Fast segment finding in the ATLAS MDTs using a Legendre transform algorithm

Kostas Ntekas on behalf of the ATLAS TDAQ Collaboration

University of California Irvine

Connecting the Dots 2018, Seattle (US) March 17, 2018

Using the MDTs in ATLAS First-level Muon Trigger for HL-LHC

The Legendre Transform algorithm for MDT segment reconstruction

4 Hardware implementation of the Legendre Transform algorithm

The ATLAS Muon Spectrometer

- RPC/TGC (fast response with BCID capability) are used in the muon trigger decision
- CSC/MDT (excellent spatial resolution) are the precise tracking detectors
- The inner wheels will be replaced with new detector technologies (Micromegas & sTGC) in Phase-I that will contribute both in tracking and triggering

ATLAS First-level Muon Trigger Evolution (Pre-Phase-I)

Kostas Ntekas (U.C.Irvine)

Connecting the Dots 2018, Seattle (US)

Limitations in the current ATLAS First-level Muon Trigger

- Endcap muon trigger rate dominated by fakes (charge particles not originating from the IP)
- \bullet Low ($\sim70\%)$ barrel trigger efficiency due to geometrical acceptance of the RPC chambers
- The current trigger chambers RPC & TGC have only moderate p_T resolution (limited spatial resolution) \rightarrow shallow efficiency turn-on curve

• HL-LHC physics program necessitates maintaining single muon trigger $p_{\rm T} > 20\,{\rm GeV}$ and efficient di-lepton triggers with lower $p_{\rm T}$ threshold \rightarrow upgrade first-level muon trigger

Kostas Ntekas (U.C.Irvine)

Connecting the Dots 2018, Seattle (US)

ATLAS First-level Muon Trigger Evolution (Phase-I)

ATLAS First-level Muon Trigger Evolution (Phase-II)

ATLAS Phase-II First-level Muon Trigger Architecture

- First level trigger decision is issued at 1MHz rate (overall muon trigger latency < 5.4 µs)
- MDTs included in the muon trigger \rightarrow improve p_T measurement and suppression of fake coincidences
- RPC/TGC² provide pre-trigger candidates
 - Reference time and position vector for matching the MDT hits in space and time¹
 - 2nd coordinate measurement (along non-bending plane)

 $^1 MDTs$ are much slower (max drift time $\simeq 700\,ns)$ than RPC/TGC so the MDT hits of one muon track span over several BCs

²RPC/TGC on-chamber electronics will be replaced to cope with the Phase-II trigger rate and latency (data buffering and trigger logic moves off-detector)

Connecting the Dots 2018, Seattle (US)

MDT Trigger Processor (TP) - Functional Diagram

In addition to the trigger decision the MDT TP is also used for

- Readout of the MDT hits (hits are buffered and sent on LO accept)
- MDT electronics configuration and monitoring (slow control)

Kostas Ntekas (U.C.Irvine)

MDT Trigger - $p_{\rm T}$ Determination

- \bullet Exploiting the precise tracking with the MDTs the muon $\rho_{\rm T}$ can be measured with an accuracy close to the one of the offline MS reconstruction
- 3-station: Measuring the sagitta using three segment positions (applicable to 73% of the muons)
- 2-station: Measuring the segment deflection angle (applicable to 94% of the muons)
- \bullet Need accuracy in both angle and position of the segment for a precise ρ_T determination

MDT Trigger - $p_{\rm T}$ Determination : Performance

Combine both methods to maximise the acceptance of the MDT trigger

- Sagitta (3-station) superior to the deflection angle (2-station) \rightarrow Use 3-station when applicable and have 2-station as a backup
- ullet Combining the two methods we can achieve $p_{
 m T}$ resolution $\sim 5\%$
- Require segment reconstruction with $\sigma_r \leq 1\,\mathrm{mm}$, $\sigma_ heta \leq 1\,\mathrm{mrad}$ to reach this accuracy

Kostas Ntekas (U.C.Irvine)

MDT Trigger Efficiency & Rates

- \bullet Efficiency plateau ($\sim 93\%$) defined by the RPC/TGC trigger
- The precise $p_{\rm T}$ determination using the MDT enhances the suppression of the muon candidates with $p_{\rm T}$ below the nominal threshold (sharper turn-on)
- Fake trigger rate (coming mostly from low quality RPC coincidences in the barrel) is suppressed with the inclusion of the MDT in the first level muon trigger
 - More than x3 rate reduction predicted for HL-LHC conditions

MDT Segment Reconstruction

- Each ATLAS MDT chamber consists of two multilayers (ML) of tubes (with 3 or 4 staggered layers each) separated by a spacer frame
- The MDT segment is defined as the common tangent line to the drift circles in the two MLs
- Offline reconstruction evaluates common tangent lines for each pair of circles to determine the best tangent line
- Segment reconstruction accuracy $\sigma_r \leq 100 \,\mu\text{m}$ and $\sigma_{\theta} \leq 1 \,\text{mrad}$

Legendre Transform Algorithm for Drift Circles

- Algorithm introduced in nima.2008.04.038, T. Alexopoulos et al.
- For each drift circle the Legendre transformations of its concave and convex parts are evaluated for various θ values (r, θ polar coordinates)
- Each drift circle in the cartesian space corresponds to 2 lines in the Legendre space
- The bin with the maximum number of entries (where the different lines cross) corresponds to the most popular tangent line

Kostas Ntekas (U.C.Irvine)

Legendre Transform Algorithm for Drift Circles

- Algorithm introduced in nima.2008.04.038, T. Alexopoulos et al.
- For each drift circle the Legendre transformations of its concave and convex parts are evaluated for various θ values (r, θ polar coordinates)
- Each drift circle in the cartesian space corresponds to 2 lines in the Legendre space
- The bin with the maximum number of entries (where the different lines cross) corresponds to the most popular tangent line

Legendre Transform Algorithm for the MDT trigger

- Pattern recognition nature of the algorithm makes it suitable to be implemented in an FPGA for fast segment finding (trigger level)
- \bullet Can parallelise drift circle processing such that the overall latency does not scale with the number of hits (assuming ≤ 100 matched hits per RoI)
- Can be adjusted to reconstruct multiple segments using one Legendre map
- \bullet Cannot process all the hits of a single chamber on the trigger level if we want to fit within our latency budget \to Relying on RoI provided by the (faster) muon trigger chambers
- \bullet High occupancy expected at HL-LHC conditions \rightarrow need to narrow down the RoI as much as possible to save processing time and resources

Legendre Transform - Performance

- Comparing the Legendre transform segment with the one reconstructed offline
- Decent resolution achieved in the segment reconstruction accuracy with the Legendre transform $\sigma_r = 90 \,\mu m$ and $\sigma_{\theta} = 0.6 \, mrad$ flat in $p_{\rm T}$ [0.100 GeV]
- Currently focussing on events in the tails trying to improve on mis-reconstructed segments (fine tuning of the algorithm)

ATLAS Simulation Interna

ATLAS Simulation Internal

Legendre Transform - Points of optimisation I/II

- Legendre space resolution (bin size)
 - Tuning is essential since it affects the FPGA choice (resource usage)
 - Too fine bins result in making the Legendre lines overlap more difficult
 - The bin size limits the accuracy that can be achieved in the segment angle/position determination
- Accuracy that can be assumed in the drift radius (time calibration and r-t relation) of the circles impacts the bin size choice

 \bullet Lower accuracy \rightarrow larger bin size

- Track bending within a single chamber (low p_T particle in B-field) results in incompatible segments in the two MLs
 - Q Run segment finding per ML separately and combine the two ML segments into one
 - 3 Identify two peaks from one Legendre histogram and combine the two (r, θ) pairs into one

Legendre Transform - Points of optimisation II/II

- Legendre space limits (r,θ) are dictated by the RoI segment resolution*
- Need to ensure that the space around the RoI r, θ is large enough to enclose the MDT segment (max bin)
- Lower resolution RoI segments require larger span of the r, θ axes

$\Delta \theta$			Δr			
	95%	99%	99.9%	95%	99%	99.9%
BIL	0.015	0.021	0.0353	24.0	38.4	70.8
BIM	0.015	0.022	0.0343	30.0	48.0	75.6
BIR	0.025	0.047	>0.06	20.4	34.8	62.4
BIS	0.019	0.034	>0.06	28.8	54.0	127.2
BMF	0.035	0.05	>0.06	16.8	27.6	88.8
BML	0.025	0.035	0.0554	14.4	20.4	44.4
BMS	0.036	0.053	>0.06	16.8	26.4	88.8
BOF	0.02	0.043	>0.06	32.4	92.4	>300
BOG	0.025	0.059	>0.06	51.6	163.2	>300
BOL	0.012	0.022	>0.06	21.6	44.4	162.0
BOS	0.016	0.033	>0.06	31.2	79.2	258.0
EML	0.0065	>0.06	>0.06	24.0	70.8	274.8
EMS	0.006	0.056	>0.06	28.8	56.4	258.0
EOL	0.0067	>0.06	>0.06	56.4	>300	>300
E0S	0.0062	>0.06	>0.06	58.8	>300	>300

*The RoI vector is extrapolated to each MDT layer taking into account the local B-field

MDT Trigger Processor - Conceptual H/W design

• ATCA blade with GBT (or lpGBT) with 4.8Gb/s (or 9.6Gb/s) links

 Following ATLAS MDT segmentation one MDT trigger processor handles $1/16 \phi$ sectors

• Separate also in Barrel/Endcap regions and A/C side

- 64 trigger processors in total for the full MDT system
- Max 18 MDT chambers per trigger processor

MDT Trigger Processor - Block diagram

 Reconstructed segments are shared between neighbouring sectors to handle sector overlap and barrel-endcap transition region

Kostas Ntekas (U.C.Irvine)

Connecting the Dots 2018, Seattle (US)

Legendre Segment Finder - FPGA Implementation I/II

Legendre Segment Finder - FPGA Implementation II/II

Resources & Latency

 \bullet Overall latency of the MDT trigger processor is $\sim 400\,\rm ns$ with the segment finding performed within 78 ns (MPV)

Contents	Latency [µs]
Earliest MDT hit signal arrival	0.609
Sector logic track candidate arrival	1.785
Latest MDT hit signal arrival	2.358
Decoding and domain crossing	2.458
Buffering	3.424
Hit extraction	3.432
Data transfer to the mezzanine cards	3.457
Segment reconstruction	3.510
Conversion to the detector coordinates	3.535
Data transfer to the main board	3.560
Transverse momentum evaluation and selection	3.635
Optical link to the Sector Logic (10m)	3.810

- Preliminary FPGA resource estimate for the mezzanine board for 3 Legendre segment finder engines, handling inputs from 3 MDTs
 The mezzanine board will contain 3 such FPGAs that can operate in
- parallel to handle multiple simultaneous RoIs

	Number	LUTs	Regs	BRAMs		
Legendre Engine	3	96,500	104,500	275		
Total		289,000	313,500	825		
XKCU115		663,360	1,326,700	4,320		
%Use		44%	24%	19%		

Mezzanine FPGA (1 of 3)

Kostas Ntekas (U.C.Irvine)

Summary

- The MDTs will be introduced in the first-level muon trigger of the ATLAS experiment for HL-LHC
- Exploiting the precise tracking of the MDTs the muon p_T measurement at the trigger level is refined \to Sharper efficiency turn-on and significant rate reduction
- The Legendre transform algorithm is able to provide very accurate segment reconstruction using the MDT drift circles
 - Depending on the hardware resources and the implementation the accuracy in the MDT Trigger Processor can be comparable to the offline segment reconstruction
- \bullet The main advantage of the algorithm is that it can be easily parallelised \to "fixed-latency" FPGA implementation independent of the number of MDT hits
- Processing time estimations show that it fits the available latency budget while, despite the significant resource allocation, it can be accommodated in modern large FPGAs

Thanks for your attention!