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Abstract: We calculate the cross section for production of a soft photon and two hard jets

in the forward rapidity region in proton-nucleus collisions at high energies. The calculation

is performed within the hybrid formalism. The hardness of the final particles is defined

with respect to the saturation scale of the nucleus. We consider both the correlation limit

of small momentum imbalance and the dilute target limit where the momentum imbalance

is of the order of the hardness of the jets. The results depend on the first two transverse-

momentum-dependent (TMD) gluon distributions of the nucleus.
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1 Introduction

Photon production in nuclear collisions is a very interesting process for several reasons.

First, it can be used as a tool to constrain nuclear parton density functions (nPDFs) [1] in

the standard collinear framework. Second, it could be sensitive to deviations from collinear

factorisation that are expected at high energies or small momentum fractions x, particularly

to non-linear effects proposed long ago [2] and subsequently developed in [3–7] leading to

the Color Glass Condensate framework (CGC). Finally, prompt thermal photons constitute

a probe of the characteristics and dynamics of the medium created in heavy-ion collisions

[8]. In this respect, accurate calculations of non-thermal prompt photon production are

most interesting as they constitute the background for the probe.

In the collinear framework, next-to-leading order (NLO) calculations have been avail-

able for several decades [9]. Calculations within the kT -factorization scheme are also avail-

able [10] although they are still restricted to a regime in which both participating hadrons

can be considered as dilute partonic objects. In the dense non-linear regime, only re-

cently an NLO calculation has appeared [11] that is adequate for central rapidities in

proton-nucleus (p-A) collisions. On the other hand, calculations for forward rapidities (in

the proton direction), a situation in which the so-called hybrid formalism [12] is suitable,

would be very useful. In this kinematic region, where the proton can be described using

collinear PDFs while the nucleus has to be treated as a dense object, the partonic structure
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of the nucleus can be probed at small x and experiments at the LHC, particularly LHCb

and future upgrades of ALICE, should be able to perform the relevant measurements.

Within the hybrid formalism, NLO corrections to light [13–15] and heavy [16] hadron

production have been computed, but only leading-order expressions are currently available

for photon production [17]. In this work we compute the NLO corrections which are

leading in a specific kinematic situation that allows for simple analytic expressions, shows

sensitivity to saturation effects and may be experimentally accessible. In particular we

calculate the cross section for the production of a soft photon and two hard jets in forward

p-A collisions, in the small-x limit. We concentrate on the process:

p(pp) +A(pA)→ γ(q1) + g(q2) + q(q3) +X , (1.1)

with the transverse momentum of the photon smaller than or of order, and the transverse

momenta of the jets much larger than, the saturation scale of the nucleus.1 A somewhat

related calculation of photon plus two jet production, but tailored to the central rapidity

region and thus dominated by different diagrams, can be found in [18].

The plan of the paper is as follows. In the next Section we present the calculation of

the cross section using the wave function approach to the CGC. This approach was used by

some of us previously to compute NLO corrections to particle production and to small-x

evolution [19]. Then, in Section 3 we consider the limit of almost back-to-back jets, and

in Section 4 the limit of a dilute target. Finally, in Section 5 we discuss our results. The

details of the calculation of the wave function are presented in Appendices A and B.

2 The wave function approach

The dominant contribution to photon production in p-A scattering comes from the photon

emission off the projectile quarks that propagate through the strong color field of the target.

At NLO, of course, there are additional contributions due to splitting of the projectile

gluon into a quark-antiquark pair. However this process gives negligible contribution in

the kinematics we are considering: emission of a soft photon and two hard jets, since a

splitting of a gluon into a qq̄ pair that subsequently emits a photon would mostly result in

a photon radiation which is collinear to either the q or the q̄.

We note that there are also non negligible contributions coming from collinear two-

parton densities in the incoming proton, i.e., one quark emitting a photon and going

through the target, while the other parton, quark or gluon, going through the target

independently and producing the second jet. Analysis of this type of processes is a recent

development within the the hybrid model approach [20]. In the present paper we will not

consider this kind of contributions, and this limitation of the calculation has to be kept in

mind.

Our primary interest in this paper will be therefore in the projectile quark state, which

of course has to be dressed by both gluon and photon radiation at NLO.

1The proton is moving in the ”+” direction and the nucleus in the ”–” direction. The four-momentum

of the incoming quark from the proton is denoted (p+, p−, p).
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2.1 Dressed quark state

The dressed quark state with +-momentum p+, vanishing transverse momenta, spin s and

color α can be written, in full momentum space, in terms of the bare states as2

∣∣(q)[p+, 0]αs
〉
D

= Aq
∣∣(q)[p+, 0]αs

〉
0

+ Aqγ ge
∑
s′,λ

∫
dk+

1

2π

d2k1

(2π)2
F

(1)
(qγ)

[
(γ)[k+

1 , k1]λ, (q)[p+ − k+
1 ,−k1]ss′

]
×
∣∣(q)

[
p+ − k+

1 ,−k1

]α
s′

; (γ)[k+
1 , k1]λ

〉
0

+ Aqg gs
∑
s′,η

∫
dk+

2

2π

d2k2

(2π)2
tcαβ F

(1)
(qg)

[
(g)[k+

2 , k2]η, (q)[p+ − k+
2 ,−k2]ss′

]
×
∣∣∣(q)

[
p+ − k+

2 ,−k2

]β
s′

; (g)
[
k+

2 , k2

]c
η

〉
0

+ Aqgγ gsge
∑
s′s′′

∑
λη

∫
dk+

1

2π

d2k1

(2π)2

dk+
2

2π

d2k2

(2π)2
tcαβ

×
{
F

(2)
(qγ−qg)

[
(γ)[k+

1 , k1]λ, (g)[k+
2 , k2]η, (q)[p+ − k+

1 − k+
2 ,−k1 − k2]ss′′

]
+ F

(2)
(qg−qγ)

[
(g)[k+

2 , k2]η, (γ)[k+
1 , k1]λ, (q)[p+ − k+

2 − k+
1 ,−k2 − k1]ss′′

]}
×
∣∣∣(q)

[
p+ − k+

1 − k+
2 ,−k1 − k2

]β
s′′
, (g)

[
k+

2 ,−k2

]c
η
, (γ)

[
k+

1 , k1

]λ〉
0
. (2.1)

Here, Aq, Aqγ , Aqg and Aqgγ are normalization constants whose explicit expression is not

important for our purposes, tc are the generators of SU(Nc) in the fundamental represen-

tation, and ge, gs are the QED and Yang-Mills coupling constants respectively.

ω⊥

[p+, 0]αs

x1⊥

[k+1 , k1⊥]
λ; ξ1 =

k+
1

p+

v⊥

[p+ − k+1 ,−k1⊥]
α
s′

x2⊥

[k+2 , k2⊥]
c
η ξ2 =

k+
2

p+

x3⊥

[p+ − k+1 − k+2 ,−k1⊥ − k2⊥]
β
s′′

Figure 2.1. The first component of the dressed quark wave function Eq. (2.1) where the photon

is emitted before the gluon.

2There is also an instantaneous quark contribution in the dressed quark state. However, in our kinematics

this contribution is suppressed by the large momenta of the jets. Therefore, we neglect it throughout the

paper.
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The functions F
(1)
(qg) and F

(1)
(qγ) are the well-known functions that define the momen-

tum structure of the quark-gluon and quark-photon splitting amplitudes. The functions

F
(2)
(qγ−qg) and F

(2)
(qg−qγ) define the momentum structure of two successive splittings. These

two functions correspond to different orderings of photon and gluon emissions (see Figs.

2.1 and 2.2 where the kinematics and the notation for momenta and positions are also

specified). The explicit expressions of these functions are well-known and can be obtained

from e.g. [17, 19]. In the most general case (i.e. with non vanishing transverse momentum

of the incoming quark p) the full momentum space expressions of these functions can be

written as

F
(1)
(qγ)

[
(γ)[k+

1 , k1]λ, (q)[p+ − k+
1 , p− k1]ss′

]
=

[ −1√
2ξ1p+

φλλ̄ss′(ξ1)

]
(ξ1p− k1)λ̄

(ξ1p− k1)2 , (2.2)

F
(2)
(qγ−qg)

[
(γ)[k+

1 , k1]λ, (g)[k+
2 , k2]η, (q)[p+ − k+

1 − k+
2 , p− k1 − k2]ss′′

]
(2.3)

=
∑
s′

[
1√

2ξ1p+
φλλ̄ss′(ξ1)

][
1√

2ξ2p+
φ̃ηη̄s′s′′(ξ1, ξ2)

]

×(ξ1p− k1)λ̄

(ξ1p− k1)2

[ξ2(p− k1)− ξ̄1k2]η̄

ξ2(ξ1p− k1)2 + ξ1(ξ2p− k2)2 − (ξ2k1 − ξ1k2)2
.

The expressions for F
(1)
(qg) and F

(2)
(qg−qγ) are obtained by exchanging ξ1 ↔ ξ2 and k1 ↔ k2

in the expressions above. Here, we have defined

φλλ̄ss′(ξ1) =
[
(2− ξ1)δλλ̄δss′ − iελλ̄σ3

ss′ξ1

]
, (2.4)

φ̃ηη̄s′s′′(ξ1, ξ2) =
ξ1

ξ̄1

[
(2− 2ξ1 − ξ2)δηη̄δs′s′′ − iεηη̄σ3

s′s′′ξ2

]
. (2.5)

Also, we have defined the +-momentum ratios as k+
1 = ξ1p

+ and k+
2 = ξ2p

+, ξ̄1 = 1− ξ1,

ξ̄2 = 1− ξ2. The next step is to Fourier transform the dressed quark state and write it in

the mixed +-momentum-transverse position space. Here, we only present the final result

but the details of the calculation can be found in Appendix A.1. The dressed quark state

in the mixed space reads∣∣(q)[p+, 0]αs
〉
D

=

∫
ω

∣∣(q)[p+, ω]αs
〉

0
(2.6)

+ ge
∑
s′λ

∫
dk+

1

2π

∫
ω,v,x1

[
(−i)√
2ξ1p+

φλλ̄ss′(ξ1)

]
Aλ̄(v − x1) δ(2)

[
ω − (ξ̄1v + ξ1x1)

]
×
∣∣(q)

[
p+ − k+

1 , v
]α
s′

; (γ)[k+
1 , x1]λ

〉
0

+ gs
∑
s′η

∫
dk+

2

2π

∫
ω,v,x2

tcαβ

[
(−i)√
2ξ2p+

φηη̄ss′(ξ2)

]
Āη̄(v − x2) δ(2)

[
ω − (ξ̄2v + ξ2x2)

]
×
∣∣∣(q)

[
p+ − k+

2 , v
]β
s′

; (g)
[
k+

2 , x2

]c
η

〉
0
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+ gsge
∑
s′s′′

∑
λη

∫
dk+

1

2π

dk+
2

2π
tcαβ

∫
ω, v, x1, x2, x3

×
{
δ(2)

[
v −

{(
1− ξ2

ξ̄1

)
x3 +

ξ2

ξ̄1
x2

}]
δ(2)

[
ω −

(
ξ1x1 + ξ̄1v

)]
×
[

(−i)√
2ξ1p+

φλλ̄ss′(ξ1)

][
(−i)√
2ξ2p+

φηη̄s′s′′

(
ξ2

ξ̄1

)]
Aη̄(x3 − x2)Āλ̄ξ2/ξ̄1(v − x1)

+ δ(2)

[
v −

{(
1− ξ1

ξ̄2

)
x3 +

ξ1

ξ̄2
x1

}]
δ(2)

[
ω −

(
ξ2x2 + ξ̄2v

)]
×
[

(−i)√
2ξ2p+

φηη̄ss′(ξ2)

][
(−i)√
2ξ1p+

φλλ̄s′s′′

(
ξ1

ξ̄2

)]
Aλ̄(x3 − x1)Āη̄

ξ1/ξ̄2
(v − x2)

}
×
∣∣∣(q)

[
p+ − k+

1 − k+
2 , x3

]β
s′′

; (g)
[
k+

2 , x2

]c
η

; (γ)
[
k+

1 , x1

]λ〉
0
.

Hereafter, integrals in transverse coordinate space are denoted as
∫
ω ≡

∫
d2ω and we have

ω⊥

[p+, 0]αs

x2⊥

[k+2 , k2⊥]
c
η ξ2 =

k+
2

p+

v⊥

[p+ − k+2 ,−k2⊥]
α
s′

x1⊥

[k+1 , k1⊥]
c
η ξ1 =

k+
1

p+

x3⊥

[p+ − k+2 − k+1 ,−k2⊥ − k1⊥]
β
s′′

Figure 2.2. The second component of the dressed quark wave function Eq. (2.1) where the gluon

is emitted before the photon.

introduced Aλ̄(v − x1) as the electro-magnetic Weizś’acker-Williams field in the quark-

photon splitting function which is defined as

Aλ̄(v − x1) = − 1

2π

(v − x1)λ̄

(v − x1)2
. (2.7)

We have also introduced several variations of the Weizś’acker-Williams field (denoted by

Ā and Ā in eq.(2.6), which take into account the Ioffe time constraint on the lifetime of

fast fluctuations in the quark wave function [21, 22]. In the context of a similar hybrid

calculation the Ioffe time constraint was first introduced in [15]. The explicit expressions for

various Ioffe time restricted Weizś’acker-Williams fields can be found in Appendix A. For

simplicity we will neglect this kinematic constraint in explicit calculations in the following.

If the Ioffe time restriction is neglected, then

Āλ̄ξ2/ξ̄1(v − x1)→ − 1

2π

ξ1(v − x1)λ̄

ξ1(v − x1)2 + ξ2
ξ̄1

(
1− ξ2

ξ̄1

)
(x3 − x2)2

≡ Aλ̄ξ2/ξ̄1(v − x1). (2.8)
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The initial dressed quark state (with vanishing transverse momentum) eikonally scat-

ters through the target. Each bare state component of the dressed quark state given in

Eq.(2.6) rotates in the color space by picking up a fundamental or an adjoint S-matrix

at the transverse position of the quark or the gluon that are defined in terms of the color

fields of the target as

S(z) = P eig
∫
dz+τaA−a (z+,z), (2.9)

with τa being the generators of SU(Nc) in the corresponding representation. The details of

the calculation of the outgoing wave function in terms of dressed components are presented

in Appendix A.2.

The final result can be written as∣∣(q)[p+, 0]αs
〉

out
=

∫
ω
SαβF (ω)

∣∣∣(q)[p+, ω]βs

〉
D

(2.10)

+ge
∑
s′λ

∫
dk+

1

2π

∫
ωvx1

[
SαβF (v)− SαβF (ω)

] [ (−i)√
2ξ1p+

φλλ̄ss′(ξ1)

]
Aλ̄(v − x1)

×δ(2)
[
ω − (ξ̄1v + ξ1x1)

] ∣∣∣(q)[p+ − k+
1 , v]βs ; (γ)[k+

1 , x1]λ
〉
D

+gs
∑
s′η

∫
dk+

2

2π

∫
ωvx2

[
tcαβS

βσ
F (v)ScdA (x2)− SαβF (ω)tdβσ

] [ (−i)√
2ξ2p+

φηη̄ss′(ξ2)

]
Āη̄ξ2(v − x2)

×δ(2)
[
ω − (ξ̄2v + ξ2x2)

] ∣∣(q)[p+ − k+
2 , v]σs′ ; (g)[k+

2 , x2]cη
〉
D

+gsge
∑
s′s′′

∑
λη

∫
dk+

1

2π

dk+
2

2π

∫
wvx1x2x3

δ(2)
[
ω − (ξ1x1 + ξ̄1v)

]
×δ(2)

[
v −

{(
1− ξ2

ξ̄1

)
x3 +

ξ2

ξ̄1
x2

}][
(−i)√
2ξ1p+

φλλ̄ss′(ξ1)

][
(−i)√
2ξ2p+

φηη̄s′s′′

(
ξ2

ξ̄1

)]
×
{[

tcαβS
βσ
F (x3)ScdA (x2)− SαβF (ω)tdβσ

]
Aη̄(x3 − x2)Āλ̄ξ2/ξ̄1(v − x1)

−
[
SαβF (v)− SαβF (ω)

]
tdβσ Ā

η̄

ξ2/ξ̄1
(x3 − x2)Aλ̄(v − x1)

}
×
∣∣∣(q)[p+ − k+

1 − k+
2 , x3]σs′′ , (g)[k+

2 , x2]dη, (γ)[k+
1 , x1]λ

〉
D

+gsge
∑
s′s′′

∑
λη

∫
dk+

1

2π

dk+
2

2π

∫
wvx1x2x3

δ(2)
[
ω − (ξ2x2 + ξ̄2v)

]
×δ(2)

[
v −

{(
1− ξ1

ξ̄2

)
x3 +

ξ1

ξ̄2
x1

}][
(−i)√
2ξ2p+

φηη̄ss′(ξ2)

][
(−i)√
2ξ1p+

φλλ̄s′s′′

(
ξ1

ξ̄2

)]
Aλ̄(x3 − x1)

×
{[

tcαβS
βσ
F (x3)ScdA (x2)− SαβF (ω)tdβσ

]
Āη̄
ξ1/ξ̄2

(v − x2)

−
[
tcαβS

βσ
F (v)ScdA (x2)− SαβF (ω)tdβσ

]
Āη̄
ξ1/ξ̄2

(v − x2)

}
×
∣∣∣(q)[p+ − k+

1 − k+
2 , x3]σs′′ , (g)[k+

2 , x2]dη, (γ)[k+
1 , x1]λ

〉
D
.

Let us make some comments at this point. First, since we are interested in production

of a photon and two jets, only the dressed quark-photon-gluon component of the outgoing
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wave function is relevant. Thus, for our purposes, we can neglect the dressed quark, dressed

quark-photon and dressed quark-gluon components of the outgoing wave function.

Second, recall that we are interested in a very specific kinematics. We are considering

the production of a soft photon with transverse momentum smaller than Qs and two hard

jets with transverse momenta larger than Qs. In this kinematics, the main production

mechanism of the soft photon is collinear radiation from the incoming quark with vanishing

transverse momenta. The final hard momenta of the produced jets can arise from two

different sources. The quark can split into a quark-gluon pair with small relative transverse

momenta in the projectile wave function. In this case, the large transverse momentum of

the outgoing jets comes entirely from large momentum exchange between the target and

each of the propagating partons. In the second mechanism, the incoming quark splits into

a quark-gluon pair with large relative transverse momenta already in the projectile wave

function. In this case the leading contribution stems from small transverse momentum

exchange during the interaction with the target. Such process leads to almost back-to-

back (in the transverse plane) jets - the situation that we analyze in Section 3. It has

been shown in [13] that the second mechanism is sensitive to the saturation scale whereas

the first one is not and provides a negligible contribution to the cross section. The same

mechanism is also the dominant one in the situation of large momentum imbalance in the

dilute target limit, as in this case only one of the partons needs to scatter in order to

produce the requisite momentum imbalance. We consider this situation in Section 4 in the

limit of a dilute target.

Consequently, here we will concentrate on the contributions to the cross section which

originate from hard quark-gluon splitting in the projectile wave function. Since the pro-

duced soft photon should be collinear to the original incoming quark, the photon must be

emitted before the hard splitting (see Fig. 2.1). This allows us to neglect the contribution

to the outgoing wave function when the photon is emitted after the hard splitting.

Finally, we would like to comment about the Ioffe time restriction. As it is discussed in

detail in [15], it is crucial in any NLO calculation since it directly affects the factorization

scheme when one wants to account for evolution. We have derived the outgoing wave

function taking into account the Ioffe time restriction for the sake of the completeness, and

also with the idea that it can be used without further work for the calculation of other

processes such as NLO photon production. However, in the explicit calculations of the

cross section in this paper we will not impose the Ioffe time restriction on the phase space

integrals in the wave function.

All in all, we can write the relevant part of the outgoing wave function (denoting it

with the overline) as

|(q)[p+, 0]αs 〉out = gsge
∑
s′s′′

∑
λη

∫
dk+

1

2π

dk+
2

2π

∫
ω,v,x1,x2,x3

δ2
[
ω − (ξ̄1v + ξ1x1)

]
×δ(2)

[
v − (ξ̄2x3 + ξ2x2)

] [ (−i)√
2ξ1p+

φλλ̄ss′(ξ1)

][
(−i)√
2ξ̄1ξ2p+

φηη̄s′s′′(ξ2)

]
Aη̄(x3 − x2)
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×
{[

tcαβS
βσ
F (x3)ScdA (x2)− SαβF (ω)tdβσ

]
Aλ̄ξ2(v − x1)−

[
SαβF (v)− SαβF (ω)

]
tdβσA

λ̄(v − x1)

}
×
∣∣∣(q)

[
p+ − k+

1 − k+
2 , x3⊥

]σ
s′′

; (g)
[
k+

2 , x2

]d
η

; (γ)
[
k+

1 , x1

]λ〉
D
, (2.11)

where Aη̄(x3 − x2) and Aλ̄(v − x1) are the ordinary Weizś’acker-Williams fields in the

quark-gluon and quark-photon splittings respectively. On the other hand, Aλ̄
ξ2/ξ̄1

(v − x1)

is the field that appears in two successive emissions of the photon and gluon, defined in

Eq.(2.8).

When writing the relevant part of the outgoing wave function, Eq. (2.11), we rescaled

the +-momentum ratio; ξ2
ξ̄1
→ ξ2, for convenience. This corresponds to defining the +-

momentum ratio of the produced gluon with respect to the intermediate quark, rather

than with respect to the initial quark. After this rescaling the +-momentum fractions

carried by the photon and the gluon are defined as

k+
1

p+
= ξ1 ,

k+
2

p+ − k+
1

= ξ2 . (2.12)

2.2 Production cross section

The production cross section can be written as a convolution of the quark distribution

function inside the proton, f q
µ2(xp), and the partonic level cross section as

dσpA→qγg+X

d3q
1
d3q

2
d3q

3

=

∫
dxp f

q
µ2(xp)

dσqA→qγg+X

d3q
1
d3q

2
d3q

3

, (2.13)

where µ2 is the factorization scale and xp is the +-momentum fraction carried by the

incoming quark. Here, we introduced a short hand notation for the three-momenta, q
i
≡

(q+
i , qi). The momenta q

1
, q

2
and q

3
are the three-momenta of the produced photon, gluon

and quark respectively. On partonic level, the production cross section of a photon and two

jets is formally defined as the expectation value of the ”number operator” in the outgoing

wave function derived in the previous section:

(2π)9 dσ
qA→qγg+X

d3q
1
d3q

2
d3q

3

(2π)δ(p+ − q+
1 − q+

2 − q+
3 ) =

=
1

2Nc

∑
s,α

out〈(q)[p+, 0]αs |O(q
1
, q

2
, q

3
)|(q)[p+, 0]αs 〉out , (2.14)

where the normalization factor 1/2Nc comes from averaging over the color and spin indexes

in the incoming wave function in the amplitude and complex conjugate amplitude. The

number operator is defined as

O(q
1
, q

2
, q

3
) = γ†λ(q

1
)γλ(q

1
)a†bi (q

2
)abi(q2

)d†βt (q
3
)dβt (q

3
) . (2.15)

Here, γ†λ(q
1
) is the creation operator of a dressed photon with three-momentum q

1
and

polarization λ, a†bi (q
2
) is the creation operator of a dressed gluon with three-momentum
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q
2
, color b and polarization index i, and d†βt (q

3
) is the creation operator for a quark with

three-momentum q
3
, color β and spin t. When written in the mixed space, the expectation

value of the number operator reads〈
O(q

1
, q

2
, q

3
)
〉

out
=

∫
y1z1,y2z2,y3z3

eiq1·(y1−z1)+iq2·(y2−z2)+iq3·(y3−z3)

× out〈(q)[p+, 0]αs |γ†λ(q+
1 , y1)γλ(q+

1 , z1)a†bi (q+
2 , y2) (2.16)

× abi(q
+
2 , z2)d†βt (q+

3 , y3)dβt (q+
3 , z3)|(q)[p+, 0]αs 〉out .

The action of the creation and annihilation operators on the dressed one particle states

and on the Fock vacuum is defined in the usual way. For example, for gluons we have

abi(q
+
2 , z2)

∣∣∣(g)[k+
2 , x2]dη

〉
D

= 2π δbd δηi δ(k
+
2 − q+

2 ) δ(2)(x2 − z2)|0〉, (2.17)

a†bi (q+
2 , y2)|0〉 =

∣∣∣(g)[q+
2 , y2]bi

〉
D
. (2.18)

Analogous equations hold for the action of quark and photon creation and annihilation

operators. Using these equations, one can calculate the partonic level production cross

section. After some algebra the result reads

(2π)9 dσ
qA→qγg+X

d3q
1
d3q

2
d3q

3

=
1

2Nc
g2
sg

2
e

∑
s′s′′

∑
λη

(2π) δ(p+ − q+
1 − q+

2 − q+
3 ) (2.19)

×
∫
y1z1,y2z2,y3z3,ωv,ω′v′

eiq1·(y1−z1)+iq2·(y2−z2)+iq3·(y3−z3) δ(2)[ω − (ξ̄1v + ξ1z1)]

× δ(2)[ω′ − (ξ̄1v
′ + ξ1y1)] δ(2)[v − (ξ̄2z3 + ξ2z2)] δ(2)[v′ − (ξ̄2y3 + ξ2y2)]

×Aη̄(z3 − z2)Aη̄
′
(y3 − y2)

{
φλλ̄ss′(ξ1)√

2ξ1p+

φ∗λλ̄
′

ss̄′ (ξ1)√
2ξ1p+

}{
φηη̄s′s′′(ξ2)√

2ξ̄1ξ2p+

φ∗ηη̄
′

s̄′s′′ (ξ2)√
2ξ̄1ξ2p+

}

×
〈{[

S†c̄
′d

A (y2)S†F (y3)tc̄
′ − tdS†F (ω′)

]
σα
Aλ̄′ξ2(v′ − y1)−

[
td(S†F (v′)− S†F (ω′))

]
σα
Aλ̄
′
(v′ − y1)

}

×
{[

tcSF (z3)ScdA (z2)− SF (ω)td
]
ασ
Aλ̄ξ2(v − z1)−

[
(SF (v)− SF (ω)) td

]
ασ
Aλ̄(v − z1)

}〉
T

,

where 〈· · · 〉T denotes averaging over the ensemble of the target fields that has to be per-

formed to obtain the final result (sometimes this average will not be indicated in the

intermediate expressions and will be reinstated in the final formulae). Using the explicit

expression for the splitting amplitudes that was defined in Eq. (2.4), the square of the

splitting amplitudes can be calculated in a straightforward manner:

φλλ̄ss′(ξ1)φ∗λλ̄
′

ss̄′ (ξ1) = δs′s̄′δ
λ̄λ̄′2(1 + ξ̄2

1), (2.20)

φηη̄s′s′′(ξ2)φ∗ηη̄
′

s̄′s′′ (ξ2) = δs′s̄′δ
η̄η̄′2(1 + ξ̄2

2). (2.21)

The parton level production cross section then reads

(2π)9 dσ
qA→qγg+X

d3q
1
d3q

2
d3q

3

=
1

Nc
g2
sg

2
e (2π)δ(p+ − q+

1 − q+
2 − q+

3 )
1

ξ1p+

1

ξ̄1ξ2p+
(2.22)
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×
∫
y1z1,y2z2,y3z3,ωv,ω′v′

eiq1·(y1−z1)+iq2·(y2−z2)+iq3·(y3−z3)

×δ(2)[ω − (ξ̄1v + ξ1z1)] δ(2)[ω′ − (ξ̄1v
′ + ξ1y1)] δ(2)[v − (ξ̄2z3 + ξ2z2)]

× δ(2)[v′ − (ξ̄2y3 + ξ2y2)]Aη(z3 − z2)Aη(y3 − y2) (1 + ξ̄2
1) (1 + ξ̄2

2)

×
{
Aλξ2(v′ − y1)Aλξ2(v − z1)

×tr
[(
S†c̄

′d
A (y2)S†F (y3)tc̄

′ − tdS†F (ω′)
)(
tcSF (z3)ScdA (z2)− SF (ω)td

)]
+Aλ(v′ − y1)Aλ(v − z1)tr

[
td
(
S†F (v′)− S†F (ω′)

)(
SF (v)− SF (ω)

)
td
]

−Aλξ2(v′ − y1)Aλ(v − z1)tr
[(
S†c̄

′d
A (y2)S†F (y3)tc̄

′ − tdS†F (ω′)
)(
SF (v)− SF (ω)

)
td
]

−Aλ(v′ − y1)Aλξ2(v − z1)tr
[
td
(
S†F (v′)− S†F (ω′)

)(
tcSF (z3)ScdA (z2)− SF (ω)td

)]}
.

Eq. (2.22) can be further simplified. Apart from performing the straightforward δ-function

integrals, one can also simplify the Wilson line structure by using the Fierz identity

taαβt
a
σλ =

1

2

[
δαλδβσ −

1

Nc
δαβδσλ

]
(2.23)

and the identity that relates adjoint and fundamental representations of a unitary matrix,

SabA (x) = 2tr
[
taSF (x)tbS†F (x)

]
. (2.24)

After some color algebra, the cross section reads

(2π)9 dσ
qA→qγg+X

d3q
1
d3q

2
d3q

3

=
1

Nc
g2
sg

2
e (2π)δ(p+ − q+

1 − q+
2 − q+

3 )
1

ξ1p+

1

ξ̄1ξ2p+
(2.25)

×
∫
y1z1,y2z2,y3z3,ωv,ω′v′

eiq1·(y1−z1)+iq2·(y2−z2)+iq3·(y3−z3)

×δ(2)[ω − (ξ̄1v + ξ1z1)] δ(2)[ω′ − (ξ̄1v
′ + ξ1y1)] δ(2)[v − (ξ̄2z3 + ξ2z2)]

× δ(2)[v′ − (ξ̄2y3 + ξ2y2)]Aη(z3 − z2)Aη(y3 − y2) (1 + ξ̄2
1) (1 + ξ̄2

2)

×
{
Aλξ2(v′ − y1)Aλξ2(v − z1)

[
N2
c

2

(
s(z2, y2)Q(y2, z2, z3, y3) + s(ω, ω′)

−s(ω, y2)s(y2, y3)− s(z2, ω
′)s(z3, z2)

)
+

1

2

(
s(z3, ω

′) + s(ω, y3)− s(z3, y3)− s(ω, ω′)
)]

+Aλ(v′ − y1)Aλ(v − z1)

[
N2
c − 1

2

(
s(v, v′) + s(ω, ω′)− s(v, ω′)− s(ω, v′)

)]
−Aλξ2(v′ − y1)Aλ(v − z1)

[
N2
c

2

(
s(y2, y3)

[
s(v, y2)− s(ω, y2)

]
− s(v, ω′) + s(ω, ω′)

)
+

1

2

(
s(ω, y3) + s(v, ω′)− s(v, y3)− s(ω, ω′)

)]
−Aλ(v′ − y1)Aλξ2(v − z1)

[
N2
c

2

(
s(z3, z2)

[
s(z2, v

′)− s(z2, ω
′)
]
− s(ω, v′) + s(ω, ω′)

)
+

1

2

(
s(z3, ω

′) + s(ω, v′)− s(z3, v
′)− s(ω, ω′)

)]}
,
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where we have defined the fundamental quadrupole and dipole operators as

Q(x, y, u, v) =
1

Nc
tr
[
SF (x)S†F (y)SF (u)S†F (v)

]
, s(x, y) =

1

Nc
tr
[
SF (x)S†F (y)

]
. (2.26)

The operators are defined such that Q = 1 and s = 1 for vanishing background field. In

this limit the total cross section vanishes as it should.

The integrations over ω, v, ω̄ and v̄ can be trivially performed, but we choose to leave

the expression in the above form as it is more compact. To obtain the p-A cross section one

should convolute the partonic level result, Eq. (2.25), with the quark distribution function

inside the proton as mentioned earlier (see Eq. (2.13)).

3 The back-to-back correlation limit

For production of jets with transverse momenta |q2| and |q3|much larger than the saturation

momentum of the target, |q2|, |q3| � Qs, our expressions can be simplified further. As

discussed earlier, the origin of the hard momenta of the produced jets is the large relative

transverse momenta of the split quark-gluon pair in the wave function. When the transverse

momentum transfer between the target and the quark-gluon pair during the interaction is

small, the final jets will propagate almost back-to-back in the transverse plane. The small

transverse momentum imbalance of the jets, |q2 + q3|, is then sensitive to the transverse

momenta of the gluons in the target which are on the order of the saturation scale, i.e.,

|q2 + q3| ∼ Qs. This corresponds to a large relative momentum of the produced jets,

|q3 − q2| � Qs. Therefore, we are interested in the kinematics: |q2|, |q3|, |q2 − q3| � |q1|,
|q2 + q3| ∼ Qs. In this situation the transverse size of the produced quark-gluon pair in

the coordinate space is small. This allows us to utilize a small dipole approximation and

expand our final result in powers of the dipole sizes.

We start with the production cross section, Eq. (2.25), derived in the previous section

and perform the following change of variables:

r = z3 − z2 , b =
1

2
(z2 + z3) , (3.1)

r̄ = y3 − y2 , b̄ =
1

2
(y2 + y3) . (3.2)

Here, r and r̄ correspond to the transverse sizes of the produced quark-gluon pair in the

amplitude and complex conjugate amplitude respectively. It is also convenient to define

the relative transverse position of the produced soft photon by shifting the variables y1 and

z1 in the following way:

γ = z1 − b− (1− 2ξ2)
r

2
, (3.3)

γ̄ = y1 − b̄− (1− 2ξ2)
r̄

2
. (3.4)

After performing these changes of variables, the parton level production cross section reads

(2π)9 dσ
qA→qγg+X

d3q
1
d3q

2
d3q

3

=
1

Nc
g2
sg

2
e (2π) δ(p+ − q+

1 − q+
2 − q+

3 )
1

ξ1p+

1

ξ̄1ξ2p+
(3.5)
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×
∫
γγ̄bb̄rr̄ωω′vv′

exp

{
iq1 · (γ̄ − γ) + i(q1 + q2 + q3) · (b̄− b) +

i

2
[(1− 2ξ2)q1 − q2 + q3] · (r̄ − r)

}
×δ(2)

[
ω −

(
b+ ξ1γ + (1− 2ξ2)

r

2

)]
δ(2)

[
ω′ −

(
b̄+ ξ1γ̄ + (1− 2ξ2)

r̄

2

)]
×δ(2)

[
v −

(
b+ (1− 2ξ2)

r

2

)]
δ(2)

[
v′ −

(
b̄+ (1− 2ξ2)

r̄

2

)]
(1 + ξ̄2

1)(1 + ξ̄2
2)Aη(r)Aη(r̄)

×
{
Aλξ2(−γ̄)Aλξ2(−γ)

[
N2
c

2

(
s
(
b− r

2
, b̄− r̄

2

)
Q
(
b̄− r̄

2
, b− r

2
, b+

r

2
, b̄+

r̄

2

)
+ s(ω, ω′)

−s
(
b− r

2
, ω′
)
s
(
b+

r

2
, b− r

2

)
− s
(
ω, b̄− r̄

2

)
s
(
b̄− r̄

2
, b̄+

r̄

2

))
+

1

2

(
s
(
b+

r

2
, ω′
)

+ s
(
ω, b̄+

r̄

2

)
− s
(
b+

r

2
, b̄+

r̄

2

)
− s(ω, ω′)

)]
+Aλ(−γ̄)Aλ(−γ)

[
N2
c − 1

2

(
s(v, v′) + s(ω, ω′)− s(v, ω′)− s(ω, v′)

)]
−Aλξ2(−γ̄)Aλ(−γ)

[
N2
c

2

(
s
(
b̄− r̄

2
, b̄+

r̄

2

)[
s
(
v, b̄− r̄

2

)
− s
(
ω, b̄− r̄

2

)]
− s(v, ω′) + s(ω, ω′)

)
+

1

2

(
s
(
ω, b̄+

r̄

2

)
+ s(v, ω′)− s

(
v, b̄+

r̄

2

)
− s(ω, ω′)

)]
−Aλ(−γ̄)Aλξ2(−γ)

[
N2
c

2

(
s
(
b+

r

2
, b− r

2

)[
s
(
b− r

2
, v′
)
− s
(
b− r

2
, ω′
)]
− s(ω, v′) + s(ω, ω′)

)
+

1

2

(
s
(
b+

r

2
, ω′
)

+ s(ω, v′)− s
(
b+

r

2
, v′
)
− s(ω, ω′)

)]}
.

In this expression the conjugate momentum to γ̄ − γ is q1, the conjugate momentum to

b̄− b is q1 + q2 + q3 and the conjugate momentum to r̄− r is [(1−2ξ2)q1− q2 + q3]/2. In our

kinematics |q1 + q2 + q3| ≈ |q2 + q3| and |(1− 2ξ2)q1− q2 + q3| ≈ |q3− q2|. Therefore, in the

back-to-back limit |r̄|, |r| � |γ̄|, |γ| and |r̄|, |r| � |b̄|, |b|. Now, we can perform the small

dipole approximation which amounts to Taylor expanding the dipole and the quadrupole

operators as well as Aλξ2(−γ̄) and Aλξ2(−γ) in powers of r and r̄. Here, we only present the

final result for this expansion with the details given in Appendix B.

The first non-vanishing term in the expansion is O(rr̄) and the production cross section

can be written as

(2π)9 dσ
qA→qγg+X

d3q
1
d3q

2
d3q

3

=
1

Nc
g2
sg

2
e (2π)δ(p+ − q+

1 − q+
2 − q+

3 )
1

ξ1p+

1

ξ̄1ξ2p+
(1 + ξ̄2

1) (1 + ξ̄2
2)

×
∫
rr̄bb̄γγ̄

eiq1·(γ̄−γ)+i(q1+q2+q3)·(b̄−b)+ i
2

[(1−2ξ2)q1−q2+q3]·(r̄−r)Aη(r)Aη(r̄)Aλ(γ)Aλ(γ̄)

× N
2
c − 1

2
rir̄j

{[
ξ2

2 −
(1− 2ξ2)

N2
c − 1

]〈
1

Nc
tr
(
∂iSF (b)∂jS†F (b̄)

)〉
T

− N2
c

N2
c − 1

〈
1

Nc
tr
(
∂iSF (b)S†F (b̄)∂jSF (b̄)S†F (b)

)
s(b, b̄)

〉
T

}
, (3.6)

where we have reintroduced the average over the target color field configuration that has

to be performed to obtain the final result.
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Our next order of business is performing the integrations over r, r̄, γ and γ̄. Let us first

consider the integrations over r and r̄ which are factorized from the rest of the expression.

After defining the conjugate momenta to the difference between the dipole sizes in the

amplitude and complex conjugate amplitude, (r̄ − r), as

KT ≡
1

2
[(1− 2ξ2)q1 − q2 + q3] , (3.7)

and using the explicit expression for the modified Weizś’acker-Williams field Eq. (A.11),

the integration over r and r̄ can be performed in a straightforward manner:∫
rr̄
eiKT ·(r̄−r)

r · r̄
r2r̄2

rir̄j = (2π)2 δ
ij

K4
T

. (3.8)

After integrating over r and r̄, the production cross section can be written as

(2π)9 dσ
qA→qγg+X

d3q
1
d3q

2
d3q

3

= (2π)δ(p+ − q+
1 − q+

2 − q+
3 ) 4CF αsαe (2π)2 1

ξ1p+

1

ξ2ξ̄1p+
(1 + ξ̄2

1) (1 + ξ̄2
2)

× 1

K4
T

1

(2π)2

∫
bb̄,γγ̄

eiq1·(γ̄−γ)+iPT ·(b̄−b) γ · γ̄
γ2γ̄2

{[
ξ2

2 −
(1− 2ξ2)

N2
c − 1

]〈
1

Nc
tr
(
∂iSF (b)∂iS†F (b̄)

)〉
T

− N2
c

N2
c − 1

〈
1

Nc
tr
(
∂iSF (b)S†F (b̄)∂iSF (b̄)S†F (b)

)
s(b, b̄)

〉
T

}
,(3.9)

where we have defined the total transverse momentum of the produced particles conjugate

to (b̄− b) as

PT ≡ q1 + q2 + q3 . (3.10)

Note that the integrations over γ and γ̄ are factorized from the rest of the expression as

well. We use the identity

ki

k2
=

1

2πi

∫
z
eik·z

zi

z2
(3.11)

to integrate over γ and γ̄, to get

(2π)9 dσ
qA→qγg+X

d3q
1
d3q

2
d3q

3

= (2π)δ(p+ − q+
1 − q+

2 − q+
3 ) 4CF αsαe (2π)2 1

ξ1p+

1

ξ2ξ̄1p+
(1 + ξ̄2

1)(1 + ξ̄2
2)

× 1

K4
T

1

q2
1

∫
bb̄
eiPT ·(b̄−b)

{[
ξ2

2 −
(1− 2ξ2)

N2
c − 1

]〈
1

Nc
tr
(
∂iSF (b)∂iS†F (b̄)

)〉
T

− N2
c

N2
c − 1

〈
1

Nc
tr
(
∂iSF (b)S†F (b̄)∂iSF (b̄)S†F (b)

)
s(b, b̄)

〉
T

}
. (3.12)

To obtain the final result this parton level cross section has to be convoluted with the

parton density function, Eq. (2.13). Using xp = p+/p+
p , the full production cross section

gives

(2π)9 dσ
pA→qγg+X

d3q
1
d3q

2
d3q

3

=

∫
dxp xp f

q
µ2(xp)δ

(
xp−

q+
1 + q+

2 + q+
3

p+
p

)
(2π)3 4CF αsαe

1

p+

1

ξ1p+

1

ξ2ξ̄1p+
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× (1 + ξ̄2
1) (1 + ξ̄2

2)
1

K4
T

1

q2
1

∫
bb̄
eiPT ·(b̄−b)

{[
ξ2

2 −
(1− 2ξ2)

N2
c − 1

]〈
1

Nc
tr
(
∂iSF (b)∂iS†F (b̄)

)〉
T

− N2
c

N2
c − 1

〈
1

Nc
tr
(
∂iSF (b)S†F (b̄)∂iSF (b̄)S†F (b)

)
s(b, b̄)

〉
T

}
. (3.13)

Eq. (3.13) is the final result for the fixed order production cross section of a soft photon

plus two hard jets in the back-to-back correlation limit.

This expression has to be supplemented with the appropriate Sudakov factor [23] that

resums the double logarithms coming from higher order emissions. This aspect has been

extensively studied previously, see [24], and we simply modify our expressions following the

results of [24]. The resulting expression reads

(2π)9 dσ
pA→qγg+X

d3q
1
d3q

2
d3q

3

=

∫
dxp xp f

q
µ2(xp)δ

(
xp−

q+
1 + q+

2 + q+
3

p+
p

)
(2π)3 4CF αsαe

1

p+

1

ξ1p+

1

ξ2ξ̄1p+

× (1 + ξ̄2
1) (1 + ξ̄2

2)
1

K4
T

1

q2
1

∫
bb̄
eiPT ·(b̄−b)

{[
ξ2

2 −
(1− 2ξ2)

N2
c − 1

]〈
1

Nc
tr
(
∂iSF (b)∂iS†F (b̄)

)〉
T

− N2
c

N2
c − 1

〈
1

Nc
tr
(
∂iSF (b)S†F (b̄)∂iSF (b̄)S†F (b)

)
s(b, b̄)

〉
T

}
SSud(b, b̄) , (3.14)

with

SSud(b, b̄) = exp

[
−αs

2π

CA + CF
2

ln2

(
K2
T (b− b̄)2

c2
0

)]
(3.15)

and c0 = 2e−γE . With |b− b̄| . 1/Qs determined by the averaged dipole scattering matrix〈
s(b, b̄)

〉
T

, and |KT | � Qs in our kinematics, the modification due to the Sudakov factor

is not evidently small.

Before we conclude this section, we would like to point out that our result in the back-

to-back correlation limit can be written in terms of the transverse-momentum-dependent

(TMD) gluon distributions. The first two TMD gluon distributions are defined as [25]

F (1)
qg (x2, kt) =

4

g2

∫
xy
eikt·(x−y)

〈
tr
[
∂iSF (x)∂iS†F (y)

]〉
x2

, (3.16)

F (2)
qg (x2, kt) = − 4

g2

∫
xy
eikt·(x−y) 1

Nc

〈
tr
[
∂iSF (x)S†F (y)∂iSF (y)S†F (x)

]
× tr

[
SF (x)S†F (y)

]〉
x2

, (3.17)

where 〈· · · 〉x2 denotes average over the target boosted to rapidity ln 1/x2. Using these

definitions of the TMD gluon distributions, we can write the production cross section at

partonic level given in Eq. (3.12) as

(2π)9 dσ
qA→qγg+X

d3q
1
d3q

2
d3q

3

= (2π)δ(p+ − q+
1 − q+

2 − q+
3 )α2

sαe (2π)3 1

ξ1p+

1

ξ2ξ̄1p+
(1 + ξ̄2

1)(1 + ξ̄2
2)
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× 1

K4
T

1

q2
1

{[
ξ2

2 −
ξ̄2

2

N2
c

]
F (1)
qg (x2, PT ) + F (2)

qg (x2, PT )

}
, (3.18)

which should be convoluted with quark distribution functions in order to arrive to the full

production cross section as in Eq. (3.13).

4 The dilute target limit

The CGC cross section derived in Section 2 allows us to study the dilute target limit which

probes the linear (non-saturation) small-x regime of the target. The interaction with the

target in this limit is dominated by a single hard scattering of one of the propagating partons

with the target and corresponds to the situation when the two hard jets are produced far

from back-to-back, i.e., |q2|, |q3|, |q2 + q3| ∼ |q2 − q3|. The additional requirement of a

collinear photon to be produced as well constrains the scattering off the dilute target to

happen after the photon has been emitted. If the hard interaction with the target happens

with the initial quark (before the emission of the photon) the probability of having a

collinear photon in the final state is negligibly small. Neglecting the initial interaction

amounts to setting SF (ω) and S†F (ω′) to a unit matrix in Eq. (2.19). The cross section in

this kinematics is then

(2π)9 dσ
qA→qγg+X

d3q
1
d3q

2
d3q

3

=
1

Nc
g2
sg

2
e (2π)δ(p+ − q+

1 − q+
2 − q+

3 )
1

ξ1p+

1

ξ̄1ξ2p+
(4.1)

×
∫
y1z1,y2z2,y3z3,ωv,ω′v′

eiq1·(y1−z1)+iq2·(y2−z2)+iq3·(y3−z3) δ(2)[ω − (ξ̄1v + ξ1z1)] δ(2)[ω′ − (ξ̄1v
′ + ξ1y1)]

× δ(2)[v − (ξ̄2z3 + ξ2z2)] δ(2)[v′ − (ξ̄2y3 + ξ2y2)]Aη(z3 − z2)Aη(y3 − y2) (1 + ξ̄2
1) (1 + ξ̄2

2)

×
{
Aλξ2(v′ − y1)Aλξ2(v − z1)

[
N2
c

2

(
s(z2, y2)Q(y2, z2, z3, y3) + 1− u(v)− u†(v′)

)
+

1

2

(
u(z3) + u†(y3)− s(z3, y3)− 1

)]
+Aλ(v′ − y1)Aλ(v − z1)

[
N2
c − 1

2

(
s(v, v′) + 1− u(v)− u†(v′)

)]
−Aλξ2(v′ − y1)Aλ(v − z1)

[
N2
c

2

(
s(y2, y3)

[
s(v, y2)− u†(y2)

]
− u(v) + 1

)
+

1

2

(
u†(y3) + u(v)− s(v, y3)− 1

)]
−Aλ(v′ − y1)Aλξ2(v − z1)

[
N2
c

2

(
s(z3, z2)

[
s(z2, v

′)− u(z2)
]
− u†(v′) + 1

)
+

1

2

(
u(z3) + u†(v′)− s(z3, v

′)− 1

)]}
,

where we have defined u(v) ≡ (1/Nc) trSF (v). The terms involving a trace of a single

Wilson line are somewhat unusual, but as we will see below they do not contribute in the

kinematics we are interested in. The integration over the photon transverse positions, and
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ω, v, ω′ and v′, gives

(2π)9 dσ
qA→qγg+X

d3q
1
d3q

2
d3q

3

=
1

Nc
g2
sg

2
e (2π)δ(p+ − q+

1 − q+
2 − q+

3 )
(1 + ξ̄2

1)

ξ1p+

(1 + ξ̄2
2)

ξ̄1ξ2p+
(4.2)

×
∫
y2z2,y3z3

eiq1·(v
′−v)+iq2·(y2−z2)+iq3·(y3−z3)Aη(z3 − z2)Aη(y3 − y2)

×
{
ξ2 ξ̄2

ξ1
|y3 − y2| |z3 − z2|K1

√ξ2ξ̄2

ξ1
|y3 − y2||q1|

 K1

√ξ2ξ̄2

ξ1
|z3 − z2||q1|


×
[
N2
c

2

(
s(z2, y2)Q(y2, z2, z3, y3) + 1− u(v)− u†(v′)

)
+

1

2

(
u(z3) + u†(y3)− s(z3, y3)− 1

)]
+

1

q2
1

[
N2
c − 1

2

(
s(v, v′) + 1− u(v)− u†(v′)

)]

−
√
ξ2 ξ̄2

ξ1

1

|q1|
|y3 − y2|K1

√ξ2ξ̄2

ξ1
|y3 − y2||q1|


×
[
N2
c

2

(
s(y2, y3)

[
s(v, y2)− u†(y2)

]
− u(v) + 1

)
+

1

2

(
u†(y3) + u(v)− s(v, y3)− 1

)]

−
√
ξ2 ξ̄2

ξ1

1

|q1|
|z3 − z2|K1

√ξ2ξ̄2

ξ1
|z3 − z2||q1|


×
[
N2
c

2

(
s(z3, z2)

[
s(z2, v

′)− u(z2)
]
− u†(v′) + 1

)
+

1

2

(
u(z3) + u†(v′)− s(z3, v

′)− 1

)]}
,

where v = ξ̄2z3+ξ2z2 and v′ = ξ̄2y3+ξ2y2. It is useful to change the integration coordinates

to v and v′, and r = z3 − z2 and r′ = y3 − y2. Then we have

(2π)9 dσ
qA→qγg+X

d3q
1
d3q

2
d3q

3

=
1

Nc
g2
sg

2
e (2π)δ(p+ − q+

1 − q+
2 − q+

3 )
(1 + ξ̄2

1)

ξ1p+

(1 + ξ̄2
2)

ξ̄1ξ2p+
(4.3)

×
∫
rr′vv′

eiPT ·(v
′−v) eilT ·(r

′−r)Aη(r)Aη(r′)

×
{
ξ2 ξ̄2

ξ1
|r| |r′|K1

√ξ2ξ̄2

ξ1
|r||q1|

 K1

√ξ2ξ̄2

ξ1
|r′||q1|


×
[
N2
c

2

(
s(z2, y2)Q(y2, z2, z3, y3) + 1− u(v)− u†(v′)

)
+

1

2

(
u(z3) + u†(y3)− s(z3, y3)− 1

)]
+

1

q2
1

[
N2
c − 1

2

(
s(v, v′) + 1− u(v)− u†(v′)

)]

−
√
ξ2 ξ̄2

ξ1

1

|q1|
|r′|K1

√ξ2ξ̄2

ξ1
|r′||q1|


×
[
N2
c

2

(
s(y2, y3)

[
s(v, y2)− u†(y2)

]
− u(v) + 1

)
+

1

2

(
u†(y3) + u(v)− s(v, y3)− 1

)]
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−
√
ξ2 ξ̄2

ξ1

1

|q1|
|r|K1

√ξ2ξ̄2

ξ1
|r||q1|


×
[
N2
c

2

(
s(z3, z2)

[
s(z2, v

′)− u(z2)
]
− u†(v′) + 1

)
+

1

2

(
u(z3) + u†(v′)− s(z3, v

′)− 1

)]}
,

where PT = q1 + q2 + q3 and lT = ξ2q3− ξ̄2q2. We have kept the old notations z2 = v− ξ̄2r,

z3 = v+ξ2r, y2 = v′− ξ̄2r
′ and y3 = v′+ξ2r

′ in the average for simplicity of the subsequent

equations. For two hard jets with large momentum imbalance, both |PT | and |lT | are large.

The terms in the curly brackets that do not depend on v, v′ or both, give δ(2)(PT ) after

integrating over v and v′. This contribution is peaked around |PT | = 0 and can be dropped

in the high-|PT | limit. The cross section simplifies to

(2π)9 dσ
qA→qγg+X

d3q
1
d3q

2
d3q

3

=
1

Nc
g2
sg

2
e (2π)δ(p+ − q+

1 − q+
2 − q+

3 )
(1 + ξ̄2

1)

ξ1p+

(1 + ξ̄2
2)

ξ̄1ξ2p+
(4.4)

×
∫
rr′vv′

eiPT ·(v
′−v) eilT ·(r

′−r)Aη(r)Aη(r′)

×
{
ξ2 ξ̄2

ξ1
|r| |r′|K1

√ξ2ξ̄2

ξ1
|r||q1|

 K1

√ξ2ξ̄2

ξ1
|r′||q1|


×
[
N2
c

2
s(z2, y2)Q(y2, z2, z3, y3)− 1

2
s(z3, y3)

]
+

1

q2
1

N2
c − 1

2
s(v, v′)

−
√
ξ2 ξ̄2

ξ1

1

|q1|
|r′|K1

√ξ2ξ̄2

ξ1
|r′||q1|

[N2
c

2
s(y2, y3) s(v, y2)− 1

2
s(v, y3)

]

−
√
ξ2 ξ̄2

ξ1

1

|q1|
|r|K1

√ξ2ξ̄2

ξ1
|r||q1|

[N2
c

2
s(z3, z2) s(z2, v

′)− 1

2
s(z3, v

′)

]}
.

In the dilute target limit, for both |PT | and |lT | large, one can expand the correlators

for small transverse separations, which corresponds to expanding the Wilson lines to sec-

ond order in the background field A−a (z+, z) (two-gluon exchange). After expanding the

modified Bessel functions of the second kind for small |r| and |r′|, we obtain

(2π)9 dσ
qA→qγg+X

d3q
1
d3q

2
d3q

3

= CF g
2
sg

2
e (2π)δ(p+ − q+

1 − q+
2 − q+

3 )
(1 + ξ̄2

1)

ξ1p+

(1 + ξ̄2
2)

ξ̄1ξ2p+
(4.5)

× 1

q2
1

∫
rr′vv′

eiPT ·(v
′−v) eilT ·(r

′−r)Aη(r)Aη(r′)

×
[
− g2

sNcΓ(z2 − y2)− g2
sCFΓ(z3 − y3)− g2

sCFΓ(v − v′)

−g
2
sNc

2
[Γ(z2 − z3) + Γ(y2 − y3)− Γ(y2 − z3)− Γ(z2 − y3)]

+
g2
sNc

2
Γ(v − y2) +

g2
sNc

2
Γ(y2 − y3)− g2

s

2Nc
Γ(v − y3)

+
g2
sNc

2
Γ(z3 − z2) +

g2
sNc

2
Γ(z2 − v′)−

g2
s

2Nc
Γ(z3 − v′)

]
,
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where

Γ(z − y) =

∫
dx+

[
γ̃(x+, 0)− γ̃(x+, z − y)

]
, (4.6)

with γ̃(x+, z − y) associated with the average value of the two-field correlator in the back-

ground field of the target:〈
A−a (z+, z)A−b (y+, y)

〉
T

= δabδ(z+ − y+)γ̃(z+, z − y) . (4.7)

After performing the Fourier transformations in Eq. (4.6), we get

(2π)9 dσ
qA→qγg+X

d3q
1
d3q

2
d3q

3

= CF g
4
sg

2
e (2π)δ(p+ − q+

1 − q+
2 − q+

3 )
(1 + ξ̄2

1)

2ξ1p+

(1 + ξ̄2
2)

2ξ̄1ξ2p+

1

q2
1

S⊥
f(PT )

P 2
T

×
[
Nc

1

m2
T

+ CF
1

n2
T

+ CF
1

l2T
+Nc

nT ·mT

n2
Tm

2
T

− Nc
lT ·mT

l2Tm
2
T

− 1

Nc

lT · nT
l2Tn

2
T

]
. (4.8)

The newly introduced transverse momenta in the above expression are defined as mT =

ξ̄2q1 + q3 and nT = ξ2q1 + q2. The factor of transverse area of the target, S⊥ arises as the

result of the impact parameter integration. We have also introduced f(PT ) as

f(PT ) ≡ −P 2
T

∫
d2r Γ(r)e−iPT ·r = P 2

T

∫
dx+γ̃(x+, PT ) , (4.9)

which can be related to the dipole scattering amplitude, i.e., to the unintegrated gluon

distribution appearing in the total cross section for deep inelastic scattering [26, 27]:

f(PT ) =
1

(2π)αsS⊥

Nc

N2
c − 1

P 2
T

∫
b′b̄′

eiPT ·(b̄
′−b′) 〈s(b′, b̄′)〉

T
. (4.10)

The final result for proton-nucleus scattering convoluted with the quark distribution in the

proton can be written

(2π)9 dσ
pA→qγg+X

d3q
1
d3q

2
d3q

3

=

∫
dxp xp f

q
µ2(xp) δ

(
xp −

q+
1 + q+

2 + q+
3

p+
p

)
× 4(2π)3 αsαe

1

p+

(1 + ξ̄2
1)

ξ1p+

(1 + ξ̄2
2)

ξ̄1ξ2p+

1

q2
1

×
[
Nc

1

m2
T

+ CF
1

n2
T

+ CF
1

l2T
+Nc

nT ·mT

n2
Tm

2
T

− Nc
lT ·mT

l2Tm
2
T

− 1

Nc

lT · nT
l2Tn

2
T

]
×
∫
b′b̄′

eiPT ·(b̄
′−b′) 〈s(b′, b̄′)〉

T
. (4.11)

There is no ordering between the transverse momentum of the jets and their momentum

imbalance. The contribution from the Sudakov logarithms is therefore small.

5 Discussion

In conclusion, we have computed the cross section for production of a soft photon and two

hard jets in the hybrid formalism suitable for the forward rapidity region in p-A collisions.

After obtaining the full cross section, Eq. (2.25), we have calculated two limits of this
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production cross section: the back-to-back correlation limit (the final result is given in

Eq. (3.13)) and the dilute target limit (the final result is given in Eq. (4.11))

In the back-to-back correlation limit, the produced jets have transverse momenta much

larger than the saturation scale of the target whereas the transverse momentum imbalance

of the jets is of the order of the saturation scale. We have shown that the full production

cross section in this limit simplifies and it can be written in terms of the transverse-

momentum-dependent (TMD) gluon distributions F (1)
qg (x2, kt) and F (2)

qg (x2, kt). Our ex-

pression in the back-to-back correlation limit is very similar to the one for forward djiet

production in the same limit [25] (up to the kinematical factors due to the emission of the

extra soft photon), which coincides with the small-x limit of the TMD formula [25, 28] in

their overlapping validity region. Obviously, the production cross section of the soft photon

and two hard jets is suppressed by a power of αem compared to the forward dijet production

cross section, but it is enhanced by the inverse of the transverse momentum of the soft pho-

ton in the back-to-back correlation limit. Thus, the αem suppression can be compensated

by the transverse momenta of the soft photon which indicates that this observable might

be also very interesting experimentally. Moreover, forward dijet production was studied

to show the agreement between the CGC and TMD frameworks [25]. Our results have

shown that the emission of the soft photon does not spoil the TMD structure that was

seen in the forward dijet production. Finally, we would like to point out that our result

shows sensitivity to saturation scale and its evolution in rapidity is given by the nonlin-

ear Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–Kovner [6] or Balitsky-Kovchegov

[4, 5] equations.

Unfortunately (unlike for some other observables, see e.g. [29]), the sensitivity to the

saturation scale is somewhat washed out by the corrections due to the Sudakov emission.

In order to roughly estimate such effect for the piece containing F (1)
qg (x2, kt), let us take

the Golec-Biernat–Wüsthoff (GBW) model [30] for
〈
s(b′, b̄′)

〉
T

which corresponds to

D(PT ) ∝ P 2
T e
−P 2

T /Q
2
s

Q2
s

, (5.1)

with Qs the saturation scale of the target. The model is not realistic for large PT but it

suits our purpose, since as explained above our main interest is in the small momentum

transferred from the target. In Fig. 5.1 we show the ratio of Eqs. (5.1) for two different

values of Qs = 1 and 2 GeV versus |PT |. In Fig. 5.2 we show Eq. (5.1) versus Qs for

|PT | = 1 GeV, normalised to its value at Qs = 1 GeV. Now, to estimate the effect of the

Sudakov, we define

DSud(PT ) =
NcP

2
T

2π2αs

1

(2π)2

∫
b′b̄′

eiPT ·(b̄
′−b′) 〈s(b′, b̄′)〉

T
SSud(b′, b̄′) (5.2)

and plot in Fig. 5.1 the ratio of Eqs. (5.2) for |KT | = 10 and 20 GeV for two different

values of Qs = 1 and 2 GeV versus |PT |, while in Fig. 5.2 we show Eq. (5.2) versus Qs
for |PT | = 1 GeV, normalised to its value at Qs = 1 GeV. We have used αs = 0.2, and the

SU(3) values for CA and CF . While the Sudakov factor somewhat washes away the effect
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of saturation, the sensitivity remains3 in the region |PT | ' Qs even up to fairly high values

of |KT |. This conclusion may be of more general applicability for other processes studied

in [24].

0.5 1.0 1.5
PT (GeV)

0.4

0.6

0.8

1.0

1.2

D(PT,Qs=2 GeV)/D(PT,Qs=1 GeV)

GBW without Sudakov

GBW with Sudakov, KT=10 GeV

GBW with Sudakov, KT=20 GeV

Figure 5.1. Ratios of Eq. (5.1) (solid blue line), Eq. (5.2) with |KT | = 10 GeV (dashed orange

line) and Eq. (5.2) with |KT | = 20 GeV (dotted green line) with Qs = 2 GeV over the same

equations with Qs = 1 GeV, versus |PT |.

1.5 2.0 2.5 3.0
Qs (GeV)

0.4

0.6

0.8

1.0

D(PT,Qs)/D(PT,Qs=1 GeV)
PT=1 GeV

GBW without Sudakov

GBW with Sudakov, KT=10 GeV

GBW with Sudakov, KT=20 GeV

Figure 5.2. Eq. (5.1) (solid blue line), Eq. (5.2) with |KT | = 10 GeV (dashed orange line) and

Eq. (5.2) with |KT | = 20 GeV (dotted green line) normalised to their values with Qs = 1 GeV,

versus Qs, for |PT | = 1 GeV.

We have also discussed the dilute target limit of the production cross section of a

soft photon and two hard jets. In this limit, the momentum imbalance between the two

produced jets is large and our result simplifies to a single dipole gluon distribution of the

target which follows the linear Balitsky-Fadin-Kuraev-Lipatov evolution [31], as opposed

to the back-to-back correlation limit.

The computation in this work constitutes a first step towards photon-jet production

at NLO and eventually a complete NLO calculation of photon production in the hybrid

formalism.

3The region of large |PT | > Qs cannot be trusted in the GBW model that produces a Gaussian decrease

in contrast with the expected perturbative power-law behavior.
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A Details of the calculation of dressed quark state

A.1 Dressed quark state in the mixed space

Even though we are considering incoming quark with vanishing transverse momenta in this

paper, for future work we will calculate the mixed space expression for the dressed quark

state with non vanishing transverse momentum of the incoming quark. For this general

case, the full momentum expression of the dressed quark in terms of the bare states can

be written as∣∣(q)[p+, p]αs
〉
D

= Aq
∣∣(q)[p+, p]αs

〉
0

+ Aqγ ge
∑
s′,λ

∫
dk+

1

2π

d2k1

(2π)2
F

(1)
(qγ)

[
(γ)[k+

1 , k1]λ, (q)[p+ − k+
1 , p− k1]ss′

]
×
∣∣(q)

[
p+ − k+

1 , p− k1

]α
s′

; (γ)[k+
1 , k1]λ

〉
0

+ Aqg gs
∑
s′,η

∫
dk+

2

2π

d2k2

(2π)2
tcαβ F

(1)
(qg)

[
(g)[k+

2 , k2]η, (q)[p+ − k+
2 , p− k2]ss′

]
×
∣∣∣(q)

[
p+ − k+

2 , p− k2

]β
s′

; (g)
[
k+

2 , k2

]c
η

〉
0

+ Aqgγ gsge
∑
s′s′′

∑
λη

∫
dk+

1

2π

d2k1

(2π)2

dk+
2

2π

d2k2

(2π)2
tcαβ

×
{
F

(2)
(qγ−qg)

[
(γ)[k+

1 , k1]λ, (g)[k+
2 , k2]η, (q)[p+ − k+

1 − k2, p− k1 − k2]ss′′
]

+ F
(2)
(qg−qγ)

[
(g)[k+

2 , k2]η, (γ)[k+
1 , k1]λ, (q)[p+ − k+

2 − k+
1 , p− k2 − k1]ss′′

]}
×
∣∣∣(q)

[
p+ − k+

1 − k+
2 , p− k1 − k2

]β
s′′
, (g)

[
k+

2 , k2

]c
η
, (γ)

[
k+

1 , k1

]λ〉
0
.(A.1)
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As it is argued in Section 2, for our purposes we can set the normalizations Aq, Aqγ , Aqg

and Aqgγ to one. The explicit momentum space expressions of the splitting amplitudes

F
(1)
(qγ) and F

(2)
(qγ−qg) are given in Eqs. (2.2) and (2.3) respectively. Now, let us consider each

component separately.

(i) bare quark component: It is completely trivial to write the bare quark component of the

dressed state in the mixed space:∣∣(q)[p+, p]αs
〉

0
=

∫
ω
e−ip·ω

∣∣(q)[p+, ω]αs
〉

0
. (A.2)

(ii) bare quark-photon component: The bare quark-photon component of the dressed quark

can be written as

ge
∑
s′λ

∫
dk+

1

2π

d2k1

(2π)2
F

(1)
(qγ)

[
(γ)[k+

1 , k1]λ, (q)[p+ − k+
1 , p− k1]ss′

]
×
∣∣(q)

[
p+ − k+

1 , p− k1

]α
s′

; (γ)[k+
1 , k1]λ

〉
0

= ge
∑
s′λ

∫
dk+

1

2π

d2k1

(2π)2

∫
z1z2x1v

e−ik1·(z1+x1)−i(p−k1)·(z2+v)

×F (1)
(qγ)

[
(γ)[k+

1 , z1]λ; (q)[p+ − k+
1 , z2]ss′

] ∣∣∣(q)[p+ − k+
1 , v]αs′ ; (γ)[k+

1 , x1]λ
〉

0
. (A.3)

Integration over k1 results in δ(2)[z1 − (z2 + v − x1)]. After trivially integrating over z1 by

using the δ-function, and renaming z2 + v = ω, we get

ge
∑
s′λ

∫
dk+

1

2π

d2k1

(2π)2
F

(1)
(qγ)

[
(γ)[k+

1 , k1]λ, (q)[p+ − k+
1 , p− k1]ss′

]
×
∣∣(q)

[
p+ − k+

1 , p− k1

]α
s′

; (γ)[k+
1 , k1]λ

〉
0

= ge
∑
s′λ

∫
dk+

1

2π

∫
ωvx1

e−ip·ωF
(1)
(qγ)

[
(γ)[k+

1 , ω − x1]λ; (q)[p+ − k+
1 , ω − v]ss′

]
×
∣∣∣(q)[p+ − k+

1 , v]αs′ ; (γ)[k+
1 , x1]λ

〉
0
. (A.4)

Now, we need to calculate the Fourier transform of the splitting amplitude by using its

explicit expression in full momentum space,

F
(1)
(qγ)

[
(γ)[k+

1 , ω − x1]λ; (q)[p+ − k+
1 , ω − v]ss′

]
=

∫
d2q1

(2π)2

d2q

(2π)2
eiq1·(ω−x1)+i(q−q1)·(ω−v)

×
[
−φλλ̄ss′(ξ1)√

2ξ1p+

]
(ξ1q − q1)λ̄

(ξ1q − q1)2
. (A.5)

After performing the following change of variables:

ξ1q − q1 = ξ1P, (A.6)

q1 = K, (A.7)

it is straightforward to perform the integrations over P and K. The mixed space expression

of the splitting amplitude reads

F
(1)
(qγ)

[
(γ)[k+

1 , ω − x1]λ; (q)[p+ − k+
1 , ω − v]ss′

]
= (A.8)
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=

[
(−i)√
2ξ1p+

φλλ̄ss′(ξ1)

]
Aλ̄(v − x1)δ(2)[ω−(ξ̄1v + ξ1x1)].

Finally, by using Eq. (A.8), we can write the bare quark-photon component of the dressed

quark state in mixed space as

ge
∑
s′λ

∫
dk+

1

2π

d2k1

(2π)2
F

(1)
(qγ)

[
(γ)[k+

1 , k1]λ, (q)[p+ − k+
1 , p− k1]ss′

]
×
∣∣(q)

[
p+ − k+

1 , p− k1

]α
s′

; (γ)[k+
1 , k1]λ

〉
0

= ge
∑
s′λ

∫
dk+

1

2π

∫
ωvx1

e−ip·ω
[

(−i)√
2ξ1p+

φλλ̄ss′(ξ1)

]
Aλ̄(v − x1))δ(2)[ω−(ξ̄1v + ξ1x1)]

×
∣∣∣(q)[p+ − k+

1 , v]αs′ ; (γ)[k+
1 , x1]λ

〉
0
. (A.9)

(iii) bare quark-gluon component: The calculation of the bare quark-gluon component is

exactly the same as the bare quark-photon component. Thus we can read off the result

from the final expression of the bare quark-photon component:

gs
∑
s′η

∫
dk+

2

2π

d2k2

(2π)2
tcαβ F

(1)
(qg)

[
(g)[k+

2 , k2]η, (q)[p+ − k+
2 , p− k2]ss′

]
×
∣∣∣(q)

[
p+ − k+

2 , p− k2

]β
s′

; (g)[k+
2 , k2]cη

〉
0

= gs
∑
s′η

∫
dk+

2

2π

∫
ωvx2

e−ip·ωtcαβ

[
(−i)√
2ξ2p+

φηη̄ss′(ξ2)

]
Āη̄ξ2(v − x2)δ(2)[ω−(ξ̄2v + ξ2x2)]

×
∣∣∣(q)[p+ − k+

2 , v]βs′ ; (g)[k+
2 , x2]cη

〉
0
. (A.10)

The Weizś’acker-Williams field in the quark-gluon splitting function takes into account the

Ioffe time restriction. It reads

Āη̄ξ (v − x1) = − 1

2π

(v − x1)η̄

(v − x1)2

[
1− J0

(
|v − x1|

√
2ξ(1− ξ)p

+

τ

)]
. (A.11)

The Ioffe time restriction ensures that the life time of the quark-gluon pair is larger than the

propagation time of the pair through the target. Hence, it guarantees that only quark-gluon

pairs that are resolved by the target during the interaction are included in the projectile

wave function. In the definition of the modified Weizś’acker-Williams, Eq.(A.11), τ can be

identified as longitudinal size of the target at the initial energy.

(iv) bare quark-gluon-photon component : The two terms in this component, as explained

previously, correspond to two different orderings of the emissions. Let us first consider the

first term where the photon is emitted before the gluon:

gsge
∑
s′′λη

∫
dk+

1

2π

dk+
2

2π

d2k1

(2π)2

d2k2

(2π)2
tcαβ
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×F (2)
(qγ−qg)

[
(γ)[k+

1 , k1]λ; (g)[k+
2 , k2]cη, (q)[p+ − k+

1 − k+
2 , p− k1 − k2]ss′′

]
×
∣∣∣(q)[p+ − k+

1 − k+
2 , p− k1 − k2]βss′′ ; (g)[k+

2 , k2]cη; (γ)[k+
1 , k1]λ

〉
0

= gsge
∑
s′′λη

∫
dk+

1

2π

dk+
2

2π

d2k1

(2π)2

d2k2

(2π)2
tcαβ

∫
xizj

e−ik1·(z1+x1)−ik2·(z2+x2)−i(p−k1−k2)·(z3+x3)

×F (2)
(qγ−qg)

[
(γ)[k+

1 , z1]λ; (g)[k+
2 , z2]cη, (q)[p+ − k+

1 − k+
2 , z3]ss′′

]
×
∣∣∣(q)[p+ − k+

1 − k+
2 , x3]βss′′ ; (g)[k+

2 , x2]cη; (γ)[k+
1 , x1]λ

〉
0
. (A.12)

Here we have introduced a compact notation
∫
xizj
≡
∫
x1x2x3z1z2z3

. Similar to the previous

components, we can now integrate over k1 and k2. These two integrations give two δ-

functions that can be used to integrate over the variables z1 and z2. Finally, similar to

the quark-photon and quark-gluon components, we can perform a change of variables for

z3 → ω− x3 to write down the mixed space expression of the first term in the bare quark-

photon-gluon component of the dressed quark state as

gsge
∑
s′′λη

∫
dk+

1

2π

dk+
2

2π
tcαβ

∫
wx1x2x3

e−ip·ω

×F (2)
(qγ−qg)

[
(γ)[k+

1 , ω − x1]λ; (g)[k+
2 , ω − x2]cη, (q)[p+ − k+

1 − k+
2 , ω − x3]ss′′

]
×
∣∣∣(q)[p+ − k+

1 − k+
2 , x3]βss′′ ; (g)[k+

2 , x2]cη; (γ)[k+
1 , x1]λ

〉
0
. (A.13)

Now, let us calculate the Fourier transform of the splitting amplitude F
(2)
(qγ−qg) by using

its explicit expression in full momentum space, Eq. (2.3):

F
(2)
(qγ−qg)

[
(γ)[k+

1 , ω − x1]λ; (g)[k+
2 , ω − x2]η; (q)[p+ − k+

1 − k+
2 , ω − x3]ss′′

]
=
∑
s′

φλλ̄ss′(ξ1)√
2ξ1p+

φ̃ηη̄s′s′′(ξ1, ξ2)√
2ξ2p+

∫
d2p

(2π)2

d2k1

(2π)2

d2k2

(2π)2
eik1·(w−x1)+ik2·(w−x2)+i(p−k1−k2)·(ω−x3)

×(ξ1p− k1)λ̄

(ξ1p− k1)2

[ξ2(p− k1)− ξ̄1k2]η̄

ξ2(ξ1p− k1)2 + ξ1(ξ2p− k2)2 − (ξ2k1 − ξ1k2)2
. (A.14)

After performing the following change of variables:

ξ1p− k1 = P, (A.15)

ξ2(p− k1)− ξ̄1k2 = ξ̄1K, (A.16)

we can integrate over p to get the following expression:

F
(2)
(qγ−qg)

[
(γ)[k+

1 , ω − x1]λ; (g)[k+
2 , ω − x2]η; (q)[p+ − k+

1 − k+
2 , ω − x3]ss′′

]
=
∑
s′

φλλ̄ss′(ξ1)√
2ξ1p+

φ̃ηη̄s′s′′(ξ1, ξ2)√
2ξ2p+

δ(2) [ω − (ξ1x1 + ξ2x2 + (1− ξ1 − ξ2)x3)]

×
∫

d2P

(2π)2

d2K

(2π)2
e
−iP · (ω−x1)

ξ̄1
−iK·(x3−x2) 1

ξ1

P λ̄

P 2

K η̄

K2 + ξ2(1−ξ1−ξ2)

ξ1ξ̄2
1

P 2
. (A.17)
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Now, we can perform the integrals over P and K by considering the following integral∫
d2P

(2π)2

d2K

(2π)2
eiP ·r+iK·r

′ P l

P 2

Km

K2 + c0P 2
. (A.18)

In order to be consistent with the ”bare quark-gluon component ” we should introduce

the Ioffe time restriction for the gluon emission. Effectively, this corresponds to restricting

the integration region of the momentum K, which is conjugate to the quark-gluon dipole

size, from above, i.e.,

K2 < 2
ξ2

ξ̄1

(
1− ξ2

ξ̄1

)
p+ − k+

1

τ
≡ α. (A.19)

Here, τ corresponds to longitudinal size of the target at some given initial energy. We can

perform the integral over P in Eq.(A.18) which simply reads∫
d2P

(2π)2
eiP ·r

P l

P 2(K2 + c0P 2)
=

∫ ∞
0

d|P |
(2π)2

1

(K2 + c0P 2)

[
2πi

rl

|r|J1 (|P | |r|)
]

=
i

2π

rl

r2

[
1

K2
− |r|√

c0|K|
K1

(
1√
c0
|K| |r|

)]
, (A.20)

where J1(r) is the Bessel function of the first kind whereas K1(r) is the modified Bessel

function of the second kind. By using the result in Eq. (A.20), we can now consider the

remaining K integration in Eq. (A.18) with the Ioffe time constraint, which reads

i

2π

rl

r2

∫
K2<α

d2K

(2π)2
eiK·r

′
[
Km

K2
− |r|K

m

√
c0|K|

K1

(
1√
c0
|K| |r|

)]
. (A.21)

Integrating the first term in the Eq.(A.21) over K is straightforward and the result can be

written as ∫
K2<α

d2K eiK·r
′Km

K2
= 2πi

r′m

r′2

[
1− J0

(√
α|r′|

) ]
. (A.22)

The result of the K Integration of the second term in Eq.(A.21) is more complicated and

reads∫
K2<α

d2K eiK·r
′Km

|K|K1

(
1√
c0
|K| |r|

)
= 2πi

r′m

|r′|

∫ √α
0

d|K| |K|

×K1

(
1√
c0
|K| |r|

)
J1

(
|K| |r′|

)
= 2πi

r′m

|r′|
c0
√
c0

|r| (c0r′2 + r2)
(A.23)

×
{
|r′|+

√
α

c0
|r| |r′| J2

(√
α|r′|

)
K1

(√
α

c0
|r|
)
−
√
α

c0
r2 J1

(√
α|r′|

)
K2

(√
α

c0
|r|
)}

.

After combining all the pieces we can write the result of Eq. (A.18) with the Ioffe time

constraint as∫
d2P

(2π)2

∫
K2<α

d2K

(2π)2
eiP ·r+iK·r

′ P l

P 2

Km

K2 + c0P 2
= − 1

(2π)2

(
r′m

r′2

)
rl

r2 + c0r′2
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×
{

1− J0

(√
α|r′|

)
− c0

r′2

r2
J0

(√
α|r′|

)
−√c0 α

r′2

|r| J2

(√
α|r′|

)
K1

(√
α

c0
|r|
)

+
√
α |r′| J1

(√
α|r′|

)
K2

(√
α

c0
|r|
)}

.(A.24)

Now, by using Eq. (A.24) we can simply write the splitting amplitude F
(2)
(qγ−qg) that

corresponds to successive emission of a photon and a gluon with the Ioffe time restriction

as

F
(2)
(qγ−qg)

[
(γ)[k+

1 , ω − x1]λ; (g)[k+
2 , ω − x2]η; (q)[p+ − k+

1 − k+
2 , ω − x3]ss′′

]
=
∑
s′

1√
2ξ1p+

φλλ̄ss′(ξ1)
1√

2ξ2p+
φ̃ηη̄s′s′′(ξ1, ξ2)δ(2) [ω − (ξ1x1 + ξ2x2 + (1− ξ1 − ξ2)x3)]

×(−1)Aη̄(x3 − x2)

[
− 1

2π

(ω − x1)λ

ξ1(ω − x1)2 + ξ2(1− ξ1 − ξ2)(x3 − x2)2

]
ξ̄1

×
{

1− J0

(√
α|x3 − x2|

)
− ξ2(1− ξ1 − ξ2)

ξ1

(x3 − x2)2

(ω − x1)2
J0

(√
α|x3 − x2|

)
−
√
α
ξ2(1− ξ1 − ξ2)

ξ1

(x3 − x2)2

|ω − x1|
J2

(√
α|x3 − x2|

)
K1

(√
αξ1

ξ2(1− ξ1 − ξ2)
|ω − x1|

)

+
√
α|x3 − x2|J1

(√
α|x3 − x2|

)
K2

(√
αξ1

ξ2(1− ξ1 − ξ2)
|ω − x1|

)}
. (A.25)

We can simplify this complicated expression. First of all, for future convenience, we can

write the δ-function as

δ(2) [ω − (ξ1x1 + ξ2x2 + (1− ξ1 − ξ2)x3)] = δ(2)

{
ω −

[
ξ1x1 + ξ̄1

(
ξ2

ξ̄1
x2 +

ξ̄1 − ξ2

ξ̄1
x3

)]}
=

∫
v
δ(2)

[
ω −

(
ξ1x1 + ξ̄1v

)]
δ(2)

[
v −

{(
1− ξ2

ξ̄1

)
x3 +

ξ2

ξ̄1
x2

}]
. (A.26)

Second, we can write the splitting amplitude φ̃ in terms of φ. The splitting amplitude φ̃ηη̄s′s′′
is defined in Eq. (2.5) as

φ̃ηη̄s′s′′(ξ1, ξ2) =
ξ1

ξ̄1

{
(2− 2ξ1 − ξ2) δηη̄δs′s′′ − iεηη̄σ3

s′s′′ξ2

}
= ξ1

{(
2− ξ2

ξ̄1

)
δηη̄δs′s′′ − iεηη̄σ3

s′s′′
ξ2

ξ̄1

}
= ξ1φ

ηη̄
s′s′′

(
ξ2

ξ̄1

)
. (A.27)

Finally, using Eq. (A.26), we can write

(ω − x1)λ̄ = ξ̄1(v − x1)λ̄. (A.28)

Thus, the splitting amplitude F
(2)
(qγ−qg) that corresponds to successive emission of a photon

and a gluon with the Ioffe time restriction reads

F
(2)
(qγ−qg)

[
(γ)[k+

1 , ω − x1]λ; (g)[k+
2 , ω − x2]η; (q)[p+ − k+

1 − k+
2 , ω − x3]ss′′

]
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=

∫
v
δ(2)

[
v −

{(
1− ξ2

ξ̄1

)
x3 +

ξ2

ξ̄1
x2

}]
δ(2)

[
ω −

(
ξ1x1 + ξ̄1v

)]
×
∑
s′

[
(−i)√
2ξ1p+

φλλ̄ss′(ξ1)

][
(−i)√
2ξ2p+

φηη̄s′s′′

(
ξ2

ξ̄1

)]
Aη̄(x3 − x2)Āλ̄ξ2/ξ̄1(v − x1), (A.29)

where Aη̄(x3−x2) is the usual Weizś’acker-Williams field in the quark-gluon splitting that

is defined in Eq. (2.7), while Āλ̄
ξ2/ξ̄1

(v−x1) is the Weizś’acker-Williams field-like term that

appears in the splitting amplitude F
(2)
(qγ−qg) and it is defined as

Āλ̄ξ2/ξ̄1(v − x1) = − 1

2π

ξ1(v − x1)λ̄

ξ1(v − x1)2 + ξ2
ξ̄1

(
1− ξ2

ξ̄1

)
(x3 − x2)2

[
1− f (γg)

ξ2
ξ̄1

(α; v − x1, x3 − x2)

]
,

(A.30)

where f
(γg)
ξ2
ξ̄1

(α; v − x1, x3 − x2) is the correction due to the Ioffe time constraint which is

defined as

f
(γg)
ξ2
ξ̄1

(α; v − x1, x3 − x2) =

{[
1 +

1

ξ1

ξ2

ξ̄1

(
1− ξ2

ξ̄1

)
(x3 − x2)2

(v − x1)2

]
J0

(√
α|x3 − x2|

)
+

√
α

1

ξ1

ξ2

ξ̄1

(
1− ξ2

ξ̄1

)
(x3 − x2)2

|v − x1|
J2

(√
α|x3 − x2|

)
K1

(√
αξ1ξ̄2

1

ξ2

(
ξ̄1 − ξ2)

|v − x1|
)

−√α|x3 − x2|J1

(√
α|x3 − x2|

)
K2

(√
αξ1ξ̄2

1

ξ2

(
ξ̄1 − ξ2)

|v − x1|
)}

, (A.31)

with α ≡ 2 ξ2
ξ̄1

(
1 − ξ2

ξ̄1

)
ξ̄1p+

τ being the upper bound of the momentum integral that is

conjugate to quark-gluon dipole size, where τ can be identified as the longitudinal size of

the target as in the case of quark-gluon splitting.

Finally, by using Eq. (A.29) we can write the first term in the quark-photon-gluon

component of the dressed quark state (which defines the emission of the photon first and

gluon later) as

gsge
∑
s′′λη

∫
dk+

1

2π

dk+
2

2π

d2k1

(2π)2

d2k2

(2π)2
tcαβ

×F (2)
(qγ−qg)

[
(γ)[k+

1 , k1]λ; (g)[k+
2 , k2]cη, (q)[p+ − k+

1 − k+
2 , p− k1 − k2]ss′′

]
×
∣∣∣(q)[p+ − k+

1 − k+
2 , p− k1 − k2]βss′′ ; (g)[k+

2 , k2]cη; (γ)[k+
1 , k1]λ

〉
0

= gsge

∫
dk+

1

2π

dk+
2

2π
tcαβ

∫
wvx1x2x3

δ(2)

[
v −

{(
1− ξ2

ξ̄1

)
x3 +

ξ2

ξ̄1
x2

}]
δ(2)

[
ω −

(
ξ1x1 + ξ̄1v

)]
×e−ip·ω

∑
s′

[
(−i)√
2ξ1p+

φλλ̄ss′(ξ1)

][
(−i)√
2ξ2p+

φηη̄s′s′′

(
ξ2

ξ̄1

)]
Aη̄(x3 − x2)Āλ̄ξ2/ξ̄1(v − x1)

×
∣∣∣(q)[p+ − k+

1 − k+
2 , x3]βss′′ ; (g)[k+

2 , x2]cη; (γ)[k+
1 , x1]λ

〉
0
. (A.32)
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If the Ioffe time restriction is neglected, then

Āλ̄ξ2/ξ̄1(v − x1)→ − 1

2π

ξ1(v − x1)λ̄

ξ1(v − x1)2 + ξ2
ξ̄1

(
1− ξ2

ξ̄1

)
(x3 − x2)2

≡ Aλ̄ξ2/ξ̄1(v − x1). (A.33)

Let us now consider the second term in the quark-photon-gluon component of the

dressed state which corresponds to emission of the gluon first and photon later. The

calculation of this term can be performed exactly in a similar manner but the effect of

the Ioffe time constraint is different between the two orderings of the photon and gluon

emissions.

The second ordering term in the mixed space reads

gsge
∑
s′′λη

∫
dk+

1

2π

dk+
2

2π

d2k1

(2π)2

d2k2

(2π)2
tcαβ

×F (2)
(qg−qγ)

[
(g)[k+

2 , k2]cη; (γ)[k+
1 , k1]λ; (q)[p+ − k+

1 − k+
2 , p− k1 − k2]ss′′

]
×
∣∣∣(q)[p+ − k+

1 − k+
2 , p− k1 − k2]βss′′ ; (g)[k+

2 , k2]cη; (γ)[k+
1 , k1]λ

〉
0

= gsge
∑
s′′λη

∫
dk+

1

2π

dk+
2

2π

d2k1

(2π)2

d2k2

(2π)2
tcαβ

∫
xizj

e−ik1·(z1+x1)−ik2·(z2+x2)−i(p−k1−k2)·(z3+x3)

×F (2)
(qg−qγ)

[
(g)[k+

2 , z2]cη; (γ)[k+
1 , z1]λ; (q)[p+ − k+

1 − k+
2 , z3]ss′′

]
×
∣∣∣(q)[p+ − k+

1 − k+
2 , x3]βss′′ ; (g)[k+

2 , x2]cη; (γ)[k+
1 , x1]λ

〉
0
. (A.34)

As for the first ordering term we can integrate over k1 and k2, use the resulting two δ-

functions to integrate over the variables z1 and z2, and finally perform a change of variables

for z3 → ω − x3 to write down the mixed space expression of the second term in the bare

quark-photon-gluon component of the dressed quark state as

gsge
∑
s′′λη

∫
dk+

1

2π

dk+
2

2π
tcαβ

∫
wx1x2x3

e−ip·ω

×F (2)
(qg−qγ)

[
(g)[k+

2 , ω − x2]cη; (γ)[k+
1 , ω − x1]λ; (q)[p+ − k+

1 − k+
2 , ω − x3]ss′′

]
×
∣∣∣(q)[p+ − k+

1 − k+
2 , x3]βss′′ ; (g)[k+

2 , x2]cη; (γ)[k+
1 , x1]λ

〉
0
. (A.35)

Let us now calculate the Fourier transform of the splitting amplitude F
(2)
(qg−qγ). The explicit

expression of F
(2)
(qg−qγ) in full momentum space can be simply read off from Eq. (2.3) by

setting ξ1 ↔ ξ2 and k1 ↔ k2. Then the mixed space expression reads

F
(2)
(qg−qγ)

[
(g)[k+

2 , ω − x2]η; (γ)[k+
1 , ω − x1]λ; (q)[p+ − k+

1 − k+
2 , ω − x3]ss′′

]
=
∑
s′

φηη̄ss′(ξ2)√
2ξ1p+

φ̃λλ̄s′s′′(ξ2, ξ1)√
2ξ2p+

∫
d2p

(2π)2

d2k1

(2π)2

d2k2

(2π)2
eik1·(w−x1)+ik2·(w−x2)+i(p−k1−k2)·(ω−x3)

×(ξ2p− k2)η̄

(ξ2p− k2)2

[ξ1(p− k2)− ξ̄2k1]λ̄

ξ1(ξ2p− k2)2 + ξ2(ξ1p− k1)2 − (ξ1k2 − ξ2k1)2
. (A.36)
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After performing the following change of variables:

ξ2p− k2 = P, (A.37)

ξ1(p− k2)− ξ̄2k1 = ξ̄2K, (A.38)

we can integrate over p to get the following expression:

F
(2)
(qg−qγ)

[
(g)[k+

2 , ω − x2]η; (γ)[k+
1 , ω − x1]λ; (q)[p+ − k+

1 − k+
2 , ω − x3]ss′′

]
=
∑
s′

φηη̄ss′(ξ2)√
2ξ2p+

φ̃λλ̄s′s′′(ξ2, ξ1)√
2ξ1p+

δ(2) [ω − (ξ1x1 + ξ2x2 + (1− ξ1 − ξ2)x3)]

×
∫

d2P

(2π)2

d2K

(2π)2
e
−iP · (ω−x2)

ξ̄2
−iK·(x3−x1) 1

ξ2

P η̄

P 2

K λ̄

K2 + ξ1(1−ξ1−ξ2)

ξ2ξ̄2
2

P 2
. (A.39)

For the integration over P and K the expression looks very similar to first ordering term,

however for this term the Ioffe time restriction is on momentum P rather than momentum

K, with

P 2 < 2 ξ2 ξ̄2
p+

τ
≡ β. (A.40)

In our generic integral expression given in Eq. (A.18) we can first perform the integration

over K and the result reads∫
d2K

(2π)2
eiK·r

′ Km

K2 + c0P 2
=

i

2π

√
c0
r′m

|r′| |P |K1

(√
c0 |P | |r′|

)
. (A.41)

The remaining integral over P can be performed by using the result of Eq. (A.41) to get

i

2π

√
c0
r′m

|r′|

∫
P 2<β

d2P

(2π)2
eiP ·r

P l

P 2
|P |K1

(√
c0 |P | |r′|

)
= −

√
c0

(2π)2

r′m

|r′|
rl

|r|

∫ √β
0

d|P | |P |K1

(√
c0 |P | |r′|

)
J1 (|P | |r|) . (A.42)

Thus, the final result after performing K and P integrations for the second ordering

term reads∫
P 2<β

d2P

(2π)2

∫
d2K

(2π)2
eiP ·r+iK·r

′ P l

P 2

Km

K2 + c0P 2
= − 1

(2π)2

(
r′m

r′2

)
rl

r2 + c0r′2
(A.43)

×
[
1 +

√
βc0 |r′| J2

(√
β|r|

)
K1

(√
βc0|r′|

)
−
√
βc0

r′2

|r| J1

(√
β|r|

)
K2

(√
βc0|r′|

)]
.

Finally, by using Eq. (A.43) we can simply write the splitting amplitude F
(2)
(qg−qγ) that

corresponds to successive emission of a gluon and a photon with the Ioffe time restriction

as

F
(2)
(qg−qγ)

[
(g)[k+

2 , ω − x2]η; (γ)[k+
1 , ω − x1]λ; (q)[p+ − k+

1 − k+
2 , ω − x3]ss′′

]
(A.44)
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=
∑
s′

1√
2ξ2p+

φηη̄ss′(ξ2)
1√

2ξ1p+
φ̃λλ̄s′s′′(ξ2, ξ1)δ(2) [ω − (ξ1x1 + ξ2x2 + (1− ξ1 − ξ2)x3)]

×(−1)Aλ̄(x3 − x1)

[
− 1

2π

(ω − x2)η̄

ξ2(ω − x2)2 + ξ1(1− ξ1 − ξ2)(x3 − x1)2

]
ξ̄2

×
{

1 +

√
β
ξ1(1− ξ1 − ξ2)

ξ2ξ̄2
2

|x3 − x1|J2

(√
β
|ω − x2|
ξ̄2

)
K1

(√
β
ξ1(1− ξ1 − ξ2)

ξ2ξ̄2
2

|x3 − x1|
)

−
√
β
ξ1(1− ξ1 − ξ2)

ξ2ξ̄2

(x3 − x1)2

|ω − x2|
J1

(√
β
|ω − x2|
ξ̄2

)
K2

(√
β
ξ1(1− ξ1 − ξ2)

ξ2ξ̄2
2

|x3 − x1|
)}

.

We can simplify the above expression by using the analogues of Eqs. (A.26)-(A.28).

First, we rewrite the δ-function as

δ(2) [ω − (ξ1x1 + ξ2x2 + (1− ξ1 − ξ2)x3)] = δ(2)

{
ω −

[
ξ2x2 + ξ̄2

(
ξ1

ξ̄2
x1 +

ξ̄2 − ξ1

ξ̄2
x3

)]}
=

∫
v
δ(2)

[
ω −

(
ξ2x2 + ξ̄2v

)]
δ(2)

[
v −

{(
1− ξ1

ξ̄2

)
x3 +

ξ1

ξ̄2
x1

}]
. (A.45)

Then, we rewrite the splitting amplitude φ̃ in terms of φ as

φ̃λλ̄s′s′′(ξ2, ξ1) =
ξ2

ξ̄2

{
(2− 2ξ2 − ξ1) δλλ̄δs′s′′ − iελλ̄σ3

s′s′′ξ1

}
= ξ2

{(
2− ξ1

ξ̄2

)
δλλ̄δs′s′′ − iελλ̄σ3

s′s′′
ξ1

ξ̄2

}
= ξ2φ

λλ̄
s′s′′

(
ξ1

ξ̄2

)
. (A.46)

Finally, using Eq. (A.45), we can write

(ω − x2)λ̄ = ξ̄2(v − x2)λ̄. (A.47)

Eventually, the splitting amplitude F
(2)
(qg−qγ) that corresponds to successive emission of a

gluon and a photon with the Ioffe time restriction reads

F
(2)
(qg−qγ)

[
(g)[k+

2 , ω − x2]η; (γ)[k+
1 , ω − x1]λ; (q)[p+ − k+

1 − k+
2 , ω − x3]ss′′

]
=

∫
v
δ(2)

[
v −

{(
1− ξ1

ξ̄2

)
x3 +

ξ1

ξ̄2
x1

}]
δ(2)

[
ω −

(
ξ2x2 + ξ̄2v

)]
×
∑
s′

[
(−i)√
2ξ2p+

φηη̄ss′(ξ2)

][
(−i)√
2ξ1p+

φλλ̄s′s′′

(
ξ1

ξ̄2

)]
Aλ̄(x3 − x1)Āη̄

ξ1/ξ̄2
(v − x2), (A.48)

where Aλ̄(x3 − x1) is the usual Weizś’acker-Williams field in the quark-photon splitting

that is defined in Eq. (2.7) and Āη̄
ξ1/ξ̄2

(v − x2) is the Weizś’acker-Williams field-like term

that appears in the splitting amplitude F
(2)
(qg−qγ) and it is defined as

Āη̄
ξ1/ξ̄2

(v − x2) =
−1

2π

ξ2(v − x2)η̄

ξ2(v − x2)2 + ξ1
ξ̄2

(
1− ξ1

ξ̄2

)
(x3 − x1)2

[
1− f (gγ)

ξ1
ξ̄2

(β; v − x2, x3 − x1)

]
,

(A.49)
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where f
(gγ)
ξ1
ξ̄2

(β; v − x2, x3 − x1) is the correction due to the Ioffe time constraint which can

be written as

f
(gγ)
ξ1
ξ̄2

(β; v − x2, x3 − x1) = (A.50)

=
√
β

1

ξ2

ξ1

ξ̄2

(
1− ξ1

ξ̄2

)
(x3 − x1)2

|v − x2|
J1

(√
β|v − x2|

)
K2

(√
β

1

ξ2

ξ1

ξ̄2

(
1− ξ1

ξ̄2

)
|x3 − x1|

)

−
√
β

1

ξ2

ξ1

ξ̄2

(
1− ξ1

ξ̄2

)
|x3 − x1|J2

(√
β|v − x2|

)
K1

(√
β

1

ξ2

ξ1

ξ̄2

(
1− ξ1

ξ̄2

)
|x3 − x1|

)
,

with β ≡ 2ξ2ξ̄2
p+

τ that is the upper bound of the momentum integration which is conjugate

to the quark-gluon dipole size. As in the case of the first ordering term, when the Ioffe

time is neglected we get

Āη̄
ξ1/ξ̄2

(v − x2)→ −1

2π

ξ2(v − x2)η̄

ξ2(v − x2)2 + ξ1
ξ̄2

(
1− ξ1

ξ̄2

)
(x3 − x1)2

≡ Aη̄
ξ1/ξ̄2

(v − x2). (A.51)

Note again, that the corrections due to the Ioffe time constraint are different between

the two emission orderings in the quark-photon-gluon component of the dressed quark state.

This is due to the fact that the two orderings have different momentum that is restricted by

the Ioffe time constraint, which changes the result of the momentum integrations performed

in order to Fourier transform the splitting amplitudes F
(2)
qγ−qg and F

(2)
qg−qγ .

By using Eq. (A.48) we can write the second term in the quark-photon-gluon compo-

nent of the dressed quark state (which defines the emission of the gluon first and photon

later) as

gsge
∑
s′′λη

∫
dk+

1

2π

dk+
2

2π

d2k1

(2π)2

d2k2

(2π)2
tcαβ

×F (2)
(qg−qγ)

[
(g)[k+

2 , k2]cη; (γ)[k+
1 , k1]λ; (q)[p+ − k+

1 − k+
2 , p− k1 − k2]ss′′

]
×
∣∣∣(q)[p+ − k+

1 − k+
2 , p− k1 − k2]βss′′ ; (g)[k+

2 , k2]cη; (γ)[k+
1 , k1]λ

〉
0

= gsge

∫
dk+

1

2π

dk+
2

2π
tcαβ

∫
wvx1x2x3

δ(2)

[
v −

{(
1− ξ1

ξ̄2

)
x3 +

ξ1

ξ̄2
x1

}]
δ(2)

[
ω −

(
ξ2x2 + ξ̄2v

)]
×e−ip·ω

∑
s′

[
(−i)√
2ξ2p+

φηη̄ss′(ξ2)

][
(−i)√
2ξ1p+

φλλ̄s′s′′

(
ξ1

ξ̄2

)]
Aλ̄(x3 − x1)Āη̄

ξ1/ξ̄2
(v − x2)

×
∣∣∣(q)[p+ − k+

1 − k+
2 , x3]βss′′ ; (g)[k+

2 , x2]cη; (γ)[k+
1 , x1]λ

〉
0
. (A.52)

By combining Eqs. (A.2), (A.9), (A.10), (A.32) and (A.52) together and setting p→ 0, we

get Eq. (2.6).

A.2 Outgoing wave function

The dressed quark state scatters through the target eikonally, which means that each bare

state component of the dressed quark state rotates in the color space by picking up an
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S-matrix. Thus, the outgoing wave function - when written in terms of the bare states -

reads∣∣(q)[p+, 0]αs
〉

out
=

∫
ω
SαβF (ω)

∣∣∣(q)[p+, ω]βs

〉
0

+ge
∑
s′λ

∫
dk+

1

2π

∫
ωvx1

SαβF (v)

[
(−i)√
2ξ1p+

φλλ̄ss′(ξ1)

]
Aλ̄(v − x1)δ(2)

[
ω − (ξ̄1v + ξ1x1)

]
×
∣∣∣(q)[p+ − k+

1 , v]βs ; (γ)[k+
1 , x1]λ

〉
0

+gs
∑
s′η

∫
dk+

2

2π

∫
ωvx2

tcαβS
βσ
F (v)ScdA (x2)

[
(−i)√
2ξ2p+

φηη̄ss′(ξ2)

]
Āη̄(v − x2)δ(2)

[
ω − (ξ̄2v + ξ2x2)

]
×
∣∣(q)[p+ − k+

2 , v]σs′ ; (g)[k+
2 , x2]cη

〉
0

+gsge
∑
s′s′′

∑
λη

∫
dk+

1

2π

dk+
2

2π

∫
wvx1x2x3

tcαβS
βσ
F (x3)ScdA (x2)

×
{
δ(2)

[
v −

{(
1− ξ2

ξ̄1

)
x3 +

ξ2

ξ̄1
x2

}]
δ(2)
[
ω −

(
ξ1x1 + ξ̄1v

) ]
×
[

(−i)√
2ξ1p+

φλλ̄ss′(ξ1)

][
(−i)√
2ξ2p+

φηη̄s′s′′

(
ξ2

ξ̄1

)]
Aη̄(x3 − x2)Āλ̄ξ2/ξ̄1(v − x1) (A.53)

+ δ(2)

[
v −

{(
1− ξ1

ξ̄2

)
x3 +

ξ1

ξ̄2
x1

}]
δ(2)
[
ω −

(
ξ2x2 + ξ̄2v

) ]
×
[

(−i)√
2ξ2p+

φηη̄ss′(ξ2)

][
(−i)√
2ξ1p+

φλλ̄s′s′′

(
ξ1

ξ̄2

)]
Aλ̄(x3 − x1)Āη̄

ξ1/ξ̄2
(v − x2)

}
×
∣∣∣(q)[p+ − k+

1 − k+
2 , x3]σs′′ , (g)[k+

2 , x2]dη, (γ)[k+
1 , x1]λ

〉
0
.

We would like to write the outgoing wave function in terms of dressed components instead

of bare components. In order to do so, one should realize that the dressed states are written

as decomposition of various bare states. Let us first explain how to rewrite outgoing wave

function in terms of dressed states in a schematic way. The dressed states can be written

in terms of the bare ones up to O(gegs) as

|q〉D ' |q〉0 + geF
(1)
(qγ)|qγ〉0 + gsF

(1)
(qg)|qg〉0 + gegs

[
F

(2)
(qγg) + F

(2)
(qgγ)

]
|qγg〉0 ,

|qγ〉D ' |qγ〉0 + gsF
(1)
(qg)|qγg〉0 , (A.54)

|qg〉D ' |qg〉0 + geF
(1)
(qγ)|qγg〉0 ,

|qγg〉D ' |qγg〉0 .

The outgoing wave function, when written schematically in terms of the bare states (an

analogue of Eq. (A.53)), reads

|q〉out ' SF (ω)|q〉0 + geF
(1)
(qγ)SF (v)|qγ〉0 + gsF

(1)
(qg)SF (v)SA(x2)|qg〉0

+gegs

[
F

(2)
(qγg) + F

(2)
(qgγ)

]
SF (x3)SA(x2)|qγg〉0 . (A.55)
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We can now rewrite Eq. (A.53) in terms of the dressed components by using Eq. (A.54)

and group the dressed components. Finally, the outgoing wave function when written

schematically in terms of the dressed components reads

|q〉out = SF (ω)|q〉D + geF
(1)
(qγ) [SF (v)− SF (ω)] |qγ〉D + gsF

(1)
(qg) [SF (v)SA(x2)− SF (ω)] |qg〉D

+gegs

{[
F

(2)
(qγg)

(
SF (x3)SA(x2)− SF (ω)

)
− F (1)

(qγ)F
(1)
(qg)

(
SF (v)− SF (ω)

)]
(A.56)

+
[
F

(2)
(qgγ)

(
SF (x3)SA(x2)− SF (ω)

)
− F (1)

(qg)F
(1)
(qγ)

(
SF (v)SA(x3)− SF (ω)

)]}
|qγg〉D .

Finally, with the guidance of the schematic expression, Eq.(A.56), we can write the outgoing

wave function that was given in Eq. (A.53) in terms of the dressed states as in Eq. (2.10).

B Expansion in the back-to-back correlation limit

In this appendix we provide the details of the expansion in the back-to-back correlation

limit where the small parameters are the quark-gluon dipole sizes in the amplitude and

in the complex conjugate amplitude (r and r̄). Thus, the Taylor expansion of a dipole

s
(
b+ r

2 , b̄+ r̄
2

)
simply reads

s
(
b+

r

2
, b̄+

r̄

2

)
=

1

Nc
tr

[
SF

(
b+

r

2

)
S†F

(
b̄+

r̄

2

)]
(B.1)

=
1

Nc
tr

{[
SF (b) +

1

2
ri∂iSF (b) +

1

8
rirj∂i∂jSF (b)

][
S†F (b̄) +

1

2
r̄k∂kS†F (b̄) +

1

8
r̄kr̄l∂k∂lS†F (b̄)

]}
.

We start with the expression that we get for the production cross section, which is

written in terms of the new variables r, r̄, b, b̄, γ and γ̄, Eq. (3.5), and use Eq. (B.1) to

expand each term separately.

(i) Aλξ2(−γ̄)Aλξ2(−γ) term: When expanded in powers of r and r̄

Q
(
b̄− r̄

2
, b− r

2
, b+
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s
(
b̄− r̄

2
, b̄+

r̄

2

)
= 1− 1

2
r̄ir̄j

1

Nc
tr
(
∂iSF (b̄)∂jS†F (b̄)

)
.

Using Eq. (B.2), the O(N2
c ) contribution to the operator structure of Aλξ2(−γ̄)Aλξ2(−γ)

term can be written as
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One can also calculate in a similar way the O(1) contribution to the operator structure of

Aλξ2(−γ̄)Aλξ2(−γ) term as

−1

2

1

Nc
tr

{[(
SF (b)− SF (b+ ξ1γ)

)
− 1

2
ri∂i

(
SF (b)+(1−2ξ2)SF (b+ ξ1γ)

)
+

1

8
rirj∂i∂j

(
SF (b)− (1− 2ξ2)2SF (b+ ξ1γ)

)]
×
[(
S†F (b̄)− S†F (b̄+ ξ1γ̄)

)
− 1

2
r̄k∂k

(
S†F (b̄) + (1− 2ξ2)S†F (b̄+ ξ1γ̄)

)
+

1

8
r̄kr̄l∂k∂k

(
S†F (b̄)− (1− 2ξ2)2S†F (b̄+ ξ1γ̄)

)]}
. (B.4)

Now let us consider the expansion of Aλξ2(−γ) in the small r limit:
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Using Eqs. (B.3), (B.4) and (B.5), we can write the expanded expression ofAλξ2(−γ̄)Aλξ2(−γ)

up to O(r3) as
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(ii) Aλ(−γ̄)Aλ(−γ) term: The expansion of the Aλ(−γ̄)Aλ(−γ) term can be performed in

a similar manner and the result reads
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(iii) Aλξ2(−γ̄)Aλ(−γ) term: The result of the expansion of Aλξ2(−γ̄)Aλ(−γ) reads
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(iv) Aλ(−γ̄)Aλξ2(−γ) term: The result of the expansion of Aλ(−γ̄)Aλξ2(−γ) reads
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Now, we can combine all the terms using Eqs. (B.6)-(B.9). Then we see that the first

non-vanishing terms are O(rr̄) and the result reads
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