2 · p1)
+

1

2(p3 · p1)

]
, (B.13)

which is identical to the result for A(4++, 1+, 2φ, 3φ̄).
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The A(4++, 1−, 2φ, 3φ̄) amplitude. We will use the same BCFW shift as in (B.1).

Again, there are two recursion diagrams to compute, A, and B. The first one is

AA
(
4++, 1−, 2φ, 3φ̄

)
= A

(
4̂++, P̂φ, 3φ̄

) i

(p3 + p4)2 − µ2
A
(

1̂−, 2φ,−P̂φ̄
)
, (B.14)

with

A
(

4̂++, P̂φ, 3φ̄

)
= −i 〈q1|3|4]2

〈q14̂〉2
,

A
(

1̂−, 2φ,−P̂φ̄
)

= i
〈1| − P̂ |q2][

1̂q2

] ,

(B.15)

and with P̂ = p̂1 + p2. A convenient choice for the reference spinors q1 and q2 is again

q2 = 4̂ and q1 = 1, which immediately leads to

AA(4++, 1−, 2φ, 3φ̄) = −i2 〈1|2|4]3

〈14〉 s14

i

(p3 + p4)2 − µ2
. (B.16)

Similarly

AB
(
4++, 1−, 2φ, 3φ̄

)
= A

(
1̂−, P̂φ, 3φ̄

) i

(p2 + p4)2 − µ2
A
(

4̂++, 2φ,−P̂φ̄
)
, (B.17)

which leads to

AB
(
4++, 1−, 2φ, 3φ̄

)
= −i2 〈1|2|4]3

〈14〉 s14

i

(p2 + p4)2 − µ2
. (B.18)

Adding the two contributions, we get

A(4++, 1−, 2φ, 3φ̄) =
〈1|2|4]3

〈14〉 s14

[
i

(p3 + p4)2 − µ2
+

i

(p2 + p4)2 − µ2

]
. (B.19)

Note that this amplitude does not vanish for µ2 = 0.

The A(1++, 2++, 3φ, 4φ̄) amplitude. We now consider the case of two gravitons and

two scalars. The simplest case to consider is that of two gravitons of the same helicity,

already considered in [12] in the computation of all-plus graviton amplitudes. We will use

the shifts

λ̂1 = λ1 + zλ2 ,
ˆ̃
λ2 = λ̃2 − zλ̃1 . (B.20)

As usual, there are two diagrams to consider. The first one is

AA
(
1++, 2++, 3φ, 4φ̄

)
= A

(
1̂++, P̂φ, 4φ̄

) i

(p4 + p1)2 − µ2
A
(

2̂++, 3φ,−P̂φ̄
)
, (B.21)

while AB(1++, 2++, 3φ, 4φ̄) =
[
AA(1++, 2++, 3φ, 4φ̄)

]
1↔2

. Thus, using (2.1) we get

AA = (−i )
〈q1|4|1]2

〈q11̂〉2
i

(p4 + p1)2 − µ2
(−i )

〈q2| − P̂ |2̂]2

〈q22〉2
. (B.22)

Choosing q2 = 1̂, q1 = 2 and using 〈q1|4|1]〈q2| − P̂ |2̂] = −µ2s12, we finally arrive at

A
(
1++, 2++, 3φ, 4φ̄

)
= −µ4 [12]2

〈12〉2

[
i

(p4 + p1)2 − µ2
+

i

(p3 + p4)2 − µ2

]
. (B.23)

Note that (B.23) agrees with (4.10) of [12].
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