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Abstract: We consider QCD radiative corrections to Higgs boson pair production through

gluon fusion in proton collisions. We combine the exact next-to-leading order (NLO) con-

tribution, which features two-loop virtual amplitudes with the full dependence on the top

quark mass Mt, with the next-to-next-to-leading order (NNLO) corrections computed in

the large-Mt approximation. The latter are improved with different reweighting techniques

in order to account for finite-Mt effects beyond NLO. Our reference NNLO result is ob-

tained by combining one-loop double-real corrections with full Mt dependence with suitably

reweighted real-virtual and double-virtual contributions evaluated in the large-Mt approx-

imation. We present predictions for inclusive cross sections in pp collisions at
√
s = 13, 14,

27 and 100 TeV and we discuss their uncertainties due to missing Mt effects. Our approx-

imated NNLO corrections increase the NLO result by an amount ranging from +12% at√
s = 13 TeV to +7% at

√
s = 100 TeV, and the residual uncertainty of the inclusive cross

section from missing Mt effects is estimated to be at the few percent level. Our calculation

is fully differential in the Higgs boson pair and the associated jet activity: we also present

predictions for various differential distributions at
√
s = 14 and 100 TeV, and discuss the

size of the missing Mt effects, which can be larger, especially in the tails of certain observ-

ables. Our results represent the most advanced perturbative prediction available to date

for this process.
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1 Introduction

One of the primary goals of the LHC programme in the next decades is the detailed study of

Higgs boson properties. In particular, the high-luminosity upgrade of the LHC is expected

to provide direct constraints on the Higgs boson trilinear coupling from Higgs boson pair

production [1, 2], which may reveal whether the Higgs potential is indeed Standard Model-

like. A detailed theoretical understanding of Higgs boson pair production processes is

thus mandatory.

Considering the magnitude of the total Higgs boson pair production cross sections at√
s = 14 TeV [3, 4], the most promising process to constrain the Higgs trilinear coupling

is pair production via gluon fusion. Due to the smallness of the corresponding production

cross sections, it has been recently suggested to additionally harness complementary in-

formation on the trilinear Higgs coupling from higher-order contributions to single Higgs

boson production [5–10] or electroweak precision observables [11, 12].

For the gg → hh production channel, the leading order (LO) calculation was performed

some time ago in refs. [13–15]. The next-to-leading-order (NLO) corrections with full top

quark mass (Mt) dependence, involving two-loop diagrams with several mass scales, became

available only recently [16, 17], and have been supplemented by soft-gluon resummation at

small transverse momenta of the Higgs boson pair [18] and parton shower effects [19, 20].

In the Mt → ∞ limit, also called Higgs Effective Field Theory (HEFT) approxima-

tion, point-like effective couplings of gluons to Higgs bosons arise. In this limit, the NLO

corrections were first calculated in ref. [21] and rescaled by a factor BFT/BHEFT, where

BFT denotes the LO one-loop matrix element squared in the full theory. This procedure is

often called “Born-improved HEFT” approximation.

In refs. [4, 22] an approximation for Higgs boson pair production at NLO, labelled

“FTapprox”, was introduced, in which the real radiation matrix elements contain the full
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top quark mass dependence, while the virtual part is calculated at NLO in the HEFT

approximation and rescaled at the event level by the re-weighting factor BFT/BHEFT.

At the inlusive cross section level this approximation suggests at the LHC a correction

with respect to the “Born-improved HEFT” approximation of about −10%, close to the

corresponding correction of −14% later obtained in the full NLO calculation [16, 17].

The next-to-next-to-leading-order (NNLO) QCD corrections in the HEFT approxima-

tion have been computed in refs. [23–26], where ref. [26] provides fully differential results.

The NNLO HEFT results for the total cross section have been supplemented by an ex-

pansion in 1/M2
t in ref. [27]. Approximations for the top-quark mass dependence of the

two-loop amplitudes in the NLO calculation have been studied in ref. [28] via a Padé

ansatz. Soft gluon resummation has been performed at NLO+NNLL in ref. [29] and at

NNLO+NNLL in ref. [30]. The NNLO+NNLL HEFT results lead to K-factors of about

1.2 relative to the Born-improved NLO HEFT result.

In ref. [31], the recommended value for the total gg → hh cross section was based on the

NNLO+NNLL HEFT results [30], corrected by a factor δt accounting for top quark mass

effects, extracted from ref. [16]. However, this procedure is somewhat ad hoc, and not viable

to study kinematical distributions. In order to account for the NNLO K-factor in the HEFT

calculation as well as for the correct description of the tt̄ threshold and the high-energy

tails of the distributions, where the top quark loops are resolved, a first attempt to combine

the two calculations has been made in ref. [17], where the full NLO result for a particular

distribution was reweighted by the NNLO K-factor obtained from ref. [26] on a bin-by-bin

basis. However, this procedure, called “NLO-improved NNLO” has its drawbacks, as it

needs to be repeated for each observable (and binning) under consideration.

The aim of this paper is to study alternative methods to combine the two results,

i.e. to incorporate top quark mass effects in the calculation of the production of Higgs

boson pairs at NNLO. One of the studied approximations comprises exact top-quark mass

dependence up to NLO and also exact top quark mass dependence in the double-real

emission contributions to the NNLO cross section at differential level. The results of this

approximation can be regarded as the most advanced prediction currently available for

Higgs boson pair production in gluon fusion.

This work is organized as follows: in section 2 we describe the technical details of our

calculation, and present the different approximations we will consider to incorporate mass

effects in the NNLO contribution. In section 3 we present our numerical predictions, both

for the total cross section and differential distributions. Finally, in section 4 we summarise

our results.

2 Details on the method and approximations

We start by presenting the different technical ingredients entering our computation, as

well as the definition of the various approximate ways to include mass effects in the NNLO

calculation introduced and used in this work. Finally, we also discuss the numerical stability

of our predictions.
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2.1 Technical ingredients

Our calculation is based on the publicly available computational framework Matrix [32],

which allows the user to perform fully differential NNLO calculations for a wide class of

processes at hadron colliders. For the purpose of the present work, the public version of the

code has been extended, based on the calculation of ref. [26], to include the production of a

pair of Higgs bosons via gluon fusion. For the calculation of the NNLO corrections the code

implements the qT -subtraction formalism [33], in which the genuine NNLO singularities,

located where the transverse momentum of the Higgs boson pair, pT,hh ≡ qT , vanishes, are

explicitly separated from the NLO-like singularities in the hh + jet contribution. The qT
subtraction formula reads

dσhhNNLO = HhhNNLO ⊗ dσhhLO +
[
dσhh+jet

NLO − dσCT
NNLO

]
, (2.1)

where in particular the contribution dσhh+jet
NLO can be evaluated using any available NLO

subtraction procedure to handle and cancel the corresponding infrared (IR) divergencies.1

The remaining qT → 0 divergence is canceled by the process-independent counterterm

dσCT
NNLO. The process-dependence of the hard-collinear coefficient HhhNNLO enters only via

the NNLO (HEFT) two-loop virtual corrections [23] through an appropriate subtraction

procedure [37].

The difference in the square bracket of eq. (2.1) is finite when qT → 0, but each of

the terms exhibits a logarithmic divergence. Therefore, a technical cut, rcut, needs to be

introduced on qT /Q, where the scale Q is chosen to be the invariant mass of the final-state

system. More details about the rcut → 0 extrapolation are provided in section 2.3.

At variance with the calculation of ref. [26], which was strictly done within the HEFT,

this time all the routines needed to compute the full NLO cross section as well as the

different NNLO reweightings have been implemented. This includes linking the code to

the NLO two-loop virtual corrections obtained via a grid interpolation [19] and to several

loop-induced amplitudes provided by the OpenLoops amplitude generator [38]. Within

this framework we reproduced the differential NLO results of refs. [16, 17] at the per

mille level.

The grid for the NLO virtual two-loop amplitudes is based on the calculation pre-

sented in refs. [16, 17], which in turn for the calculation of the two-loop amplitudes relies

on an extension of the program GoSam [39, 40] to two loops [41], using also Reduze2 [42],

SecDec3 [43] and the Quasi-Monte Carlo technique as described in ref. [44] for the nu-

merical integration. These amplitudes (for fixed values of the Higgs boson and top quark

masses) are provided in a two-dimensional grid together with an interpolation framework,

which allows us to evaluate them at any phase space point without having to perform the

computationally costly two-loop integration. For more details, see refs. [19, 45].

All tree and one-loop amplitudes in the HEFT and also all loop-squared amplitudes

in the full theory as discussed below are obtained via a process independent interface

to OpenLoops [38, 46, 47]. For the latter this comprises loop-squared amplitudes for

1Matrix uses the automated implementation of the Catani-Seymour dipole subtraction method [34, 35]

within the Monte Carlo program Munich [36].
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pp → hh + 1, 2 jets, that need to be evaluated in IR divergent unresolved limits. In

particular the limit qT → 0 represents a significant challenge for the numerical stability

of the hh + 2 jets amplitudes in the full theory. Thanks to the employed algorithms the

numerical stability is under control, as discussed in detail in section 2.3. A major element

of this stability originates from the employed tensor integral reduction library COLLIER [48].

2.2 Approximations for top-mass effects at NNLO

In the following we present three approximations for the NNLO Higgs boson pair production

cross section, which take into account finite top quark mass effects in different ways. In all

cases, we always include the full NLO result when computing the NNLO prediction, and

only apply the different approximations to the O(α4
S) contribution.

NNLONLO-i. The NLO-improved NNLO approximation (NNLONLO-i) has already been

presented in ref. [17]. It can be constructed based on an observable-level multiplicative

approach. In this approximation, for each bin of each histogram we multiply the full NLO

result by the ratio between the HEFT NNLO and NLO predictions for this bin.

NNLOB-proj. A different approximation can be obtained by reweighting each NNLO

event by the ratio of the full and HEFT Born squared amplitudes. We denote this procedure

as Born-projected approximation (NNLOB-proj). Of course, in order to do so and due

to the different multiplicities involved, an appropriate projection to Born-like kinematics

is needed; for this purpose we make use of the qT -recoil procedure defined in ref. [49].

Following this prescription, the momenta of the Higgs bosons remain unchanged, and the

new initial-state parton momenta are obtained by absorbing the recoil due to the additional

radiation. Specifically, denoting the momenta of the incoming partons by p1 and p2, and

the momentum of the Higgs boson pair system by q, the new momentum to be used for

the LO projection k1 (then, k2 = q − k1) is given by

kµ1 = z1
Q2

2 q · p1
pµ1 + kµ1T +

k21T
z1

q · p1
Q2 p1 · p2

pµ2 ,
(
kµ1Tk1Tµ = −k21T

)
, (2.2)

where

z1 =
Q2 + 2 qT · k1T +

√
(Q2 + 2 qT · k1T )2 − 4Q2

Tk
2
1T

2Q2
,

(
Q2
T ≡ Q2 + q2T

)
, (2.3)

and kµ1T is a two-dimensional vector in the qT plane which needs to fulfill the condition

k1T → 0 when qT → 0, and we set k1T = qT /2 (and therefore k2T = qT /2). This con-

dition guarantees that the subsequently applied reweighting does not spoil the NNLO

qT -cancellation. More details about this procedure can be found in ref. [49].

NNLOFTapprox. The third approximation we consider is constructed to profit from the

fact that the double-real emission contributions to the NNLO cross section require only one-

loop amplitudes in the full theory (FT) and can thus be computed by using OpenLoops.

Of course, the inclusion of these loop-induced amplitudes needs to be done in such a way
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that the dipole cancellations in the NLO hh+ j calculation and the low-qT cancellation for

hh at NNLO are not spoiled.

We will define our approximation by using the following procedure: working in the

HEFT, for each n-loop squared amplitude that needs to be computed for a given partonic

subprocess A(n)
HEFT(ij → HH +X), we apply the reweighting

R(ij → HH +X) =
ABorn

Full (ij → HH +X)

A(0)
HEFT(ij → HH +X)

, (2.4)

where ABorn
Full stands for the lowest order (loop-induced) squared amplitude for the corre-

sponding partonic subprocess, computed in the full theory.2 We note that, contrary to what

happens in the Born-projected approach, here the reweighting is defined using amplitudes

that correspond to the same subprocess under consideration. Therefore, the kinematics is

always preserved and there is no need to define a Born projection. Moreover, for amplitudes

that are of tree-level type in the HEFT (as it is the case for the double-real emission con-

tributions), this reweighting simply implies using the exact loop-induced amplitudes with

full top mass dependence. The reweighting procedure defined by eq. (2.4) agrees at NLO

with the so-called FTapprox introduced in ref. [22], therefore we will use the same notation.

Given that the performance of the Born-projection and FT approximations was already

studied in ref. [17] at NLO, we directly present NNLO predictions in section 3. We point

out that, based on the ingredients entering each of the approximations, the NNLOFTapprox

is expected to be the most advanced prediction for Higgs boson pair production via gluon

fusion. By contrast, the NNLOB-proj is expected to be the less accurate, since it is based

on a simple Born level reweighting procedure. Nevertheless, and for comparison purposes,

we always present results for the three approximations described above.

2.3 Numerical stability

Before presenting our quantitative predictions, we briefly discuss the numerical stability

of our results. From the computational point of view, the most challenging of the three

approaches to incorporate mass effects at NNLO is the NNLOFTapprox procedure, as it in-

volves loop-induced double-real contributions in the full theory. In particular the dominant

gg → hhgg amplitude comprises computationally very challenging six-point loop integrals

with internal masses. In fact, these contributions have to be evaluated in the numerically

intricate NNLO unresolved limits and to the best of our knowledge, the present calculation

is the first application of a six-point one-loop amplitude integrated over its IR divergent

unresolved limits in an NNLO calculation.

Thanks to the numerical stability of the applied algorithms in OpenLoops together

with Collier, the bulk of the phase-space points remains stable in double precision

when approaching qT → 0, even close to the dipole singularity, i.e. in the NNLO double-

unresolved limits. On average the runtime per phase space point for the gg → hhgg

2Strictly speaking, the reweighting is applied to the finite part of the loop amplitudes. However, at

one-loop level this procedure reproduces the loop structure of the full theory.
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Figure 1. Dependence of the total NNLOFTapprox cross section at 14 TeV on the qT -subtraction

cut, rcut, normalized with respect to the extrapolated rcut → 0 result. The dotted lines indicate

the symmetrized uncertainty coming from the extrapolation.

amplitude is ∼ 1 sec. In principle OpenLoops provides a rescue system, such that remain-

ing numerically unstable phase-space points can be reevaluated in higher numerical preci-

sion based on reduction with CutTools [50]. However, the runtime of the loop-induced

gg → hhgg amplitude in OpenLoops is significantly increased when CutTools is used

in quadruple precision (to the level of ∼ 10 minutes per phase-space point), rendering the

quadruple precision stability system prohibitive for this amplitude for practical purposes.3

Therefore, we restrict the evaluation to double precision and replace potentially unstable

phase-space points close to the dipole singularities, quantified by αL-i = (pi · pj/ŝ)min,

where the minimum among all potential emitter parton combinations i and j is taken,

with an approximation: below a technical cut αL-i, cut we switch from the (loop-induced)

double-real amplitude in the FT to the (tree-level) double-real amplitudes in the HEFT,

reweighted at LO. This approach could in principle introduce a bias in the NLO hh+jet

cross section, thereby hampering the low-qT cancellation of the NNLO computation. We

have checked that this is not the case, as detailed in the following.

For the predictions presented in section 3 we use αL-i, cut = 10−4 and we varied this

parameter in the range 10−3 to 10−5, finding results that only differ at the per mille level

or below and which are always compatible within the numerical uncertainties. In figure 1

we illustrate the resulting dependence of the NNLOFTapprox total cross section on the qT -

subtraction cut, rcut, for
√
s = 14 TeV. Due to the previously discussed stability challenges,

we considered values of rcut between 1% and 3.5%, which are larger than the ones typically

used in previous qT -subtraction calculations (compared for instance with the default values

in the public Matrix release [32]). Nevertheless our results present a good stability, with

effects that are below 0.2% in the whole qT /Q range under study, validating this choice.

The rcut → 0 extrapolation is performed using a linear least χ2 fit. The fit is repeated

varying the upper bound of the interval (in this case starting from a minimum of 25 points,

which corresponds to an upper bound of rcut = 1.6%, and up to rcut = 3.5%). Then,

the result with the lowest χ2/degrees-of-freedom value is taken as the best fit, and the

3Here we want to note that these stability issues will be strongly mitigated in the future based on the

new OpenLoops on-the-fly reduction method introduced in ref. [47].
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rest is used to estimate the extrapolation uncertainty.4 In the case shown in figure 1 the

extrapolation uncertainty for rcut → 0, indicated with the dotted lines, is ±0.14%.

A further uncertainty arises due to the numerical evaluation of the two-loop integrals

with full top-quark mass dependence in the virtual corrections of the NLO contribution.

The error of the numerical integration of the amplitudes is propagated to the total cross

section using Monte Carlo methods, varying the amplitude level results according to the

corresponding error estimates. This leads to changes of the NLO cross section at the per

mille level. Furthermore, we have checked that, within this uncertainty, results based on

the grid for the virtual amplitude are consistent with the ones directly obtained from the

amplitude results calculated in refs. [16, 17]. We want to point out that the uncertainties

can be somewhat larger in differential results, in particular in the tails of pT and invariant-

mass distributions.

This discussion shows that the uncertainties due to the qT -subtraction method and

the numerical evaluation of the NLO virtual contribution and grid interpolation are clearly

under sufficient control.

3 Results

In this section we present our numerical predictions for inclusive and differential cross sec-

tions for Higgs boson pair production in pp collisions. We consider centre-of-mass energies

of 13, 14, 27 and 100 TeV. For the sake of brevity, differential distributions are presented

only for 14 TeV and 100 TeV. We use the values Mh = 125 GeV for the Higgs boson mass

and Mt = 173 GeV for the pole mass of the top quark.5 We do not consider bottom quark

loops, whose contribution at LO is below 1%. We also neglect top quark width effects,

which at LO are at the level of 2% for the total cross section [22]. We use the PDF4LHC15

sets [53–58] of parton distribution functions (PDFs), with parton densities and αS eval-

uated at each corresponding perturbative order (i.e., we use the (k + 1)-loop running αS

at NkLO, with k = 1, 2). As renormalization and factorization scales, we use the central

value µ0 = Mhh/2, and we obtain scale uncertainties via the usual 7-point scale variation.

3.1 Inclusive cross sections

In table 1 we present results for the total cross sections at NLO and NNLO in the various

approximations. At NLO we report the exact result, including the full Mt dependence,

and also the FTapprox result. By comparing the two NLO predictions, we see that the

FT approximation overestimates the exact NLO result by 4% (6%) at 14 (100) TeV. At

NNLO the largest prediction is obtained in the NNLOB-proj approximation, resulting in an

4We note that, in the current Matrix release, the rcut → 0 extrapolation and the ensuing uncertainty

estimation is only performed for inclusive (fiducial) cross sections. However, no significant effects have been

observed for kinematic distributions in various dedicated studies (see for instance ref. [51]).
5We note that it is not yet possible to fully assess the effect of the top mass scheme in the calculation

as the top quark mass is fixed in the existing NLO two-loop virtual amplitudes. In the case of single Higgs

boson production, using an MS mass instead of the pole mass for the top quark changes the NLO cross

section by less than one per mille (see e.g. [52]). In the case of Higgs boson pair production, where the

sensitivity to the top quark mass is much stronger, we expect the effect to be larger but not to exceed the

other uncertainties affecting our calculation.
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√
s 13 TeV 14 TeV 27 TeV 100 TeV

NLO [fb] 27.78 +13.8%
−12.8% 32.88 +13.5%

−12.5% 127.7 +11.5%
−10.4% 1147 +10.7%

−9.9%

NLOFTapprox [fb] 28.91 +15.0%
−13.4% 34.25 +14.7%

−13.2% 134.1 +12.7%
−11.1% 1220 +11.9%

−10.6%

NNLONLO−i [fb] 32.69 +5.3%
−7.7% 38.66 +5.3%

−7.7% 149.3 +4.8%
−6.7% 1337 +4.1%

−5.4%

NNLOB−proj [fb] 33.42 +1.5%
−4.8% 39.58 +1.4%

−4.7% 154.2 +0.7%
−3.8% 1406 +0.5%

−2.8%

NNLOFTapprox [fb] 31.05 +2.2%
−5.0% 36.69 +2.1%

−4.9% 139.9 +1.3%
−3.9% 1224 +0.9%

−3.2%

Mt unc. NNLOFTapprox ±2.6% ±2.7% ±3.4% ±4.6%

NNLOFTapprox/NLO 1.118 1.116 1.096 1.067

Table 1. Inclusive cross sections for Higgs boson pair production for different centre-of-mass en-

ergies at NLO and NNLO within the three considered approximations. Scale uncertainties are

reported as superscript/subscript. The estimated top quark mass uncertainty of the NNLOFTapprox

predictions is also presented. The uncertainties due to the qT -subtraction and the numerical eval-

uation of the virtual NLO contribution are both at the per mille level.

increase with respect to the exact NLO result of about 20% at 14 TeV. For this collider

energy, the increase within the NNLONLO-i approach (which is computed based on the

Mhh distribution) is smaller, being about 18%. Finally, the NNLOFTapprox prediction is

the lowest one, with a 12% increase with respect to the NLO cross section at 14 TeV. For all

the considered approximations and collider energies the scale uncertainties are significantly

reduced when including the O(α4
S) NNLO corrections. This reduction is largest for the

NNLOB−proj and NNLOFTapprox approximations.6 For instance at 14 TeV, the total scale

uncertainty is reduced from about ±13% at NLO to +2% − 5% at NNLOFTapprox, i.e. by

about a factor of three. This reduction of the scale uncertainties is stronger as we increase

the collider energy, being close to a factor of five at 100 TeV.

As is well known, scale uncertainties can only provide a lower limit on the true per-

turbative uncertainties. In particular, from table 1 we see that the difference between

the NNLO and NLO central predictions is always larger than the NNLO scale uncertain-

ties (although within the NLO uncertainty bands). In any case, the strong reduction of

scale uncertainties, together with the moderate impact of NNLO corrections, suggests a

significant improvement in the perturbative convergence as we move from NLO to NNLO.

It is also worth mentioning that the three approximations have a different behaviour

with
√
s. For instance at 100 TeV, the increase with respect to the NLO prediction for the

NNLOB-proj and NNLONLO-i approaches is 23% and 17%, respectively, values that are close

to the ones for 14 TeV (20% and 18%, respectively). By contrast, the NNLOFTapprox result

increases the NLO prediction by 7% at 100 TeV, i.e. the correction is smaller by almost a

factor of two than at 14 TeV (12%), which also means a larger separation with respect to the

other two NNLO approximations. The smaller size of the NNLO corrections in the FTapprox

at higher energies is also consistent with the observed reduction of scale uncertainties.

6The scale uncertainty of the NNLONLO-i prediction is defined as the relative uncertainty of the

HEFT result.
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As was mentioned already in section 2.2, the NNLOFTapprox result is expected to be

the most accurate one among the approximations studied in this work, and therefore it

is considered to be our best prediction. In order to estimate the remaining uncertainty

associated with finite top quark mass effects at NNLO, we start by considering the accuracy

of the FTapprox approximation at NLO. At 14 TeV the NLO FTapprox result (see table 1)

overestimates the full NLO total cross section by only about 4%, or equivalently by about

11% of the pure O(α3
S) contribution. If we assume that FTapprox performs analogously at

one order higher, we obtain a ±11% uncertainty on the O(α4
S) contribution.7 Given that

the relative weight of the O(α4
S) contributions to the total NNLO cross section is definitely

smaller than the weight of the O(α3
S) contributions to the NLO cross section, we obtain a

significantly smaller overall uncertainty, in this case of ±1.2%. In order to be conservative,

we can increase this estimate by a factor of two. The relative difference between the

FTapprox and the full NLO result slightly increases with the collider energy. However, at

the same time the relative size of the O(α4
S) correction decreases. The NNLO uncertainty

obtained with this procedure ranges from ±2.3% at 13 TeV to ±3.1% at 100 TeV.

We can repeat the above procedure to estimate the uncertainty of the NNLOB−proj

approximation, which displays the largest differences with respect to the NNLOFTapprox re-

sult. Similarly to what we do for FTapprox, we can assign an uncertainty to the NNLOB−proj

result by relying on the accuracy of the same approximation at NLO, and conservatively

multiplying by a factor of two. The ensuing uncertainties range from ±14% at
√
s = 13 TeV

to ±36% at
√
s = 100 TeV. We find that the NNLOFTapprox prediction (always evaluated at

µR = µF = µ0) is fully contained in the NNLOB−proj uncertainty band. Actually, there is

a large overlap between the two approximations, which includes in all the cases the central

value of the NNLOFTapprox, even when the conservative factor of two is not included. This

can be regarded as a non-trivial consistency check for our procedure. We may be tempted

to conclude our discussion by adopting the above procedure for the uncertainty estimate

of our NNLOFTapprox result.

However, we have already pointed out that, as
√
s increases, the difference between the

NNLOFTapprox and the other approximations increases. In particular, the difference be-

tween the NNLOFTapprox result and our “next-to-best” NNLO prediction, NNLONLO−i, is

5.2% at
√
s = 13 TeV, and it becomes 9.2% at

√
s = 100 TeV. The significant increase of

this difference with the collider energy suggests us a more conservative approach. Our final

estimate for the finite top quark mass uncertainty of our NNLOFTapprox result is defined as

half the difference between the NNLOFTapprox and the NNLONLO−i approximations, and is

reported in table 1 for the different values of
√
s. At

√
s = 13 and 14 TeV these uncertain-

ties are ±2.6% and ±2.7%, and thus very similar to the ones obtained with the method

discussed above. At
√
s = 100 TeV, however, the uncertainty increases to ±4.6%, which

appears to be more conservative than the ±3.1% obtained with the previous procedure.

7We point out that in order to obtain the pure O(α4
S) corrections, we have subtracted the lower order

contributions computed with NNLO parton distributions and strong coupling. The corresponding numbers

are a few percent lower than the ones given in table 1 for the NLO results.
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Figure 2. Higgs boson pair invariant mass distribution at NNLO for the different approximations,

together with the NLO prediction, at 14 TeV (left) and 100 TeV (right). The lower panels show the

ratio with respect to the NLO prediction, and the filled areas indicate the NLO and NNLOFTapprox

scale uncertainties.

3.2 Differential distributions

In this section we present predictions for differential Higgs boson pair production at 14 TeV

and 100 TeV. We consider the following kinematical distributions: the invariant mass (Mhh,

figure 2) and rapidity (yhh, figure 3) of the Higgs boson pair, the transverse momenta of

the Higgs boson pair and the leading jet (pT,hh and pT,j1, figures 4 and 5), the transverse

momenta of the harder and the softer Higgs boson (pT,h1 and pT,h2, figures 6 and 7),

and the azimuthal separation between the two Higgs bosons (∆φhh, figure 8). For the

sake of clarity, we only show the scale uncertainty bands corresponding to the NLO and

NNLOFTapprox predictions.

We start our discussion from the invariant-mass distribution of the Higgs boson pair,

reported in figure 2. We observe that the NNLOB-proj and NNLONLO-i approximations

predict a similar shape, with very small corrections at threshold, an approximately con-

stant K-factor for larger invariant masses, and only a small difference in the normalization

between them, which increases in the 100 TeV case. The NNLOFTapprox, on the other

hand, presents a different shape, in particular with larger corrections for lower invariant

masses, a minimum in the size of the corrections close to the region where the maximum

of the distribution is located, and a slow increase towards the tail. The different behavior

of the NNLOFTapprox in the region close to threshold is more evident at 100 TeV, where

the increase is about 30% in the first bin. Naively we could expect that if this region is

dominated by soft parton(s) recoiling against the Higgs bosons, the Born projection and

FTapprox should provide similar results. We have investigated the origin of this difference,

and we find that in the region Mhh ∼ 2Mh the cross section is actually dominated by

events with relatively hard radiation recoiling against the Higgs boson pair (for example,

– 10 –



J
H
E
P
0
5
(
2
0
1
8
)
0
5
9

NNLOB-proj

NNLONLO-i

NNLOFTapprox

NLO
0.1

0.5

1

5

10

d
σ
/d

y
h

h
(f

b
)

s = 14 TeV

NNLOB-proj

NNLONLO-i

NNLOFTapprox

NLO

100

150

200

250

300

d
σ
/d

y
h

h
(f

b
)

s = 100 TeV

-3 -2 -1 0 1 2 3
0.8

0.9

1.0

1.1

1.2

1.3

1.4

yhh

ra
ti
o

to
N

L
O

-3 -2 -1 0 1 2 3
0.8

0.9

1.0

1.1

1.2

1.3

1.4

yhh

ra
ti
o

to
N

L
O

Figure 3. Higgs boson pair rapidity distribution at NNLO for the different approximations, to-

gether with the NLO prediction, at 14 TeV (left) and 100 TeV (right).

at
√
s = 100 TeV, the average transverse momentum of the Higgs boson pair in the first

Mhh bin is pT,hh ∼ 100 GeV at NLO). In this region the exact loop amplitudes behave

rather differently as compared to the amplitudes evaluated in the HEFT: as the produc-

tion threshold is approached, they go to zero faster than in the mass-dependent case, thus

explaining the differences we find. Within the NNLOFTapprox, the corrections to the Mhh

spectrum range between 10% and 20% at 14 TeV. The scale uncertainty is substantially

reduced in the NNLOFTapprox, and this reduction is particularly strong for large invari-

ant masses. As observed at the inclusive level, the NNLOFTapprox corrections are smaller

at 100 TeV (except only for the first bin) and the difference with respect to the other

approximations is larger.

Next we move to the rapidity distribution of the Higgs boson pair, reported in figure 3.

The NNLO results are similar for all three approximations. This is not unexpected as the

shape of the rapidity distribution is mainly driven by the PDFs. Besides the obvious dif-

ference in the normalization, the largest effect in the shape of the NNLONLO−i distribution

is observed in the central region, which is particularly evident in the 100 TeV case. Again

we observe a clear reduction of scale uncertainties over the whole range under study.

More significant differences between the three approximations are obtained in the pT,hh
distribution, reported in figure 4. The NNLOB-proj approximation predicts huge corrections

for large transverse momentum, the result being almost an order of magnitude larger than

the NLO prediction and the other approximations for pT,hh ∼ 500 GeV. This behavior is

hardly surprising since already at NLO the Born-projected result deviates from the exact

NLO prediction in this way [17]. In fact, given that the pT,hh distribution is not defined

at LO, the NNLOB-proj corrections cannot inherit any information about the (full) lowest-

order prediction for this distribution. This is of course not the case for the other two

approximations, which in fact make an almost identical prediction at large pT,hh, with
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Figure 4. Higgs boson pair transverse momentum distribution at 14 TeV (left) and 100 TeV (right).
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Figure 5. Leading jet transverse momentum distributions at 14 TeV (left) and 100 TeV (right).

Here jets are clustered with the anti-kT algorithm [59] with R = 0.4 and pT,j1 > 30 GeV

and |ηj | ≤ 4.4.

large corrections that can be well above 50%, and sizable uncertainties at the level of 30%–

40%, reflecting the NLO-nature of this observable. At lower transverse momenta, however,

the NNLONLO−i and NNLOFTapprox deviate from each other, and the latter approaches

the NNLOB−proj prediction. Once again, the different behavior of these approximations is

more pronounced in the 100 TeV distribution, for which the central NNLONLO−i curve lies

outside the NNLOFTapprox uncertainty band below pT,hh ∼ 200 GeV. Of course, in order to

obtain reliable results in the low-pT,hh region, the corresponding logarithmically enhanced

contributions need to be properly resummed to all orders in the strong coupling constant.
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Figure 6. Transverse momentum distribution for the harder Higgs boson at 14 TeV (left) and

100 TeV (right).

The transverse momentum distribution of the leading jet pT,j1, reported in figure 5,

has similar features as the pT,hh distribution. Again we observe the unphysical excess pre-

dicted by the NNLOB−proj approximation, which can be understood using the same argu-

ments as presented for the pT,hh distribution, and the agreement between NNLOB−proj and

NNLOFTapprox at low pT,j1. The difference between the NNLONLO−i and NNLOFTapprox

results is more pronounced here, with the FTapprox predicting a softer spectrum for this

observable, and small corrections that are almost always contained in the NLO scale un-

certainty band.

The transverse-momentum distributions of the harder and the softer Higgs boson are

reported in figures 6 and 7, respectively. As can be expected from the pT,hh spectrum, the

NNLOB-proj result for pT,h1 features very large corrections as pT,h1 increases. The effect,

however, is less severe than the one observed in pT,hh because the pT,h1 observable is al-

ready well defined at LO. The NNLONLO-i curve is overall in good agreement with the

NNLOFTapprox prediction: it shows moderate corrections with respect to the NLO result

which increase as pT,h1 increases, while the scale uncertainties are about ±15%. At very

small pT,h1 the higher-order corrections become perturbatively unstable as the available

phase space for the real radiation is severely restricted in this regime yielding large loga-

rithms that should be resummed in order to get a reliable prediction, see also the discussion

in section 3.4 of ref. [19]. For the transverse momentum of the softer Higgs boson, pT,h2,

the NNLO effect is rather uniform in all three approximations, especially at 14 TeV. The

NNLOFTapprox predicts small corrections of order 10%, while the other two approximations

show larger corrections with a similar shape. In the tail of the distribution the scale un-

certainty at NNLO is larger than at NLO, most likely due to an accidentally small size of

the NLO scale variation (in fact, in this region the NLO corrections almost vanish).

Finally, the distribution in the azimuthal angle between the two Higgs bosons, ∆φhh,

is shown in figure 8. At LO we have ∆φhh = π, due to the back-to-back production of
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Figure 7. Transverse momentum distribution for the softer Higgs boson at 14 TeV (left) and

100 TeV (right).
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Figure 8. Azimuthal angular separation between the two Higgs bosons at 14 TeV (left) and

100 TeV (right).

the two Higgs bosons at Born level. Real contributions allow ∆φhh to be smaller than π,

and again we observe that the NNLOB-proj approximation predicts larger corrections in

the region dominated by hard radiation compared to the other two results, which again

are in good agreement with each other in that region, whereas they start to deviate for

larger angles. For values of ∆φhh close to π, this observable receives large corrections from

soft-gluon emission, and the corresponding large logarithms should be resummed in order

to get a reliable prediction.

We conclude this section by adding a few comments on the finite-Mt uncertainties

at NNLO for the various differential distributions. The analysis that was performed for
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the total cross section cannot be easily extended to differential distributions. On one

hand, any accidental agreement between the FTapprox and the full result at NLO in a

given phase-space region would likely lead to an underestimation of the top quark mass

effects; on the other hand, the regions in which the NLO corrections are very small due

to cancellations between different contributions can present very large relative differences

in the O(α3
S) contribution of the NLOFTapprox and NLO results, thus leading to artificially

large uncertainties at NNLO. In addition, there are observables that are by definition

reproduced in an exact way by the FTapprox at NLO (in our case pT,hh, pT,j1 and ∆φhh),

and the uncertainty estimate procedure that we defined for the inclusive case is therefore not

applicable. Despite these facts, and based on the performance of the FTapprox at NLO [17]

as well as on the observed differences between our NNLO approximations, we can try

to assess the order of magnitude of the expected missing Mt effects for the distributions

presented above.

In the Higgs boson pair invariant-mass distribution, for values of Mhh below 500 GeV

the level of accuracy of the FTapprox at NLO is similar to the inclusive case, and therefore

the Mt uncertainty at NNLO is expected to be of a comparable size. In the tail of the

distribution, however, the quality of the FTapprox decreases (see figure 5 of ref. [17]), and

we thus expect the finite top quark mass effects to be of O(10%) in this region.

The shape of the rapidity distribution of the Higgs boson pair is correctly described

by the FTapprox at NLO (see figure 8 of ref. [17]), and the difference to the full result is

only the overall normalization. Based on this, the estimated top quark mass uncertainty

for the NNLOFTapprox result is constant in the whole yhh range and of the same size as for

the inclusive cross section.

The transverse momentum of the harder Higgs boson is very well described at NLO by

the FTapprox (see figure 7 of ref. [17]), being always within the NLO scale uncertainty band.

This fact, together with the close agreement between the NNLOFTapprox and NNLONLO−i

predictions, suggests that the missing top quark mass effects at NNLO are probably of

moderate size. The same holds true for the transverse-momentum distribution of the

softer Higgs boson, except for the tail where at NLO the FTapprox overestimates the full

NLO corrections, which in fact almost vanish in this region.

The remaining distributions, which are either not defined or trivial at LO, are by def-

inition reproduced in an exact way by the FTapprox at NLO, and this makes the estimate

of the missing top quark mass effects at NNLO more difficult. In this case, a possible ap-

proach can be to use the difference between the NNLOFTapprox and NNLONLO−i prediction

as an estimate of the uncertainty (as discussed before, the NNLOB−proj prediction is not

expected to be reliable in the regions dominated by hard real radiation, where it largely

deviates from the other two approximations). This procedure would imply relatively low

top quark mass uncertainties for the pT,hh and ∆φhh distributions, except for the low pT,hh
and the ∆φhh ∼ π regions, typically below the size of the scale uncertainties, and larger

uncertainties for the leading-jet transverse momentum, for which the difference between

the two approximations is larger.
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4 Summary

In this work we considered Higgs boson pair production through gluon fusion in proton

collisions. We presented new QCD predictions for inclusive and differential cross sections,

which include the full NLO contribution and also account for finite top quark mass effects

at NNLO. Our best prediction, denoted NNLOFTapprox, retains the full top quark mass

dependence in the double-real emission amplitudes, while the remaining real-virtual and

two-loop virtual HEFT amplitudes are treated via a suitable reweighting for the corre-

sponding subprocesses with a given final-state multiplicity. This approximation represents

the most advanced prediction available to date for this process.

The numerical results we obtained for the NNLOFTapprox are quantitatively different

from the results obtained in previous combinations. In particular, as far as the total

cross section is concerned, the corrections turn out to be smaller than previous estimates,

increasing the NLO result by about 12% at 13 TeV and 7% at 100 TeV. The reduction of

the scale uncertainties is significant, by about a factor of three for LHC energies. Given that

our NNLOFTapprox prediction includes top quark mass effects in an approximated way, it is

important to assess the corresponding uncertainty. We carefully examined the performance

of our approximations at both the inclusive and differential levels. The uncertainty on our

reference inclusive NNLOFTapprox prediction is estimated to be about ±2.7% at 14 TeV,

increasing with the collider energy to reach ±4.6% at 100 TeV.

Regarding differential distributions, in most of the cases we can observe clear qualita-

tive differences with respect to the bin-by-bin reweighting procedure introduced in ref. [17],

in the shape and/or the normalization. For some of the distributions, however, specifically

the tails of the pT,hh and pT,h1 spectra, both approximations are in very good agreement.

We discussed an estimate of the uncertainty associated with top quark mass effects at

NNLO at the differential level, and we found that in most of the cases its magnitude is

comparable to the size of the scale uncertainties, except for the tails of some distributions

where the uncertainty from missing Mt effects can be dominant.
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