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Abstract

A search is presented for physics beyond the standard model, based on measure-
ments of dijet angular distributions in proton-proton collisions at

√
s = 13 TeV. The

data collected with the CMS detector at the LHC correspond to an integrated lumi-
nosity of 35.9 fb−1. The observed distributions, corrected to particle level, are found
to be in agreement with predictions from perturbative quantum chromodynamics
that include electroweak corrections. Constraints are placed on models containing
quark contact interactions, extra spatial dimensions, quantum black holes, or dark
matter, using the detector-level distributions. In a benchmark model where only left-
handed quarks participate, contact interactions are excluded at the 95% confidence
level up to a scale of 12.8 or 17.5 TeV, for destructive or constructive interference, re-
spectively. The most stringent lower limits to date are set on the ultraviolet cutoff in
the Arkani–Hamed–Dimopoulos–Dvali model of extra dimensions. In the Giudice–
Rattazzi–Wells convention, the cutoff scale is excluded up to 10.1 TeV. The production
of quantum black holes is excluded for masses below 5.9 and 8.2 TeV, depending on
the model. For the first time, lower limits between 2.0 and 4.6 TeV are set on the mass
of a dark matter mediator for (axial-)vector mediators, for the universal quark cou-
pling gq = 1.0.
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1 Introduction
Pairs of highly energetic jets (dijets) are produced at high rates in proton-proton collisions at
the CERN LHC through pointlike scattering of quarks and gluons. Despite its enormous suc-
cess, the shortcomings of the standard model (SM) are well known. Many theories of physics
beyond the standard model (BSM) that alter the interaction of quarks and gluons from that
predicted by perturbative quantum chromodynamics (QCD) give rise to narrow or wide res-
onances or even to nonresonant dijet signatures. Examples that have received widespread at-
tention include models with dark matter (DM) [1–5], quark compositeness [6–8], extra spatial
dimensions [9, 10], and quantum black holes [11–15]. Resonances with an intrinsic width of
the order of the experimental resolution can be constrained by searches in the dijet invariant
mass spectrum [16–18]. These searches, however, are not very sensitive to wide resonances or
nonresonant signatures; a more effective strategy to constrain such signatures is the study of
dijet angular distributions [19].

The angular distribution of dijets relative to the beam direction is sensitive to the dynamics of
the scattering process. Furthermore, since the angular distributions of the dominant underlying
QCD processes of qg→ qg, qq′ → qq′, qq→ qq, gg→ gg, are all similar [20], the dijet angular
distribution is insensitive to uncertainties in the parton distribution functions (PDFs). The dijet
angular distribution is typically expressed in terms of χdijet = exp(|y1 − y2|), where y1 and
y2 are the rapidities of the two jets with the highest transverse momentum pT (the leading
jets). For collinear massless parton scattering, χdijet takes the form χdijet = (1 + |cos θ∗|)/(1−
|cos θ∗|), where θ∗ is the polar scattering angle in the parton-parton center-of-mass (CM) frame.
The choice of χdijet, rather than θ∗, to measure the dijet angular distribution is motivated by the
fact that in Rutherford scattering, where only t-channel scattering contributes to the partonic
cross section, the χdijet distribution is independent of |y1 − y2| [20]. In contrast, BSM processes
may have scattering angle distributions that are closer to being isotropic than those given by
QCD processes and can be identified by an excess of events at small values of χdijet. Previous
measurements of dijet angular distributions at the LHC have been reported by the ATLAS [17,
21–25] and CMS [26–29] Collaborations.

In a simplified model of interactions between DM particles and quarks [1–4, 30, 31], the spin-1
(vector or axial-vector) DM mediator particle with unknown mass MMed is assumed to decay
only to pairs of quarks or pairs of DM particles, with mass mDM, and with a universal quark
coupling gq and a DM coupling gDM. In this model, the relative width of the DM mediator
increases monotonically with increasing gq. In a scenario where gq = 0.25 and in which the
relative widths for vector and axial-vector mediators in the dark matter decay channels are
negligible, values of MMed below 3.0 TeV were excluded by narrow dijet resonance searches [17,
18]. A search for narrow and broad dijet resonances set constraints on mediator widths up to
30% (gq < 0.75) and masses up to 4 TeV [32]. Searches for invisible particles produced in
association with quarks or bosons [33–35] have excluded vector and axial-vector mediators
below 1.8 (2.1) TeV for gq = 0.25 (gq = 1.0) and gDM = 1.0 [34].

A common signature of quark compositeness [6–8], at energies well below the characteristic
mass scale Λ for new interactions between quark constituents, is the four-fermion contact in-
teraction (CI). The most stringent limits on quark CIs come from searches in dijet angular dis-
tributions at large dijet invariant masses (Mjj) [17, 29], and in inclusive jet pT distributions [36].
The publication from the ATLAS Collaboration [17] provides lower limits on the quark CI scales
from 13.1 to 29.5 TeV, depending on the details of the model.

The Arkani–Hamed–Dimopoulos–Dvali (ADD) model [9, 10] of compactified large extra di-
mensions (EDs) provides a possible solution to the hierarchy problem of the standard model.
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It predicts signatures of virtual graviton exchange that result in a nonresonant enhancement of
dijet production in proton-proton collisions, whose angular distribution differs from the pre-
dictions of QCD. Signatures from virtual graviton exchange have previously been sought at
the LHC in various final states, where the most stringent limits arise from the CMS search with
dijet angular distributions [29], which excludes the ultraviolet cutoff in the ADD framework
up to 7.9–11.2 TeV, depending on the parameterization of the model.

In models with large EDs, the fundamental Planck scale (MPl) is assumed to be closer to the
electroweak (EW) scale, thereby allowing black hole production at the LHC [11–15]. Semi-
classical black holes, which have mass much larger than MPl, decay into multiple jets through
Hawking radiation [37]. Quantum black holes (QBHs), which are produced with mass close to
MPl, decay predominantly into dijets and can be studied using dijet angular distributions [38–
40]. Recent searches for QBHs with dijet final states at the LHC reported in Refs. [17, 29] exclude
QBHs with masses below 8.9 TeV.

In this paper, we present a search for new physics, specifically DM mediators, CIs, EDs, and
QBHs, using measurements of dijet angular distributions. The signature of the signals can be
categorized into nonresonant excesses at high Mjj as predicted by the CI and ADD models and
resonances from the decay of QBHs and DM mediators that could appear across the whole
range of the Mjj spectrum. The searches are performed by comparing detector-level dijet angu-
lar distributions with BSM predictions that have been adjusted to include detector resolution
effects. This eliminates some systematic uncertainties that are introduced when correcting the
dijet angular distributions for detector effects and simplifies the statistical evaluation. The dijet
angular distributions are also corrected to particle level to facilitate comparisons with other
theoretical predictions and published in HEPData.

2 The CMS detector
The CMS apparatus is based on a superconducting solenoid of 6 m internal diameter, providing
an axial field of 3.8 T. Within the solenoid and nearest to the interaction point are the silicon
pixel and strip trackers. Surrounding the tracker volume are the lead tungstate crystal electro-
magnetic calorimeter and the brass and scintillator hadron calorimeter. The trackers cover a
pseudorapidity region of |η| < 2.5 while the calorimeters cover |η| < 3.0. In addition, CMS
has extensive forward calorimetry, which extends the coverage to |η| < 5.0. Finally, muons are
measured in gas-ionization detectors embedded in the steel flux-return yoke of the solenoid,
with a coverage of |η| < 2.4. A two-tiered system, with a level-1 trigger followed by a high-
level trigger (HLT), is used by CMS to record events of interest [41] for the offline analysis.
A more detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, can be found in Ref. [42].

3 Event selection and data unfolding
Events are reconstructed using a particle-flow algorithm [43] to identify and reconstruct in-
dividual particles from each collision by combining information from all CMS subdetectors.
Identified particles include charged and neutral hadrons, electrons, muons, and photons. The
particles are clustered into jets using the anti-kT algorithm [44, 45] with a distance parameter
of 0.4. In order to mitigate the effect of additional proton-proton interactions within the same
or nearby bunch crossings (pileup) on the jet momentum measurement, the charged hadron
subtraction technique [43] is used. Spurious jets from noise or non-collision backgrounds are
rejected by applying jet identification criteria [46]. The jet energies are corrected for nonlin-
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ear and nonuniform response of the calorimeters through corrections obtained from data and
Monte Carlo (MC) simulations [47]. To compare data with theoretical predictions, the same
jet clustering algorithm is applied to the generated stable particles (lifetime cτ > 1 cm) from
MC simulations with leading order (LO) PYTHIA 8.212 [48, 49] predictions, and to the outgoing
partons from next-to-leading (NLO) predictions.

The events used in this analysis are selected with triggers based upon either jet pT or HT, as
measured by the HLT, where HT is the scalar sum of the pT values of all the jets with |η| < 3.0
and pT greater than 30 GeV. The HLT selection requires having a jet with pT > 450 GeV or an
HT value of at least 900 GeV. The data sample was collected with the CMS detector in 2016 and
corresponds to an integrated luminosity of 35.9 fb−1 [50].

In the subsequent offline analysis, events with a reconstructed primary vertex that lies within
±24 cm of the detector center along the beam line, and within 2 cm of the detector center in the
plane transverse to the beam, are selected. The primary vertex is defined as the reconstructed
vertex with the highest sum of the squares of all associated physics objects pT. The physics
objects are the jets returned by the application of the anti-kT algorithm to all tracks associated
with the vertex, plus the corresponding associated missing transverse momentum, taken as the
negative vector sum of the pT of those jets.

The two leading jets are used to measure the dijet angular distributions in seven regions of
the dijet invariant mass Mjj. The Mjj regions, in units of TeV, are chosen to be 2.4–3.0, 3.0–
3.6, 3.6–4.2, 4.2–4.8, 4.8–5.4, 5.4–6.0, and >6.0. The highest Mjj range was chosen to maximize
the expected sensitivity to the BSM signals considered. The phase space for this analysis is
restricted by the requirements χdijet < 16 and |yboost| < 1.11, where yboost = (y1 + y2)/2. This
selection and the Mjj range definition restrict the absolute rapidities |y1| and |y2| of the two
highest pT jets to be less than 2.5 and their pT to be larger than 200 GeV. The trigger efficiency
for events that satisfy the subsequent selection criteria exceeds 99% in all the Mjj ranges for
the analysis. The observed numbers of events in the analysis phase space for each of the mass
ranges are 353025, 71832, 16712, 4287, 1153, 330, and 95. The highest value of Mjj observed
among these events is 8.2 TeV.

In this paper, we present dijet angular distributions normalized to unity in each Mjj range,
denoted (1/σdijet)(dσdijet/dχdijet), where σdijet is the cross section in the analysis phase space.

Fluctuations in jet response from the resolution in jet pT of the detector can cause lower energy
jets to be misidentified as leading jets and also result in bin-to-bin event migrations in both
χdijet and dijet mass. The corrections for these effects are obtained from a two-dimensional
response matrix that maps the generator-level Mjj and χdijet distributions onto the measured
values. This matrix is obtained using particle-level jets from the PYTHIA MC event generator
that are smeared in pT using a double-sided Crystal Ball parameterization [51] of the response.
This parameterization takes into account the full jet energy resolution, including non-Gaussian
tails, and is derived from the full detector simulation. The width of the Gaussian core in the
parameterization is adjusted to account for the difference in resolution observed between data
and simulation [47]. The reason for deriving the response matrix from smeared generator-level
MC rather than from full detector simulation is that significantly smaller statistical uncertain-
ties can be achieved using the faster code. The measured distributions are unfolded to particle
level by inverting the response matrix without regularization, using the ROOUNFOLD pack-
age [52]. The unfolding changes the shape of the χdijet distributions by <1% and <8% across
χdijet in the lowest and highest Mjj ranges, respectively. The fractions of event migrations be-
tween mass bins are 15–20% in the lowest Mjj range and 25–40% in the highest Mjj range,
depending on χdijet values. The unfolding procedure was tested by splitting the simulation
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data into independent training and testing samples. The training sample was used to derive a
response matrix and the smeared χdijet distributions from the test sample were unfolded using
this response matrix. No significant difference was observed between the generated and un-
folded χdijet distributions in the test sample. The effects of migrations between χdijet bins are
negligible. The unfolding procedure is based on matrix inversion, while the procedure used
in previous publications of dijet angular distributions [28, 29] was based on the D’Agostini it-
erative method [53]. We have compared these two methods by deriving limits from unfolded
data, and the limits vary by less than 5%.

4 Theoretical predictions
We compare the unfolded normalized dijet angular distributions with the predictions of per-
turbative QCD at NLO, available in NLOJET++ 4.1.3 [54] in the FASTNLO 2.1 framework [55].
EW corrections for dijet production [56] change the predicted normalized distributions by up
to 1% (5%) for the lowest χdijet bins in small (large) values of Mjj. The factorization (µf) and
renormalization (µr) scales are set to the average pT of the two jets, 〈pT〉 = (pT1 + pT2)/2, and
the PDFs are taken from the CT14 set [57]. The use of a more flexible statistical combination
of multiple PDF sets as in PDF4LHC15 100 [57–62] exhibited small differences as compared
to the CT14 PDF set. We evaluated the impact of nonperturbative effects from hadronization
and multiple parton interactions on the QCD predictions using PYTHIA with the CUETP8M1
tune [63] and HERWIG++ 2.7.1 [64] with tune EE5C [65]. The effects are found to be less than
1% and negligible for both MC generators.

The production and decay of the DM mediators in the simplified DM model are generated
at LO using MADDM version 2.0.6 [66, 67] at fixed gDM and mDM values, where gDM = 1.0
and mDM = 1 GeV. For these values of gDM and mDM, the differences between vector and axial-
vector mediators in the cross sections and in the acceptances are negligible in the analysis phase
space.

BSM physics signatures from CIs with flavor-diagonal color-singlet couplings among quarks
are described by the effective Lagrangian [7, 8]:

Lqq =
2π

Λ2

[
ηLL(qLγµqL)(qLγµqL) + ηRR(qRγµqR)(qRγµqR) + 2ηRL(qRγµqR)(qLγµqL)

]
,

where the subscripts L and R refer to the left and right chiral projections of the quark fields, re-
spectively, and ηLL, ηRR, and ηRL are taken to be 0, +1, or−1 for the different combinations that
correspond to different CI models. The following CI possibilities with color-singlet couplings
among quarks are investigated:

Model (ηLL, ηRR, ηRL)
Λ±LL (±1, 0, 0)
Λ±RR ( 0,±1, 0)
Λ±VV (±1,±1,±1)
Λ±AA (±1,±1,∓1)

Λ±
(V−A)

( 0, 0,±1)

The models with positive (negative) ηLL or ηRR lead to destructive (constructive) interference
with the QCD terms, and consequently a lower (higher) cross section, respectively. In all CI
models discussed in this paper, NLO QCD corrections are employed to calculate the cross sec-
tions. In proton-proton collisions, the Λ±LL and Λ±RR models result in identical lowest order
cross sections and NLO corrections, and consequently lead to the same sensitivity. For Λ±VV
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and Λ±AA, as well as for Λ±
(V−A)

, the CI predictions are also identical at lowest order, but exhibit
different NLO corrections and yield different sensitivities. The CIJET 1.0 program [68] is used
to calculate the CI terms, as well as the interference between the CI and QCD terms at NLO in
QCD.

For the ADD model, two parameterizations for virtual graviton exchange are considered: Giudice–
Rattazzi–Wells (GRW) [69] and Han–Lykken–Zhang (HLZ) [70]. In the GRW convention, the
sum over the Kaluza–Klein graviton excitations in the effective field theory is regulated by a
single cutoff parameter ΛT. In the HLZ convention, the effective theory is described in terms
of two parameters, the cutoff scale MS and the number of extra spatial dimensions nED. The
parameters MS and nED are directly related to ΛT [71]. We consider models with 2–6 EDs. The
case of nED = 1 is not considered since it would require an ED of the size of the radius of the
solar system; the gravitational potential at such distances would be noticeably modified, and
this case is therefore excluded by observation. The case of nED = 2 is special in the sense that
the relation between MS and ΛT also depends on the parton-parton CM energy

√
s. The ADD

predictions are calculated using PYTHIA.

Quantum black hole production is studied within the framework of the ADD model, with
nED = 6 (ADD6), and the Randall–Sundrum model (RS1) [72, 73] with a single, warped extra
dimension (nED = 1). In these models, the QBH production cross section depends on the mass
of the QBH, MPl, and the number of spatial dimensions. Since QBHs are produced with a mass
threshold close to MPl, we set the minimum QBH mass MQBH equal to MPl for simplicity. The
QBH 3.0 generator [74] is used for the predictions.

To take into account the NLO QCD and EW corrections to SM dijet production when probing
the ADD, QBH, and DM models, the cross section difference σQCD

NLO+EW corr − σQCD
LO is evaluated

for each Mjj and χdijet bin and added to the SM+BSM predictions. This procedure provides an
SM+BSM prediction where the QCD terms are corrected to NLO with EW corrections while
the BSM terms are calculated at LO. While the ADD BSM prediction from PYTHIA includes
the interference terms of graviton exchange with QCD (obtained by subtracting the predictions
σADD+QCD

LO − σQCD
LO ), the QBH and DM BSM predictions do not include such interference terms.

Exclusion limits on the BSM models studied in this paper are set based on the comparison of
data that have not been corrected for resolution effects with both SM+BSM and SM predictions
that have been folded to detector level. The comparison at detector level is done to eliminate
some systematic uncertainties that are introduced during the unfolding procedure and simpli-
fies the statistical evaluation. This procedure uses the same two-dimensional response matrix
whose inverse is used for unfolding the data. It has been verified that the χdijet distributions
for SM+BSM predictions folded with the response matrix derived from SM QCD multijet pre-
dictions smeared with the double-sided Crystal Ball parameterization of the jet pT resolution
agree with SM+BSM predictions smeared with this same parameterization. The folding proce-
dure is equivalent to running the full detector simulation on the particle-level predictions, with
the residual differences accounted for in the systematic uncertainties.

5 Systematic uncertainties
The normalized χdijet distributions are relatively insensitive to many potential systematic ef-
fects. To present the uncertainties for the normalized shapes, the quoted values are reported
for the lowest χdijet bins, where the uncertainties and potential contributions from BSM pro-
cesses are typically the largest. The main experimental uncertainty is from the jet energy scale
(JES) and the main theoretical uncertainty is from the choices of µr and µf scales.
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5.1 Experimental uncertainties

The overall JES uncertainty is less than 1%, and the variation of the JES as a function of pseudo-
rapidity is less than 1% per unit η [47, 75] in the phase space of the analysis. The JES uncertain-
ties related to each step in the derivation of the pT and η dependent JES corrections are taken
into account independently. In this way, the correlations of the JES uncertainty sources among
the Mjj ranges and χdijet bins are included. For the purpose of display in figures and tables,
the total JES uncertainty is obtained from the quadratic sum of these uncertainty sources and
is found to be 3.6% in the lowest Mjj range and 9.2% in the highest Mjj range.

The uncertainty from the jet pT resolution is evaluated by changing the width of the Gaussian
core of the Crystal Ball parameterization of the response by up to ±5% [47, 75], depending
upon the jet η, and comparing the resultant distributions before and after these changes. This
uncertainty is found to be less than 1% for all Mjj. The uncertainty from the modeling of the
tails of the jet pT resolution [76] is evaluated using a Gaussian function to parameterize the
response, and we assign an uncertainty equal to half of the difference between the distributions
determined from this Gaussian ansatz and the nominal correction. The size of this uncertainty
is less than 1.5% for all Mjj.

Another source of uncertainty arises from the use of a parametric model to simulate the jet
pT resolution of the detector. This uncertainty is estimated by comparing the smeared χdijet
distributions to the ones from a detailed simulation of the CMS detector using GEANT4 [77],
and is found to be 0.5% and 1% in the lowest and highest Mjj ranges, respectively.

In the unfolding procedure, there is an additional systematic uncertainty introduced due to
potential mismodeling of the dijet kinematic distributions in PYTHIA. This uncertainty is eval-
uated using MADGRAPH5 aMC@NLO 2.2.2 [78] predictions, as the kinematic distributions from
MADGRAPH5 aMC@NLO and PYTHIA are found to bracket the data. The inverted response ma-
trix from PYTHIA is applied to the smeared χdijet distributions from MADGRAPH5 aMC@NLO

and the results are compared to the corresponding generated χdijet distributions. The differ-
ences are observed to be less than 1.5% for all Mjj.

The effect from pileup is studied by comparing the χdijet distributions with various numbers of
pileup interactions in simulated events. The numbers are varied according to the uncertainty
of the total inelastic cross section of pp collisions [79]. The effect on the χdijet distributions is
observed to be negligible.

5.2 Theoretical uncertainties

The uncertainties due to the choices of µf and µr scales in the NLO QCD predictions are eval-
uated by following the proposal in Refs. [80, 81] and changing the default choice of scales in
the following 6 combinations: (µf/〈pT〉, µr/〈pT〉) = (1/2, 1/2), (1/2, 1), (1, 1/2), (2, 2), (2, 1),
and (1, 2). These changes modify the predictions of the normalized χdijet distributions by up to
8.5% and up to 19%, at small and large values of Mjj, respectively. The uncertainty in the NLO
QCD predictions due to the choice of PDFs is determined from the 28 eigenvectors of CT14
using the procedure described in Ref. [82], and is found to be less than 0.2% at low Mjj and less
than 0.6% at high Mjj. The uncertainty in the strong coupling constant has a negligible impact
on the normalized χdijet distribution.

Scale and PDF uncertainties in the CI predictions are obtained using the same procedure as
in the QCD predictions. In the ADD and QBH models, the scale and PDF uncertainties have
a negligible impact on the limits as the signals only appear in the highest mass bins, where
the statistical uncertainties dominate. The effect on the acceptance for the DM models due to
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the PDF uncertainty is evaluated using the 100 replica NNPDF3.0 PDF set [60] and found to
be non-negligible in the Mjj ranges with Mjj > MMed for DM mediators that have large mass
and coupling. For example, for an axial-vector mediator with MMed = 6 TeV and gq = 1.0,
which corresponds to a resonance with relative width of 50%, the uncertainty is 14% in the
Mjj >6.0 TeV bin.

Although the uncertainties are treated separately in the statistical analysis of the data, for dis-
play purposes in tables and figures we calculate the total experimental and theoretical un-
certainty as the quadratic sum of the contributions due to the JES, the jet pT resolution, the
modeling of both the detector response and the dijet kinematics, and the contributions from µf,
µr, and the PDFs. A summary of the leading experimental systematic uncertainties is provided
in Table 1. The theoretical uncertainties quoted in the table apply to the QCD prediction. As
shown in Table 1, systematic uncertainties dominate the total uncertainty in low Mjj regions,
while the statistical uncertainty dominates in high Mjj regions.

Table 1: Summary of the leading experimental and theoretical uncertainties in the normalized
χdijet distributions, in percent. While the statistical analysis represents each uncertainty through
a change in the χdijet distribution correlated among all χdijet bins, this table summarizes each
uncertainty by a representative value to show their relative contributions. For the lowest and
highest dijet mass bins, the relative shift is given for the lowest χdijet bin. In the highest dijet
mass bin, the dominant experimental contribution corresponds to the statistical uncertainty,
while the dominant theoretical contribution is from the uncertainty in scales.

Source of uncertainty 2.4 < Mjj < 3.0 TeV Mjj > 6.0 TeV

Statistical 0.7 27
JES 3.6 9.2
Jet pT resolution (core) 1.0 1.0
Jet pT resolution (tails) 1.0 1.5
Detector response model 0.5 1.0
Unfolding, model dependence 0.2 1.5

Total experimental 4.1 29

QCD NLO scale (6 changes in µr and µf) +8.5
−3.0

+19
−5.8

PDF (CT14 eigenvectors) 0.2 0.6

Total theoretical 8.5 19

6 Results
In Figs. 1 and 2 the measured normalized χdijet distributions for all mass bins unfolded to
particle level are compared to NLO predictions with EW corrections. No significant deviation
from the SM prediction is observed. The distributions are also compared to predictions for
QCD+CI with CI scales equal to 14 TeV, QCD+ADD with ΛT (GRW) = 10 TeV, QCD+QBH
with MQBH (ADD6) = 8 TeV, and QCD+DM with MMed = 2, 3 and 5 TeV and gq = 1.0. The
signal distributions are only shown for the Mjj ranges that contribute to the sensitivity for the
BSM searches.

The asymptotic approximation [83] of the CLs criterion [84, 85] is used to set exclusion lim-
its on the parameters for the BSM models [86]. The limits obtained using this approxima-
tion were tested against the CLs limits obtained using ensembles of pseudo experiments for
several of the models examined, and the differences were found to be negligible. The likeli-
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Figure 1: Normalized χdijet distributions in the three highest mass bins. Unfolded data are
compared to NLO predictions (black dotted line). The error bars represent statistical and ex-
perimental systematic uncertainties combined in quadrature. The ticks on the error bars corre-
spond to the experimental systematic uncertainties only. Theoretical uncertainties are indicated
as a gray band. Also shown are the predictions for various CI, ADD, QBH, and DM scenarios.
The lower panels show the ratio of the unfolded data distributions and NLO predictions.
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Figure 2: Normalized χdijet distributions in the four lower mass bins. Unfolded data are com-
pared to NLO predictions (black dotted line). The error bars represent statistical and exper-
imental systematic uncertainties combined in quadrature. The ticks on the error bars corre-
spond to the experimental systematic uncertainties only. Theoretical uncertainties are indicated
as a gray band. Also shown are the predictions for various CI, ADD, and DM scenarios. The
lower panels show the ratio of the unfolded data distributions and NLO predictions.
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hoods LQCD and LQCD+BSM are defined for the respective QCD-only and QCD+BSM hypothe-
ses as a product of Poisson likelihood functions for each bin in χdijet. The predictions for each
Mjj range are normalized to the number of observed events in that range. Systematic uncer-
tainties are treated as nuisance parameters in the likelihood model. Following Ref. [17], the
nuisance parameters are profiled with respect to the QCD-only and QCD+BSM models by
maximizing the corresponding likelihood functions. The p-values for the two hypotheses,
PQCD+BSM(q ≥ qobs) and PQCD(q ≤ qobs), are evaluated for the profile log-likelihood ratio
q = −2 ln(LQCD+BSM/LQCD). Limits on the QCD+BSM models are set based on the quantity
CLs = PQCD+BSM(q ≥ qobs)/(1− PQCD(q ≤ qobs)), which is required to be less than 0.05 for a
95% confidence level (CL) of exclusion. Because of the large number of events in the low-Mjj
range, which constrain the systematic uncertainties, we obtain 2–30% better observed limits on
the BSM scales and masses compared to the limits obtained using the method in the prede-
cessor of this search reported in Ref. [29], where the nuisance parameters were marginalized
rather than profiled.

In the limit calculations, not all Mjj ranges are included in the likelihoods; only those that im-
prove the expected limits by more than 1% are used. We use mass bins with Mjj > 3.6 TeV
for the CI models, Mjj > 4.2 TeV for the ADD models, and Mjj > 4.8 TeV for the QBH models.
For the DM mediators, we use mass bins that cover the Mjj range of 0.5MMed–1.2MMed. The
exclusion limits on the BSM models are determined using detector-level χdijet distributions and
theoretical predictions at detector level. By using the detector-level χdijet distributions, each
bin of the χdijet distributions can be modeled by a Poisson likelihood function, while at par-
ticle level, the unfolded data distributions have correlations among the dijet mass bins. As
a cross-check, the limits are also determined for the case where the unfolded χdijet distribu-
tions, approximated by Poisson likelihood functions, and particle-level theoretical predictions
are used in the limit extraction procedure. The resulting observed limits on the BSM scales
and masses are found to be more stringent than those determined at detector level by 1–10%,
depending on the model. The agreement of the data with QCD predictions is quantified by
calculating PQCD(q < qobs) for each mass bin separately. The largest excess is found in the first
data point of the >6.0 TeV mass bin, with a significance of 1.8 standard deviations. When com-
bining mass bins in the various QCD+BSM models under study, the largest significances are
found to be 2.7–2.8 standard deviations for the QCD+DM model with MMed = 4.5–6 TeV and
gq = 1.0.

Figure 3 shows the 95% CL upper limits on gq as a function of the mass of the vector or axial-
vector DM mediator with gDM = 1.0 and mDM = 1 GeV. The corresponding limits on the width
of the mediators are shown on the vertical axis on the right-hand side of Fig. 3. The degradation
of the limits below MMed = 2.5 TeV and above MMed = 4 TeV can be explained as follows.
For resonance masses below the lower Mjj boundary of the analysis at 2.4 TeV, the acceptance
increases rapidly as a function of resonance mass (e.g., from 1.4% at MMed = 2 TeV to 16% at
MMed = 2.5 TeV, for gq = 0.5), resulting in the improvement of the limit on gq as a function
of resonance mass. For large values of resonance mass and width (e.g., for MMed > 4 TeV and
gq > 0.5), the mediator is primarily produced off-shell with a mass less than the Mjj boundary
of the analysis at 2.4 TeV. The acceptance for high resonance masses thus decreases as a function
of resonance width (e.g., for MMed = 5 TeV, from 25% at gq = 0.5 to 8% at gq = 1.5), resulting
in the fast deterioration of the limit on gq at high resonance masses. The observed limit above
5 TeV is at Γ/MMed ≥ 1, thus in a region where the simplified model of a mediator particle is no
longer valid. For MMed between 2.0 and 4.6 TeV, this search excludes couplings 1.0 ≤ gq ≤ 1.4,
which are not accessible via dijet resonance searches.

The limits for MMed at arbitrary mDM and gDM can be calculated based on the fact that at fixed
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mediator production cross sections, changes in the width of the DM decay channel will lead to
changes in the width of the quark decay channel. For the models with gq = 1.0, gDM = 1.0,
and 2mDM < MMed, in which the total width of the mediator is dominated by the width of the
quark decay channel due to the large number of possible quark flavors and colors, the exclusion
range for MMed has little dependence on mDM. For the models with 2mDM ≥ MMed, the width
of the DM decay channel is assumed to be zero. The resulting exclusion regions for vector and
axial-vector mediators with gq = 1.0 and gDM = 1.0 in the mDM and MMed plane are shown in
Fig. 4.
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Figure 3: The 95% CL upper limits on the quark coupling gq, as a function of mass, for an axial-
vector or vector DM mediator with gDM = 1.0 and mDM = 1 GeV. The observed limits (solid),
expected limits (dashed) and the variation in the expected limit at the 1 and 2 standard devi-
ation levels (shaded bands) are shown. A dotted horizontal line shows the coupling strength
for a benchmark DM mediator with gq = 1.0. The corresponding limits on the width of the
mediators are shown on the vertical axis on the right-hand side of the figure.

The observed and expected exclusion limits at 95% CL on different CI, ED, QBH, and DM
models obtained in this analysis are listed in Table 2. The observed limits are less stringent than
the expected limits because of the upward fluctuation in the measured distributions compared
to the theoretical predictions. The limits on all models are more stringent than those obtained
from data collected by CMS in 2015 [29].

7 Summary
A search has been presented for physics beyond the standard model, based on normalized dijet
angular distributions obtained in 2016 from proton-proton collisions at the LHC. The data sam-
ple corresponds to an integrated luminosity of 35.9 fb−1. The angular distributions, measured
over a wide range of dijet invariant masses, are found to be in agreement with the predictions
of perturbative quantum chromodynamics. The results are used to set 95% confidence level
lower limits on the contact interaction scale for a variety of quark compositeness models, the
ultraviolet cutoff in models of extra spatial dimensions, the minimum mass of quantum black
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Figure 4: The 95% CL observed (red) and expected (blue) excluded regions in the plane of mDM
and MMed, for a vector mediator (upper) and an axial-vector mediator (lower) for a DM bench-
mark model with gDM = gq = 1.0. These are compared to constraints from the cosmological
relic density of DM (gray) determined from astrophysical measurements [87], using MADDM.
In the hatched area, DM is overabundant. The observed and expected lower bounds for MMed
overlap with each other.

holes, and the mass and couplings in dark matter models. For the first time, lower limits be-
tween 2.0 and 4.6 TeV are set on the mass of a dark matter mediator for (axial-)vector mediators,
for the universal quark coupling 1.0 ≤ gq ≤ 1.4. This region is not accessible through dijet res-
onance searches. The lower limits for the contact interaction scale Λ range from 9.2 to 22.4 TeV.
The lower limits on the ultraviolet cutoff in the Arkani–Hamed–Dimopoulos–Dvali model are
in the range of 8.5–12 TeV, and are the most stringent limits available. Quantum black hole
masses below 8.2 TeV are excluded in the model with six large extra spatial dimensions, and
below 5.9 TeV in the Randall–Sundrum model with a single, warped extra dimension. To facil-
itate comparisons with the predictions of other models, the angular distributions, corrected to
particle level, are published in HEPData.
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Table 2: Observed and expected exclusion limits at 95% CL for various CI, ADD, QBH, and
DM models. The 68% ranges of expectation for the expected limit are given as well. For the
DM vector mediator, couplings gDM = 1.0, gq ≥ 1 and a DM mass of 1 GeV are assumed and a
range of masses instead of a lower limit is quoted.

Model Observed lower limit ( TeV) Expected lower limit ( TeV)

CI Λ+
LL/RR 12.8 14.6± 0.8

Λ−LL/RR 17.5 23.5± 3.0
Λ+

VV 14.6 16.4± 0.8
Λ−VV 22.4 30.7± 3.7
Λ+

AA 14.7 16.5± 0.8
Λ−AA 22.3 30.6± 3.8
Λ+

(V−A)
9.2 11.5± 1.0

Λ−
(V−A)

9.3 11.8± 1.1

ADD ΛT (GRW) 10.1 11.4± 0.9
MS (HLZ) nED = 2 10.7 12.4± 1.0
MS (HLZ) nED = 3 12.0 13.6± 1.1
MS (HLZ) nED = 4 10.1 11.4± 0.9
MS (HLZ) nED = 5 9.1 10.3± 0.8
MS (HLZ) nED = 6 8.5 9.6± 0.8

QBH MQBH (ADD nED = 6) 8.2 8.5± 0.4
MQBH (RS nED = 1) 5.9 6.3± 0.7

DM Vector/Axial-vector MMed 2.0 – 4.6 2.0 – 5.5
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Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
J.-L. Agram13, J. Andrea, D. Bloch, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte13, X. Coubez,
F. Drouhin13, J.-C. Fontaine13, D. Gelé, U. Goerlach, M. Jansová, P. Juillot, A.-C. Le Bihan,
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