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Anisotropic hydrodynamics improves upon standard dissipative fluid dynamics by treating certain
large dissipative corrections non-perturbatively. Relativistic heavy-ion collisions feature two such
large dissipative effects: (i) Strongly anisotropic expansion generates a large shear stress component
which manifests itself in very different longitudinal and transverse pressures, especially at early
times. (ii) Critical fluctuations near the quark-hadron phase transition lead to a large bulk viscous
pressure on the conversion surface between hydrodynamics and a microscopic hadronic cascade de-
scription of the final collision stage. We present a new dissipative hydrodynamic formulation for
non-conformal fluids where both of these effects are treated nonperturbatively. The evolution equa-
tions are derived from the Boltzmann equation in the 14-moment approximation, using an expansion
around an anisotropic leading-order distribution function with two momentum-space deformation
parameters, accounting for the longitudinal and transverse pressures. To obtain their evolution we
impose generalized Landau matching conditions for the longitudinal and transverse pressures. We
describe an approximate anisotropic equation of state that relates the anisotropy parameters with
the macroscopic pressures. Residual shear stresses are smaller and are treated perturbatively, as
in standard second-order dissipative fluid dynamics. The resulting optimized viscous anisotropic
hydrodynamic evolution equations are derived in 3+1 dimensions and tested in a (0+1)-dimensional
Bjorken expansion, using a state-of-the-art lattice equation of state. Comparisons with other viscous
hydrodynamical frameworks are presented.
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I. INTRODUCTION

Dissipative relativistic fluid dynamics has become the
workhorse for simulations of the dynamical evolution
of relativistic heavy-ion collisions [1–8]. When supple-
mented with realistic fluctuating initial conditions, a pre-
equilibrium evolution module that evolves these initial
conditions into starting values for the hydrodynamic evo-
lution, and a hadronic rescattering afterburner that de-
scribes the late microscopic kinetic evolution of the col-
lision fireball during its dilute decoupling stage, the ap-
proach has yielded impressive quantitative precision in
its description of a broad set of soft hadronic observables
(i.e. distributions of hadrons with momenta below about
1−2.5 GeV/c) obtained from heavy-ion collision exper-
iments at the Relativistic Heavy Ion Collider (RHIC)
and the Large Hadron Collider (LHC) [9–12], and it has
demonstrated convincing predictive power when extend-
ing the calculations into new domains of collision energy
[13–17] or for new collision systems [18–23]. Surprisingly,
the phenomenological success of dissipative fluid dynam-
ics has so far continued unabated in the description of
p+Au, d+Au and 3He+Au collisions at RHIC and p+p
collisions at the LHC [20, 23, 24], i.e. for “small” colli-
sion systems in which the hydrodynamic model had been
widely expected to break down. This finding has gen-
erated much recent work addressing two obvious ques-
tions arising from these observations: (1) What exactly

are the formal criteria that ensure the applicability of
relativistic dissipative fluid dynamics to small physical
systems undergoing rapid collective expansion and con-
trol its eventual break-down? How far away from local
thermal equilibrium can a system be and still evolve hy-
drodynamically? (2) Are there alternate mechanisms at
work that can mimic the phenomenological signals of hy-
drodynamic collective flow, especially in small collision
systems, without requiring strong final-state interactions
among the constituents of the fireball created in the col-
lision that lead to some degree of approximate local ther-
malization?

Generically, hydrodynamics is an effective macroscopic
theory for the late-time, long-distance evolution of suffi-
ciently equilibrated multiparticle systems. It is typically
thought of as a gradient expansion around ideal fluid dy-
namics. The latter describes locally perfectly thermal-
ized fluids in which any deviation from local thermal equi-
librium is immediately erased by strong final-state inter-
actions among the microscopic constituents, i.e. systems
whose microscopic relaxation time is effectively zero. Rel-
ativistic heavy-ion collisions challenge the validity of such
an expansion through extremely large density gradients
in the initial state, which lead to explosive collective ex-
pansion driving the system away from local thermal equi-
librium. Even worse, the ultra-relativistic collision kine-
matics, combined with the quantum mechanics of the ini-
tial particle production process that generates the fireball
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medium from the energy lost by the colliding nuclei in
the collision process [25], imprints on the system a very
strong initial expansion along the “longitudinal” beam
direction, with an approximately boost-invariant longi-
tudinal expansion velocity profile (“Bjorken flow” [26]),
while any collective expansion in the directions trans-
verse to the beam is initially small and only builds up
later in response to transverse pressure gradients. In re-
alistic fluids with non-zero microscopic mean free paths,
the resulting large anisotropy in the collective expan-
sion rate causes large anisotropies in the local rest frame
(LRF) momentum distributions of the microscopic con-
stituents. In such a situation an expansion around a lo-
cally isotropic thermal equilibrium distribution cannot
be expected to converge well.

In addition to rapid and strongly anisotropic expansion
(which is most problematic during the earliest stage of a
heavy-ion collision) another large dissipative effect occurs
towards the end of the evolution when the fireball matter
undergoes a phase transition from a quark-gluon plasma
(QGP) to a hadron resonance gas (HRG). Critical dy-
namics near the phase transition causes the bulk viscos-
ity to become large and peak near the (pseudo-)critical
temperature Tc [27–33]. The resulting large bulk vis-
cous pressure is associated with a strong deviation of the
LRF momentum distribution from thermal equilibrium.
Again, this provides a challenge for any expansion around
a local equilibrium distribution function. Since (due to
the screening of color interactions by color confinement)
the constituents’ mean free path in the hadron resonance
gas is much larger than in the quark-gluon plasma, the
Knudsen number (defined as the product of the mean free
time and the scalar expansion rate) increases suddenly
as the QGP turns into hadrons, to the extent that the
subsequent evolution can no longer be reliably described
by hydrodynamics [34]. One must therefore switch to a
microscopic kinetic description basically as soon as the
hadronization process is complete. At this point the crit-
ically enhanced bulk viscous pressure is still large because
critical slowing down [34–36] prohibits it from relaxing
quickly to the much smaller values expected away from
the phase transition. Its effect on the hadron distribution
functions in the HRG can therefore not be treated effec-
tively as a perturbation around local thermal equilibrium
and should be accounted for non-perturbatively.

In this work we develop an improved version of
anisotropic hydrodynamics that accounts for large shear
viscous effects caused by a strong longitudinal-transverse
anisotropy of the expansion rate and for large viscous
corrections caused by critical dynamics near the quark-
hadron phase transition non-perturbatively. The for-
malism is constructed for full (3+1)-dimensional evolu-
tion and tested numerically for (0+1)-dimensional boost-
invariant expansion along the beam direction (Bjorken
flow [26]). Numerical results for full (3+1)-dimensional
evolution of heavy-ion collisions with realistic fluctuat-
ing initial conditions [6, 15, 37, 38] will be presented in
a future publication. To derive the anisotropic hydro-

dynamic evolution equations we start from an underly-
ing kinetic theory, the relativistic Boltzmann equation
in relaxation time approximation (RTA BE). While such
a classical kinetic approach is known to only work for
dilute and weakly coupled gases [39], it allows to derive
the structure of the macroscopic hydrodynamic equations
through a systematic moment expansion [40–43]. As an
effective theory, the structure of these equations holds
equally well for strongly and weakly coupled systems
(i.e. it depends only on the separation of microscopic
and macroscopic length scales), as long as one changes
the material properties of the fluid (i.e. its equation of
state, transport coefficients, relaxation times, etc.) that
enter as input into the hydrodynamic description to the
actual situation of interest.

Our approach starts from the general treatment de-
scribed in [41, 42, 44–47], expanding the Boltzmann
equation around an anisotropic local rest frame distribu-
tion function fa which in our case is deformed around the
local equilibrium distribution function by two parameters
to account for one large shear stress component and a
large bulk viscous pressure as described above. Our main
innovation is that, following recent insights reported in
[43, 48], the evolution of these deformation parameters is
optimized by determining them through generalized dy-
namical Landau matching conditions, similar to those fix-
ing the evolution of the temperature and chemical poten-
tial. This guarantees that the leading order anisotropic
distribution fa (around which the full distribution func-
tion is expanded in moments) fully accounts not only for
the energy and conserved charge density, but also for the
longitudinal and transverse pressures (or, equivalently,
the longitudinal-transverse pressure anisotropy (which is
the largest shear stress component) and the bulk viscous
pressure, as described above). It also significantly sim-
plifies the structure of the relaxation equations for the
residual dissipative flows. Writing the full distribution
function f as f = fa+ δf̃ , the deviation δf̃ describes the
(smaller) residual shear stress component and the charge
diffusion current. In the present work we will mostly
ignore conserved charges and will hence set the charge
chemical potential and charge diffusion effects to zero,
leaving a complete treatment to a follow-up paper.

Initially, the resulting hydrodynamic framework is
formulated in terms of evolution equations for the
parameters characterizing the leading-order distribu-
tion fa (temperature, chemical potential, momentum-
deformation parameters), similar to the traditional ap-
proach reported in [46, 47, 49, 50] which makes explicit
reference to kinetic theory and thus requires that such a
distribution function exists and is well-defined. We sub-
sequently break this connection to an underlying kinetic
theory by developing a technique that allows to express
these microscopic parameters in terms of macroscopic hy-
drodynamic quantities so that the formalism can be com-
pletely formulated and solved as a macroscopic theory.
This procedure introduces the concept of an “anisotropic
equation of state” (aEOS) which we discuss at some
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length. We here use a weakly-interacting quasiparti-
cle model with a temperature-dependent particle mass
[51, 52] to calculate this aEOS and also the required
transport coefficients, keeping mind that in later appli-
cations to heavy-ion collisions these ingredients should
be computed or modeled for QCD, or considered as phe-
nomenological parameters to be determined from the ex-
perimental data.

With this work we open the door to answering
the question to what extent complete second-order
anisotropic fluid dynamics (which we call “viscous
anisotropic hydrodynamics” or vaHydro [41]) extends the
range of validity of dissipative fluid dynamics towards
smaller collision systems and earlier switching times
between the pre-equilibrium and hydrodynamic stages.
Having a non-equilibrium hydrodynamic approach that
is optimized to the particular challenges posed by ultra-
relativistic collisions between nuclei as small as protons
is a necessary step towards developing a quantitatively
predictive dynamical framework that can set benchmarks
for comparison with experimental data and with other,
non-hydrodynamic explanations of the latter.

Before starting the technical part of our discussion
we introduce our notation. Throughout this work we
use natural units ~= c= kB = 1. The metric signature
is taken to be “mostly minus” (+,−,−,−). The local
rest frame (LRF) is defined as the Landau frame: the
fluid velocity uµ is the normalized time-like eigenvector
of the energy-momentum tensor, Tµνuν = Euµ, where E
is the energy density in the local rest frame. It satisfies
uµ =Tµνuν

/√
uµTµνuν and the normalization condition

uµu
µ = 1. Unless otherwise indicated we ignore conserved

charges and their associated chemical potentials.

The paper is structured as follows: In Sec. II we briefly
review the general structure of anisotropic hydrodynam-
ics and its evolution equations for the energy density
and longitudinal and transverse acceleration. Relaxation
equations for the anisotropic dissipative flows are de-
rived in Sec. III, starting from the relativistic Boltzmann-
Vlasov equation in relaxation time approximation and
implementing generalized Landau matching conditions
for the evolution of the microscopic parameters charac-
terizing the anisotropic distribution function. In Sec. IV
we show how to integrate a realistic lattice QCD equa-
tion of state into the anisotropic hydrodynamic frame-
work and reformulate its evolution equations in purely
macroscopic form, i.e. without any reference to param-
eters that are only defined in a kinetic theory model for
the microscopic dynamics. In that Section we also dis-
cuss the resolution of several technical issues arising in
the process of solving the anisotropic hydrodynamic evo-
lution equations numerically. In Sec. V we illustrate the
performance of our anisotropic hydrodynamic framework
in comparison with standard dissipative fluid dynamics
for a simple system undergoing Bjorken flow. A sum-
mary of our findings and a brief outlook are presented
in Sec. VI. Several appendices supply additional techni-
cal ingredients, including (in Appendix E) the derivation

of the evolution equations for standard viscous fluid dy-
namics needed for the comparison shown in Sec. V.

II. ANISOTROPIC HYDRODYNAMICS

A. Ideal fluid decomposition

In relativistic hydrodynamics, the energy-momentum
tensor of a perfect fluid is best decomposed in the basis
uµuν and ∆µν = gµν−uµuν where uµ is the fluid four-
velocity (i.e. the four-velocity of the local rest frame
(LRF) relative to the global frame):

Tµν(x) = E(x)uµ(x)uν(x)− Peq(x) ∆µν(x). (1)

From here on we will mostly suppress the space-time
(x) dependence for notational simplicity. The LRF en-
ergy density E and thermal equilibrium pressure Peq

are recovered by projecting the energy-momentum tensor
onto the temporal and spatial directions: E = uµuνT

µν

and Peq = − 1
3∆µνT

µν . Since the thermal pressure is
isotropic none of the spatial directions in the LRF are
special, and there is no advantage in decomposing the
spatial projector ∆µν further.

B. Viscous fluid decomposition

Standard dissipative fluid dynamics is formulated by
decomposing Tµν in the same basis, but adding dissipa-
tive corrections accounting for the bulk viscous pressure
Π and the shear stress tensor πµν :

Tµν = E uµuν − (Peq+Π) ∆µν + πµν . (2)

This assumes that the LRF is the Landau frame, i.e.
that in the LRF there is no net momentum flow. Eq. (2)
implicitly assumes that in the LRF all viscous corrections
are of similar order of magnitude and small relative to the
equilibrium energy density and pressure, such that there
still is no advantage in decomposing the locally spatial
projector further into individual spatial directions.

C. Anisotropic viscous fluid decomposition

The general arguments presented in the introduc-
tion imply that in relativistic heavy-ion collisions the
shear stress πµν is highly anisotropic, and the difference
PL−P⊥ between the longitudinal and transverse pres-
sures can be quite large, due to strongly different longitu-
dinal and transverse expansion rates. This suggests that
anisotropic hydrodynamics is best formulated by using
a more detailed decomposition of the energy-momentum
tensor in which the spatial projector is further decom-
posed as ∆µν = Ξµν − zµzν , where zµ points along the
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beam direction and Ξµν ≡ gµν − uµuν + zµzν projects
onto the spatially transverse directions in the LRF [42]:

Tµν = E uµuν+PL zµzν−P⊥ Ξµν+2W
(µ
⊥zz

ν) +πµν⊥ . (3)

The round parentheses around pairs of Lorentz indices

indicate symmetrization: W
(µ
⊥zz

ν) ≡ 1
2

(
Wµ
⊥zz

ν+W ν
⊥zz

µ
)
.

The anisotropic decomposition (3) clearly separates the
pressures PL and P⊥ from the other dissipative com-
ponents. Given an arbitrary energy momentum tensor
Tµν , the anisotropic hydrodynamic quantities appearing
in this decomposition can be obtained by the following
projections:

E = uµuνT
µν , (4a)

PL = zµzνT
µν , (4b)

P⊥ = −1

2
ΞµνT

µν , (4c)

Wµ
⊥z = −ΞµαT

ανzν , (4d)

πµν⊥ = ΞµναβT
αβ , (4e)

In the last line we introduced the symmetric traceless
transverse projection tensor Ξµναβ = 1

2

(
ΞµαΞνβ + ΞνβΞµα −

ΞµνΞαβ
)
. The corresponding transverse shear stress ten-

sor πµν⊥ describes two shear stress degrees of freedom that
account for momentum diffusion currents along the trans-
verse directions. It is traceless and orthogonal to both the
fluid velocity and the direction of the pressure anisotropy:

πµ⊥,µ = uµπ
µν
⊥ = zµπ

µν
⊥ = 0. (5)

Another two shear stress degrees of freedom are en-
coded in the longitudinal-momentum diffusion current
Wµ
⊥z which is orthogonal to both uµ and zµ:

uµW
µ
⊥z = 0 = zµW

µ
⊥z. (6)

The remaining fifth (and largest) shear stress component
is given by PL−P⊥. Altogether, the 5 independent com-
ponents of the standard shear stress tensor in Eq. (2) are
related to those in the anisotropic decomposition (3) by

πµν = πµν⊥ + 2W
(µ
⊥zz

ν) +
1

3

(
PL−P⊥

)(
2zµzν −Ξµν

)
(7)

while the single bulk viscous pressure degree of freedom
Π in Eq. (2) is related to the thermal, longitudinal and
transverse pressures in Eqs. (2,3) by

Π =
2P⊥ + PL

3
− Peq. (8)

Here Peq is not an independent degree of freedom but
related to the energy density E by the equation of state
(EOS) of the fluid, Peq(E).

D. Hydrodynamic evolution equations

Four of the ten evolution equations that control the
dynamics of the energy-momentum tensor are obtained

from the conservation laws for energy and momentum

∂µT
µν = 0. (9)

Projecting with uν on the temporal direction in the
LRF provides an evolution equation for the LRF energy
density:

Ė + (E+P⊥)θ⊥ + (E+PL)zµDzu
µ

+Wµ
⊥z
(
Dzuµ−zν∇⊥µuν

)
− πµν⊥ σ⊥,µν = 0.

(10)

Here and below a dot over or a D in front of a quantity
denotes the comoving time derivative, e.g. DE ≡ Ė ≡
uµ∂µE . zµDzu

µ is the scalar longitudinal expansion rate,
and θ⊥=∇⊥·u is the scalar transverse expansion rate.
The longitudinal derivative and transverse gradient in
the LRF are written as Dz = −zµ∂µ and ∇⊥µ = Ξνµ∂ν ,

respectively. σ⊥,µν = Ξαβµν ∂αuβ is the transverse velocity-
shear tensor.

The longitudinal projection zν∂µT
µν = 0 yields an

equation for the longitudinal acceleration of the fluid in
the LRF:

(E+PL)zµu̇
µ = −DzPL + (PL−P⊥)θ̃⊥

−Wµ
⊥zDzzµ + πµν⊥ σ̃⊥,µν .

(11)

Here θ̃⊥ ≡ ∇⊥·z and σ̃⊥,µν = Ξαβµν ∂αzβ .1

An equation for the transverse acceleration is obtained
from the transverse projection Ξαν ∂µT

µν = 0:

(E+P⊥)Ξαν u̇
ν = ∇α⊥P⊥ + (PL−P⊥)ΞανDzz

ν

−Wα
⊥z

(3

2
θ̃⊥−zν u̇ν

)
−W⊥z,ν(σ̃αν⊥ −ω̃αν⊥ )

+ ΞανDzW
ν
⊥z + παν⊥ (u̇ν+Dzzν)− Ξαν∇⊥µπ

µν
⊥ .

(12)

Here ω̃αν⊥ ≡ ΞαµΞνβ∂[βzµ] where the square brackets

indicate antisymmetrization: ∂[βzµ] ≡ 1
2

(
∂βzµ−∂µzβ

)
.

Equations (10)-(12) agree (after adjustment of notation)
with Eqs. (146)–(148) in Ref. [42].

III. DISSIPATIVE RELAXATION EQUATIONS

To close the system of equations, we need six additional
relaxation equations for PL, P⊥, Wµ

⊥z and πµν⊥ . Their
dynamics is not controlled by macroscopic conservation
laws but by microscopic interactions among the fluid’s
constituents. As discussed in Sec. I, we will here derive
them by assuming a weakly-coupled dilute fluid whose
microscopic physics can be described by the relativistic
Boltzmann-Vlasov equation for a single particle species
with a medium-dependent mass:

pµ∂µf +m∂µm∂(p)
µ f = C[f ]. (13)

Here f(x, p) is the single particle distribution function,
C[f ] is the collision kernel, m(x) is the medium-depen-

dent effective mass, and ∂
(p)
µ is the momentum derivative.

1 Generically we use tildes to indicate quantities involving deriva-
tives of zµ instead of uµ.
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A. Anisotropic distribution function

For anisotropic hydrodynamics we split the distribu-
tion function into a momentum-anisotropic leading-order
contribution fa(x, p) and a small residual correction δf̃ :

f(x, p) = fa(x, p) + δf̃(x, p) (14)

For the leading order distribution we take the generalized
Romatschke-Strickland form [53–55]:

fa(x, p) = feq

(√
Ωµν(x) pµpν − µ̃(x)

Λ(x)

)
. (15)

Here feq(z) = 1/(ez + Θ) is the equilibrium distribu-
tion, with Θ = 1, 0,−1 for Fermi-Dirac, Boltzmann, and
Bose-Einstein statistics, respectively. Λ(x) is an effective
temperature and µ̃(x) an effective chemical potential. In
this work we consider a system without conserved charges
and assume, for simplicity, that particle number chang-
ing microscopic processes in the collision term C[f ] are so
fast that the effective chemical potential relaxes to zero
faster than any other microscopic time scale.2

In this work the leading-order momentum anisotropy
is encoded in the ellipsoidal tensor

Ωµν(x) = uµ(x)uν(x)− ξ⊥(x)Ξµν(x)

+ ξL(x)zµ(x)zν(x).
(16)

It contains two space-time dependent anisotropy param-
eters ξL and ξ⊥. With Ξµνp

µpν = −p2
⊥,LRF (i.e. the

square of the transverse momentum p⊥,LRF in the LRF),
Ωµνp

µpν can be rewritten as

Ωµνp
µpν = m2 + (1+ξ⊥)p2

⊥,LRF + (1+ξL)p2
z,LRF. (17)

The difference ξL−ξ⊥ can be attributed to a manifesta-
tion of shear stress (resulting in a difference between the
the longitudinal and transverse pressures) while the sum
ξL+ξ⊥ encodes a bulk viscous pressure [56, 57]. Introduc-

ing the notation αL,⊥(x) =
(
1 + ξL,⊥(x)

)−1/2
, Eq. (15)

can be written in LRF momentum components more con-
veniently as

fa = feq

 1

Λ

√
m2 +

p2
⊥,LRF

α2
⊥

+
p2
z,LRF

α2
L

 . (18)

To make the decomposition (14) unique one must spec-
ify the three parameters Λ(x) and αL,⊥(x). We proceed
as follows: The physical temperature T of the system

2 This assumption is not realistic: since number-changing pro-
cesses are a subset of all microscopic processes, chemical relax-
ation processes are typically slower than momentum-changing
ones. We here make this assumption for simplicity only and in-
tend to relax it in future work.

is defined by the LRF energy density via the thermody-
namic relation E(x) ≡ E

(
T (x)

)
. To relate the effective

temperature Λ to T we impose the generalized Landau
matching condition3

δẼ ≡ 〈(u · p)2〉δf̃ = 0, (20)

which states that Λ(α) must be chosen such that the

residual deviation δf̃ does not contribute to the energy
density. This fixes Λ(α) as a function of T ; the two agree
in the limit α → 1 when the anisotropic leading-order
distribution fa reduces to a locally isotropic equilibrium
distribution feq(u·p/T ).

The momentum deformation parameters αL,⊥(x) are
fixed by similar generalized Landau matching conditions
for the transverse and longitudinal pressures

PL = Peq + Π + πzzLRF, (21a)

P⊥ = Peq + Π− 1
2π

zz
LRF. (21b)

Here πzzLRF is the LRF value of the longitudinal diagonal
element of the shear stress tensor πµν in the decompo-
sition (2). Note that both the bulk viscous pressure Π
and the shear stress component πzzLRF are here assumed to
be “large” such that they must be accounted for already
at leading order, by adjusting the parameters αL,⊥(x)
accordingly. This is done by demanding

δP̃L ≡ 〈(−z · p)2〉δf̃ = 0, (22a)

δP̃⊥ ≡ 1
2 〈(−p · Ξ · p)〉δf̃ = 0. (22b)

By imposing these conditions, αL,⊥(x) are adjusted such
that the longitudinal and transverse pressures PL and P⊥
are everywhere fully accounted for by the leading-order
distribution fa, with zero residual contributions from δf̃ .
This is an application of the anisotropic matching scheme
proposed by Tinti in [55] and a generalization of the PL-
matching scheme proposed and studied in [43, 48] to both
PL and P⊥ (or, equivalently, to the pressure anisotropy
PL−P⊥ ∼ πzzLRF and the bulk viscous pressure Π). In

this matching scheme, the δf̃ correction generates only
the residual dissipative flows described by Wµ

⊥z and πµν⊥ ,
which break the cylindrical symmetry of the distribu-
tion function in the LRF and account for the remaining
four smaller components of the shear stress tensor πµν in
Eq. (7).

With the matching conditions (19), (20), and (22a,b)
we have the following kinetic theory expressions for the

3 We note that in the presence of conserved charges the effective
chemical potential µ̃ would be related to the physical chemical
potential associated with the conserved charge by a similar Lan-
dau matching condition for the conserved particle number n:

δñ ≡ 〈u · p〉δf̃ = 0. (19)
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particle number and energy densities as well as for the
longitudinal and transverse pressures:4

n(k) = 〈u · p〉fa = I1000, (23a)

E(k) = 〈(u · p)2〉fa = I2000, (23b)

P(k)
L = 〈(−z · p)2〉fa = I2200, (23c)

P(k)
⊥ = 1

2 〈(−p · Ξ · p)〉fa = I2010. (23d)

The “anisotropic integrals” Inrqs over the leading-order
distribution function fa that appear in these equations
are defined in Eq. (A1).

B. Relaxation equations I

The relaxation equations for the dissipative flows are
obtained by expressing the latter as moments of the dis-
tribution function and using the Boltzmann equation to
describe its evolution, using the decomposition (14) and

treating δf̃ as a small perturbation. We start from

Ṗ(k)
L = D

∫
p

(−z · p)2fa , (24a)

Ṗ(k)
⊥ =

1

2
D

∫
p

(−p · Ξ · p)fa , (24b)

Ẇ
{µ}
⊥z = ΞµνD

∫
p

(−z · p) p{ν}δf̃ , (24c)

π̇
{µν}
⊥ = ΞµναβD

∫
p

p{αpβ}δf̃ , (24d)

where we defined the compact notations [42]

a{µ} ≡ Ξµνaν , t
{µν}
⊥ ≡ Ξµναβt

αβ ,

ȧ{µ} ≡ Ξµν ȧν , ṫ
{µν}
⊥ ≡ Ξµναβ ṫ

αβ (25)

for the spatially transverse (in the LRF) components of a
vector aµ or its LRF time derivative ȧµ and the spatially
transverse and traceless part of a tensor tµν or its LRF
time derivative ṫµν , as well as∫

p

=
g

(2π)3

∫
d4p 2Θ(p0)δ(p2 −m2) =

g

(2π)3

∫
d3p

Ep
(26)

for the Lorentz-invariant momentum space integral, with
g being a degeneracy factor counting the number of quan-
tum states allowed for a particle with on-shell momentum
pµ, and Θ(p0) denoting the Heaviside step function.

After moving the time derivative D on the r.h.s. under
the integral until it hits the distribution function fa or
δf̃ , we use the decomposition f = fa + δf̃ together with

∂µ = uµD + zµDz +∇⊥µ (27)

4 The superscript (k) on the thermodynamic quantities indicates
their kinetic theory definition for a gas of weakly-interacting
quasiparticles. The purpose of this notation will become clear
later when we introduce a more realistic EOS.

to rewrite the Boltzmann-Vlasov equation (13) in the
form

ḟa + δ
˙̃
f =

C[f ]−m∂µm∂
(p)
µ f

u · p

+
(−z · p)Dzfa − p{µ}∇⊥µfa

u · p

+
(−z · p)Dzδf̃ − p{µ}∇⊥µδf̃

u · p
.

(28)

Closing this equation requires an approximation for δf̃ .
We here use the 14-moment approximation.

C. The 14-moment approximation

The 14-moment approximation derives its name from
approximating δf̃ in terms of its 14 momentum moments
with pµ and pµpν (where the moment with the linear
combination pµpµgµν = m2 as weight function is equiv-
alent with the moment taken with weight 1) [58, 59].
In our case the choice of the Landau frame, together
with the generalized matching conditions (19), (20), and
(22a,b) and the absence of diffusion currents related
to conserved charges, eliminate ten of these moments,
leaving only four independent moments to construct δf̃ .
These need to be matched to the residual dissipative flows
Wµ
⊥z and πµν⊥ , which each have two degrees of freedom.

The 14-moment approximation for δf̃ can thus be writ-
ten as [42]

δf̃

faf̄a
(x, p) = c

{µ}
⊥ (x)

(
−z(x)·p

)
p{µ} + c

{µν}
⊥ (x)p{µ pν},

(29)

where f̄a = 1−Θfa. The coefficients c
{µ}
⊥ (x) and c

{µν}
⊥ (x)

are computed by substituting Eq. (29) into the kinetic
theory definitions of Wµ

⊥z and πµν⊥ ,

Wµ
⊥z =

∫
p

(−z · p)p{µ}δf̃ , (30a)

πµν⊥ =

∫
p

p{µpν}δf̃ , (30b)

and decoupling the resulting set of linear equations:

c
{µ}
⊥ = −

Wµ
⊥z

J4210
, c

{µν}
⊥ =

πµν⊥
2J4020

. (31)

The anisotropic integrals Jnrqs appearing in these ex-
pressions are defined in Eq. (A2). As expected, the coeffi-
cients are directly proportional to the residual dissipative
flows:

δf̃ =

(
−(−z · p)

p{µ}W
µ
⊥z

J4210
+
p{µ pν}π

µν
⊥

2J4020

)
faf̄a . (32)
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D. Relaxation equations II

Substituting the 14-moment approximation (32) for δf̃
into Eqs. (24) and (28), simplifying some of the resulting

terms by integrating by parts, and enforcing the gener-
alized matching conditions, some algebra yields the fol-
lowing dissipative relaxation equations:5

Ṗ(k)
L = −P̄

(k)−P(k)
eq

τΠ
−
P(k)
L −P

(k)
⊥

3τπ/2
+ ζ̄L(k)

z zµDzu
µ + ζ̄

L(k)
⊥ θ⊥ − 2Wµ

⊥z żµ + λ̄
L(k)
Wu W

µ
⊥zDzuµ

+λ̄
L(k)
W⊥W

µ
⊥zzν∇⊥µu

ν − λ̄L(k)
π πµν⊥ σ⊥,µν , (33)

Ṗ(k)
⊥ = −P̄

(k)−P(k)
eq

τΠ
+
P(k)
L −P

(k)
⊥

3τπ
+ ζ̄⊥(k)

z zµDzu
µ + ζ̄

⊥(k)
⊥ θ⊥ +Wµ

⊥z żµ + λ̄
⊥(k)
Wu W

µ
⊥zDzuµ

−λ̄⊥(k)
W⊥W

µ
⊥zzν∇⊥µu

ν + λ̄⊥(k)
π πµν⊥ σ⊥,µν , (34)

Ẇ
{µ}
⊥z = −

Wµ
⊥z
τπ

+ 2η̄Wu ΞµνDzuν − 2η̄W⊥ zν∇
µ
⊥u

ν −
(
τ̄Wz Ξµν + πµν⊥

)
żν + δ̄WWWµ

⊥zθ⊥

−λ̄WWuW
µ
⊥zzνDzu

ν + λ̄WW⊥σ
µν
⊥ W⊥z,ν + ωµν⊥ W⊥z,ν + λ̄Wπuπ

µν
⊥ Dzuν − λ̄Wπ⊥π

µν
⊥ zα∇⊥νuα, (35)

π̇
{µν}
⊥ = −

πµν⊥
τπ

+ 2η̄⊥σ
µν
⊥ − 2W

{µ
⊥z ż

ν} − δ̄ππ π
µν
⊥ θ⊥ − τ̄ππ π

α{µ
⊥ σ

ν}
⊥,α + 2π

α{µ
⊥ ω

ν}
⊥,α + λ̄ππ π

µν
⊥ zαDzu

α

−λ̄πWuW
{µ
⊥zDzu

ν} + λ̄πW⊥W
{µ
⊥zzα∇

ν}
⊥ u

α. (36)

Here P̄(k) = 1
3 (P(k)

L +2P(k)
⊥ ) is the average pressure as

given by kinetic theory, and ωµν⊥ ≡ΞµαΞνβ ∂
[βuα] is the

transverse vorticity tensor.
The structure of Eqs. (33)–(36) is simpler than that of

the corresponding equations derived in [42], not only by
the absence of terms coupling to the conserved charge
and diffusion currents (which only reflects the simplify-
ing assumptions made here), but also as a result of im-
posing the generalized Landau matching conditions (19),
(20), and (22a,b) which optimizes the evolution of the
anisotropy parameters in fa and thus removes additional
terms needed in [42] to correct their evolution if not cho-
sen optimally in the first place.

The transport coefficients appearing on the right hand
sides of Eqs. (33)-(36) are labeled following as much as
possible the convention established in Ref. [42]. Except
for the relaxation times they are given in Appendix C.6

5 In deriving these equations one encounters terms involving the
comoving time derivative ṁ of the temperature-dependent quasi-
particle mass that arise from the second term on the l.h.s. of the
Boltzmann-Vlasov equation (13). We eliminate them by using
the chain rule ṁ = (dm/dT ) (dT/dE) Ė where we take dm/dT
as external input from the quasiparticle model discussed below,
evaluate the derivative dT/dE = (dE/dT )−1 = c2sT/(E + Peq)

from the lattice QCD EOS, and use Eq. (10) for Ė. Equa-
tions (33)–(36) (together with the transport coefficients listed in
Appendix A) are found after combining the terms on the r.h.s. of
Eq. (10) with other terms involving the same dissipative forces.
In doing so we neglect contributions of O(Kn R̃−1

i R̃−1
j ), where

R̃−1
i is the residual inverse Reynolds number associated with the

residual components Wµ
⊥z and πµν⊥ .

6 Please note the superscripts (k) on the transport coefficients ap-

Generically they involve the “anisotropic thermodynamic
integrals” over the anisotropic distribution function fa
given in Appendix A. Their validity, as well as the validity
of the specific relations between some of these transport
coefficients listed in Appendix C, depends on the appli-
cability of relativistic kinetic theory of a gas of weakly-
interacting quasiparticles as the underlying microscopic
theory, which is not guaranteed for quark-gluon plasma.
Their generalization to a realistic microscopic theory of
QCD medium dynamics requires much additional work.
We will here use the expressions given in the Appendices
as order-of-magnitude estimates and placeholders for fu-
ture more realistic sets of transport coefficients.

Equations (33)-(36) also involve two relaxation times,
τπ and τΠ. τΠ controls the relaxation of the kinetic bulk

viscous pressure P̄(k)−P(k)
eq (see Eq. (8)) whereas the

shear relaxation time τπ drives the relaxation of both the

large shear stress component P(k)
L −P

(k)
⊥ and the smaller

ones described by Wµ
⊥z and πµν⊥ . That all shear stress

components have the same relaxation time even if some
of them become large is a model assumption that may be
corrected in future improved calculations of the transport
coefficients for strongly anisotropically expanding QGP.

Formally, the relaxation times arise from a lineariza-
tion of the collision term around the local equilibrium

pearing on the right hand sides of Eqs. (33) and (34). They
reflect the fact that these control the evolution of the kinetic
part of the longitudinal and transverse pressures. For the quasi-
particle model introduced in the next Section an additional mean
field enters which modifies these pressures and transport coeffi-
cients. The modified expressions will be denoted without the
superscript.
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distribution feq (with temperature computed from the
energy density):

C[f ] = −p · u(x)

τr(x)

(
f(x, p)− feq

(p·u(x)

T (x)

))
. (37)

Literal use of this Relaxation Time Approximation
(RTA) [60] gives τπ = τΠ = τr. However, strong coupling
in the quark-gluon plasma in the temperature regime just
above the quark-hadron phase transition, as well as crit-
ical behavior near that phase transition, lead to very dif-
ferent temperature dependences of the bulk and shear
viscosities and their associated relaxation times in QCD,
especially around Tc [28–31, 61]. In particular, the bulk
relaxation time τΠ is expected to be affected by “critical
slowing down” [29, 33, 35], i.e. it should exhibit a strong
peak near Tc. Since large bulk viscous effects near Tc
are one of the main motivations for our work here, we
feel compelled to account for them by introducing two
different relaxation times τπ and τΠ, and tying them to
phenomenologically parametrized shear and bulk viscosi-
ties η and ζ by postulating the standard kinetic theory
relations [40]

τπ = η/βπ τΠ = ζ/βΠ. (38)

The (temperature dependent) isotropic thermodynamic
integrals βπ and βΠ appearing in these relations are given
further below in Eq. (82). The viscosities η and ζ are
transport parameters that occur in standard “isotropic”
dissipative fluid dynamics – they appear here through the
relaxation times τπ and τΠ. When comparing anisotropic
with standard dissipative fluid dynamics further below in
Sec. V we will do so by using the same functions τπ and
τΠ in both approaches.

IV. ANISOTROPIC EQUATION OF STATE

While the relaxation equations (33)–(36) were de-
rived from the Boltzmann equation, the equations re-
main structurally unchanged for strongly coupled fluids.
They are purely macroscopic, i.e. all terms on the r.h.s.
have the form of some macroscopic driving force (pro-
portional to the Knudsen or inverse Reynolds numbers
or products thereof) multiplied by some transport coef-
ficient. The kinetic origin of these equations is hidden in
these transport coefficients. Applying the equations to
strongly coupled fluids requires only that these transport
coefficients, along with the equation of state relating the
energy density and equilibrium pressure, are swapped out
accordingly.

For the time being most of the transport coefficients
of hot and dense QCD matter are still essentially un-
known. While the shear and bulk viscosities will be taken
as parameters whose functional forms are modeled phe-
nomenologically and whose overall magnitudes are to be
fitted to experimental observables, the remaining trans-
port coefficients will be approximated using kinetic the-
ory, for reasons of consistency with our derivation of the

evolution equations. Their evaluation requires micro-
scopic kinetic inputs, namely the parameters (Λ, α⊥, αL)
characterizing the anisotropic distribution function fa,
the particle mass m, and also the temperature T . How-
ever, for the QGP equation of state, which is very pre-
cisely known from lattice QCD calculations [62, 63], we
want to use first-principles theoretical input.

In this Section we discuss how to consistently incor-
porate such direct information from QCD into a hydro-
dynamic framework that was originally derived from a
kinetic theory with a very different EOS. We will call
this procedure “integrating the lattice QCD EOS with
some kinetic framework”. We introduce a parametric
model for an anisotropic equation of state that allows
the anisotropic hydrodynamic equations, including the
dissipative relaxation equations for the longitudinal and
transverse pressures and the remaining shear stress com-
ponents, to be solved on a purely macroscopic level.
This differs from earlier implementations of the frame-
work which relied on the solution of dynamical evo-
lution equations of the microscopic kinetic parameters
(Λ, α⊥, αL,m) [43, 44, 46, 49–51] (which, for the case of
QCD, are not really well-defined). However, since we will
need these microscopic parameters for the calculation of
those transport coefficients that we compute from kinetic
theory (a temporary necessity that will disappear as soon
as ways have been found to calculate these transport co-
efficients directly from QCD), we determine them from
the macroscopic hydrodynamic quantities at the end of
each time evolution step, using our parametric model for
the anisotropic EOS.7

To construct this parametric model we follow Refs. [51,
52, 64] and parametrize the response of the pressure
anisotropy and the bulk viscous pressure to anisotropic
expansion using a quasiparticle EOS. The quasiparti-
cles have a temperature-dependent mass that is chosen
such that a weakly-interacting gas of these particles accu-
rately mimics the QCD EOS. The transport coefficients
are then worked out in this kinetic theory.8 It is well
known [65–67] that for thermodynamic consistency such
an approach requires the introduction of a mean field
B whose temperature dependence in equilibrium gener-
ates the temperature dependence of the quasiparticle’s
effective mass. It also receives additional dissipative cor-
rections out of equilibrium [52].

7 Note that the parametric model is not used for the equilibrium
EOS Peq(E) (for which we take state-of-the-art lattice QCD re-
sults) but only to parametrize the dissipative deviations of the
longitudinal and transverse pressures from Peq(E), as well as for
the calculation of the remaining transport coefficients.

8 Note that an accurate description of the equation of state does
not imply by any means that the kinetic theory also predicts the
correct transport properties of the medium. In all likelihood it
doesn’t.
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A. Integrating the lattice QCD EOS with a
quasiparticle EOS

The key question that needs to be addressed
in anisotropic hydrodynamics is how much pressure
anisotropy and bulk viscous pressure is generated by a
given hydrodynamic expansion rate and its anisotropy.
These are the two largest and most important dissipa-
tive effects in our approach. The answer to this question
depends on the microscopic properties of the medium.
For QCD matter this response is presently not known. It
is, however, a key ingredient in the hydrodynamic evolu-
tion model. In this subsection we model this response by
that of a weakly interacting gas of quasiparticles with
a medium-dependent mass m(T ). Within this model
we can associate (within certain limits) any given de-
viations of the longitudinal and transverse pressures PL
and P⊥ from the equilibrium pressure Peq(E) with spe-
cific values for the microscopic parameters

(
Λ,α,m

(
T )
))

describing the anisotropic quasiparticle distribution func-
tion fa. These values can then be used to compute the
kinetic theory values for the transport coefficients. So
while the equilibrium pressure is described by the full
QCD EOS from lattice QCD, the dissipative deviations
of PL and P⊥ from the equilibrium pressure are inter-
preted microscopically within a weakly interacting gas of
massive Boltzmann particles. As we solve the hydrody-
namic equations (10)–(12) together with the dissipative
relaxation equations (33)–(36), we interpret the resulting
deviations from local equilibrium within the quasiparticle
model by writing

0 = E(q) − E(q)
eq

(
E
)
, (39a)

PL − Peq(E) = P(q)
L − P

(q)
eq

(
E
)
, (39b)

P⊥ − Peq(E) = P(q)
⊥ − P

(q)
eq

(
E
)
. (39c)

Here the superscript (q) stands for “quasiparticle model”.
The zero on the l.h.s. of the first of these equations re-
flects the Landau matching condition E = E(T ) to the
lattice QCD energy density, which also provides us with
the temperature T at which the quasiparticle mass m(T )
and equilibrium mean field Beq(T ) (see below) are evalu-
ated. In the quasiparticle model the hydrodynamic quan-
tities on the r.h.s. of (39) consist of kinetic and mean field
contributions [64]

E(q) = E(k) +B, (40a)

P(q)
L = P(k)

L −B, (40b)

P(q)
⊥ = P(k)

⊥ −B. (40c)

The kinetic contributions are obtained from
Eqs. (23b,c,d):

E(k)
(
Λ,α;m(T )

)
= I2000

(
Λ,α;m(T )

)
, (41a)

P(k)
L

(
Λ,α;m(T )

)
= I2200

(
Λ,α;m(T )

)
, (41b)

P(k)
⊥
(
Λ,α;m(T )

)
= I2010

(
Λ,α;m(T )

)
, (41c)

where T = T (E). The mean field B consists of an equi-
librium part Beq and a dissipative correction δB:

B = Beq(T ) + δB. (42)

By Landau matching, the total quasiparticle energy den-
sity E(q) is fixed to its equilibrium value:

E(q)
eq (E) = E(k)

eq (T ) +Beq(T ), (43)

where E(k)
eq (T ) = I2000

(
T,1;m(T )

)
. The Landau match-

ing condition (39a) can then be rewritten as

I2000

(
Λ,α;m(T )

)
= I2000

(
T,1;m(T )

)
− δB. (44)

This establishes a relation between the temperature and
the kinetic theory parameters, provided that δB is deter-
mined. In the equilibrium limit, the quasiparticle pres-
sure is

P(q)
eq (E) = P(k)

eq (T )−Beq(T ) (45)

where P(k)
eq (T ) = I2200

(
T,1;m(T )

)
. The equilibrium

terms in (43) and (45) are all functions of temperature.
For simplicity we assume that the quasiparticles have

Boltzmann statistics (Θ = 0). To ensure that at asymp-
totically high temperature the equilibrium pressure and
energy density of this Boltzmann gas approach the cor-
responding values of a quark-gluon gas with 2(N2

c−1)
bosonic and 4NcNf fermionic degrees of freedom, we nor-
malize them by applying to the quasiparticle distribution
function a degeneracy factor

g =
(

2(N2
c−1) + 4NcNf

7
8

) π4

90
(46)

with Nc = 3 colors and Nf = 3 flavors, counting u, d,
and s quarks only (heavier flavors are exponentially sup-
pressed in the phenomenologically interesting tempera-
ture range and are therefore neglected). This degeneracy
factor is part of the momentum integration measure

∫
p

in the definition (26).
The thermal quasiparticle mass m(T ) is chosen such

that the equilibrium pressure P(q)
eq (E) and energy density

E(q)
eq (E) of the quasiparticle model agree with their lattice

QCD counterparts. Technically this is done by express-
ing the lattice QCD entropy density S in terms of the
corresponding kinetic theory expression S(q) for a gas of
quasiparticles with mass m(T ) and Boltzmann statistics
[64]:

S =
E + Peq

T
(47)

=
E(q)

eq + P(q)
eq

T
=
E(k)

eq + P(k)
eq

T
=
gT 3z

2π2
K3(z),

where Kn(z) is the modified Bessel function with z =
m(T )/T . For thermodynamic consistency the right hand
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FIG. 1. (Color online) The normalized quasiparticle mass
z = m/T (a), the derivative dm/dT (b) and the equilibrium
mean field Beq/T

4 (c) obtained from Eqs. (47) and (48) using
a state-of-the-art lattice QCD EOS compiled by the BEST
Collaboration [68] (solid lines) and from earlier lattice QCD
results obtained by the Wuppertal-Budapest Collaboration
[62, 64] (dashed lines), shown as functions of temperature T .
In practice, the equilibrium mean field in panel (c) is obtained
as the difference between the equilibrium kinetic and lattice

QCD pressures, Beq = P(k)
eq −P(q)

eq = P(k)
eq −Peq (see Eq. (45)).

side must satisfy S(q) = dP(q)
eq /dT , which is ensured by

setting

Beq(T ) = − g

2π2

∫ T

0

dT̂ T̂
3
ẑ2K1(ẑ)

dm(T̂ )

dT̂
(48)

where ẑ = m(T̂ )/T̂ . Plots of the quasiparticle mass-to-
temperature ratio z and equilibrium mean field Beq as

functions of T , using a 2010 lattice QCD EOS obtained
by the Wuppertal-Budapest Collaboration [62], can be
found in [64]. Here we use the state-of-the-art QCD EOS
compiled by the Beam Energy Scan Theory (BEST) Col-
laboration [68]. The resulting slightly modified temper-
ature dependences of z(T ), dm(T )/dT and Beq(T ) are
shown in Fig. 1 as solid lines (together with the earlier
results from Ref. [64] shown as dashed lines).

Equation (48) determines the mean field in equilib-
rium. Out of equilibrium it receives a non-equilibrium
correction δB [52]. As shown in [52], thermodynamic
consistency and energy-momentum conservation can be
used to derive from the Boltzmann equation the following
general evolution equation for B:

Ḃ +mṁ

∫
p

f +

∫
p

(u · p)C[f ] = 0. (49)

By Landau matching the non-equilibrium correction to
the quasiparticle energy density E(q) = E(k)+B must van-
ish, hence

B = Beq −
∫
p

(u · p)2δf (50)

where δf = f−feq. Substituting f = fa+δf̃ and using
the relaxation time approximation

C[f ] ≈ − (u · p) δf
τr

(51)

equation (49) takes the form

Ḃ = −B−Beq

τΠ
− ṁ

m

(
E(k)−2P(k)

⊥ −P
(k)
L

)
. (52)

Note that the expression in the parentheses is the trace of
the kinetic contribution to the energy-momentum tensor
Tµν . Since the non-equilibrium component of the mean
field δB = B −Beq contributes to the bulk viscous pres-
sure, we have replaced in Eq. (52) the relaxation time τr
by the bulk relaxation time τΠ. The time derivative of
the thermal mass can be expressed in terms of the energy
conservation law (10) using the chain rule.

Although Eq. (50) shows that B is not an independent
quantity, we find it most straightforward to use Eq. (52)
to propagate the mean field B dynamically. It does not
directly enter the evolution equations for the compo-
nents of the energy momentum tensor as an independent
variable, but is only needed for the model interpreta-
tion of the pressure anisotropy and bulk viscous pressure
(which are hydrodynamic outputs) in terms of the mi-
croscopic parameters (Λ,α) needed for computing the
transport coefficients in Appendix C. We use Eqs. (10),

(33), (34) and (52) to evolve E , P(k)
L , P(k)

⊥ and B. The

physical pressures are obtained from PL = P(k)
L −B and

P⊥ = P(k)
⊥ −B. From E we determine T using the lat-

tice EOS, and thus we know m(T ). Then we rewrite our
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anisotropic equation of state model (39) as

E −B = I2000

(
Λ,α,m(T )

)
, (53a)

PL +B = I2200

(
Λ,α,m(T )

)
, (53b)

P⊥ +B = I2010

(
Λ,α,m(T )

)
, (53c)

solve these equations for the anisotropy parameters
(Λ, α⊥, αL), and compute the transport coefficients.

Of course, the values
(
Λ,α,m

)
associated in this way

with PL, P⊥ and E at any point of the hydrodynamic
space-time grid are model dependent, and a different
parametrization of the lattice QCD EOS in terms of
quasiparticles (for example, as a mixture of different
types of quasiparticles with different quantum statistical
properties, degeneracy factors and masses) would yield

different results. For example, we have tried (and aban-
doned) an alternate approach where we used a weakly in-
teracting Boltzmann gas of particles with a fixed mass to
interpret the pressure anisotropy and bulk viscous pres-
sure in terms of microscopic parameters (Λ,α;m). In
that case we were unable to find solutions at early times
where the strong longitudinal expansion leads to nega-
tive bulk viscous pressures large enough that no valid
choice of microscopic parameters can reproduce this in
the kinetic model theory. In the quasiparticle model we
can partially absorb this with an out-of-equilibrium mean
field contribution.

With the anisotropic EOS model (53) we can finally
write down the equations of motion for the total pressures
PL and P⊥, by combining Eqs. (33,34) with Eq. (52):

ṖL = −P̄−Peq

τΠ
− PL−P⊥

3τπ/2
+ ζ̄Lz zµDzu

µ + ζ̄L⊥θ⊥ − 2Wµ
⊥z żµ + λ̄LWuW

µ
⊥zDzuµ + λ̄LW⊥W

µ
⊥zzν∇⊥µu

ν − λ̄Lππ
µν
⊥ σ⊥,µν , (54)

Ṗ⊥ = −P̄−Peq

τΠ
+
PL−P⊥

3τπ
+ ζ̄⊥z zµDzu

µ + ζ̄⊥⊥θ⊥ +Wµ
⊥z żµ + λ̄⊥WuW

µ
⊥zDzuµ − λ̄⊥W⊥W

µ
⊥zzν∇⊥µu

ν + λ̄⊥π π
µν
⊥ σ⊥,µν . (55)

Here we redefined the transport coefficients for the lon-
gitudinal and transverse pressures as detailed in Ap-
pendix D. This completes our formalism for nonconfor-
mal anisotropic hydrodynamics, where the equations of
motion (10)-(12), (35), (36), (54) and (55) are purely
macroscopic and structurally independent of the under-
lying microscopic physics, while the transport coeffi-
cients are evaluated with our specific quasiparticle kinetic
model for the anisotropic equation of state.

B. Reconstructing energy density and fluid velocity

Most numerical codes developed for heavy-ion colli-
sions (including ours) solve the energy-momentum con-
servation laws (9) on a fixed “Eulerian” space-time grid
instead of the LRF projected conservation equations
(10)–(12). The reason for this is the existence of pow-
erful flux-corrected evolution algorithms for conservation
laws of the type (9) [69–71]. To be able to use these algo-
rithms one writes Eqs. (9) in conserved flux form, which
for Milne coordinates xµ = (τ, x, y, η) reads

∂τT
τµ + ∂k(vkT τµ) = Jµ. (56)

The source term Jµ on the r.h.s. includes both geometric
(Christoffel) terms arising from the curvilinear nature of
the coordinate system and the dissipative fluxes [71].

Running the evolution algorithm for one time step thus
produces updated values for the first row of the energy-
momentum tensor and the dissipative flows encoded in
PL, P⊥, Wµ

⊥z and πµν⊥ , as well as the mean field B.
For the evaluation of the EOS and the calculation of

the transport coefficients as described in the preceding
subsection we need, however, the LRF energy density E ,
and to compute the source term Jµ we need the fluid
four-velocity uµ. How to obtain these from the updated
output of the evolution code at the end of a time step is
described in this subsection.

We start by writing the first row of Tµν as

T τµ = (E+P⊥)uτuµ−P⊥gτµ+∆Pzτzµ+2W
(τ
⊥zz

µ) +πτµ⊥
(57)

where gµν = diag(1,−1,−1,−1/τ2) is the metric tensor
and ∆P ≡ PL−P⊥. The space-like basis vector zµ can
be parameterized as [42]

zµ =
1√

1+u2
⊥

(τuη, 0, 0, uτ/τ) (58)

where u⊥ =
√
u2
x+u2

y is the magnitude of the transverse

four-velocity.

Next, we observe that the term 2W
(τ
⊥zz

µ) depends
(through the components of zµ) on uτ and uη. It can-
not be subtracted from T τµ until a relation between uτ

and uη is found. To this end let us construct from known
quantities the vector Kµ = T τµ−πτµ⊥ whose components
read [72]

Kτ = (E+P⊥)(uτ )2 − P⊥ +
∆P(τuη)2

1+u2
⊥

+
2W τ
⊥zτu

η√
1+u2

⊥
,

(59a)

Ki = (E+P⊥)uτui +
W i
⊥zτu

η√
1+u2

⊥
, (i = x, y) (59b)
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Kη = (E+P⊥)uτuη +
∆Puτuη

1+u2
⊥

+W τ
⊥z

(uτ )2 + (τuη)2

τuτ
√

1+u2
⊥

.

(59c)

In the last equation we used the orthogonality relation
zµW

µ
⊥z = 0 to eliminate W η

⊥z. Taking the combination(
uη
)2
Kτ − uτuηKη one obtains

uη

uτ
≡ F =

A−B
√

1−Ã2+B̃2

1 + B̃2
, (60)

where

A =
Kη

Kτ + PL
, (61a)

B =
W τ
⊥z

τ (Kτ + PL)
, (61b)

as well as Ã = τA and B̃ = τB are all known quantities.
One can further use the normalization condition uµu

µ = 1
to rewrite Eq. (60) either as

uη√
1+u2

⊥
=

F̃

τx
(62)

or as

uτ√
1+u2

⊥
=

1

x
, (63)

where F̃ = τF and x =
√

1−F̃ 2. With this the compo-

nents of zµ in (57) and thus 2W
(τ
⊥zz

µ) are now known.

We next define the known vector Mµ =Kµ−2W
(τ
⊥zz

µ),
with components

Mτ = (E+P⊥)uτuτ − P⊥ + ∆P(F̃/x)2, (64a)

M i = (E+P⊥)uτui, (i = x, y) (64b)

Mη = (E+P⊥)uτuη + ∆PF̃/(τx2). (64c)

From Eq. (64b) one obtains immediately the transverse
flow velocity components and magnitude:

ui =
M i

uτ (E + P⊥)
, (65a)

u⊥ =
M⊥

uτ (E + P⊥)
, (65b)

where M⊥ =
√

(Mx)2+(My)2. The two remaining un-
known variables are uτ and E . By taking the combination
u2
⊥M

τ − uτuiM i one finds a relation between uτ and E :

uτ =

√
Mτ + P⊥ −∆P(F̃/x)2

E + P⊥
. (66)

This can now be used to express ui and u⊥ in Eqs. (65) as
well as uη in Eq. (60) in terms of E and the other known
quantities. With a bit of algebra, and making use of the

relation F̃ = τMη/(Mτ+PL), the normalization condi-
tion (uτ )2 − u2

⊥ − (τuη)2 = 1 then yields the following
explicit reconstruction formula for the energy density:

E = Mτ −∆P (F̃/x)2 − M2
⊥

Mτ + P⊥ −∆P (F̃/x)2

−
(τMη)2

(
Mτ + P⊥ −∆P (F̃/x)2

)
(Mτ + PL)2

.

(67)

Note that, since PL and P⊥ are evolved directly, the r.h.s.
of Eq. (67) is entirely known. This is in contrast with the
reconstruction formula for E in viscous hydrodynamics
where one must solve some nonlinear equation F(E) = 0
numerically [72, 73]. Once Eq. (67) is evaluated, the fluid
velocity components uτ , ui, and uη can be determined
using Eqs. (66), (65) and (60) consecutively.

C. Reconstructing the anisotropic parameters

Having reconstructed the LRF energy density E , the
left hand sides of equations (53) are all known, as is the
temperature T (from E(T )) and thus the particle mass
m(T ). We can now use the expressions on the right hand
sides of these equations to determine the anisotropic pa-
rameters (Λ, α⊥, αL). We write equations (53) as

F (X) = 0 (68)

where

X =

 Λ
α⊥
αL

 (69)

and

F (X) =

 I2000(X)−E+B
I2200(X)−PL−B
I2010(X)−P⊥−B

 . (70)

We then use Newton’s method in three dimensions to
find the solution vector X. One starts with an initial
guess vector X(0), which is typically the value of X at
the spatial grid point known from the previous time step.
This vector is updated with an iteration ∆X, which is
given by the matrix equation

Jij ∆Xj = −Fi (71)

where Jij = ∂Fi/∂Xj is the Jacobian matrix. The ana-
lytical form of this matrix is

J =



J2001

Λ2

2J401−1

Λα3
⊥

J420−1

Λα3
L

J2201

Λ2

2J421−1

Λα3
⊥

J440−1

Λα3
L

J2011

Λ2

4J402−1

Λα3
⊥

J421−1

Λα3
L


. (72)
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One can simplify the computation of the matrix elements
in (72) by using the identities (see Appendix B)

J420−1 = Λα2
L(I2000 + I2200), (73a)

J401−1 = Λα2
⊥(I2000 + I2010), (73b)

J421−1 =
Λα2
⊥α

2
L

α2
L−α2

⊥
(I2200 − I2010). (73c)

The iteration process (71) is repeated until convergence
is achieved. Newton’s method is a local root-finder and
works well if the initial guess X(0) is sufficiently close to
the solution. This may not be the case when the hy-
drodynamic variables are first initialized or evolving too
rapidly. To better handle such situations, we include a
line-backtracking algorithm, which takes partial steps of
∆X, to improve global convergence [74].

Each iteration of Newton’s method requires the nu-
merical computation of eight one-dimensional integrals,
three for F and five for J . Alternatively, one may use
Broyden’s method, which approximates the Jacobian in
terms of F , so only three integrals need to be evaluated.
[74] An approximate Jacobian may complicate the line-
backtracking search, which ensures a decrease of |F | only
if the exact Jacobian is used. For iterations where the full
Broyden step does not sufficiently decrease |F | we switch
to Newton’s method.

In the anisotropic equation of state model (53) there
is an ambiguity between the initialization of the mean

field B and of the kinetic terms E(k), P(k)
L , and P(k)

⊥ .
Standard hydrodynamic initial conditions for the energy-
momentum tensor only provide E , PL, and P⊥ on the ini-
tialization hypersurface. The initial energy density pro-
file E also yields the initial temperature profile and thus
the initial profile for the equilibrium part Beq(T ) of the
mean field. Its comoving time derivative on the initial-
ization surface can be obtained by taking the equilibrium
limit of Eq. (52):

Ḃeq = −ṁ
m

(
E(k)

eq −3P(k)
eq

)
. (74)

To obtain a guess for the initial non-equilibrium deviation
δB we assume that δB evolves on a time scale larger than
the bulk viscous relaxation time τΠ. We can then ignore
the time derivative of δB on the left hand side of Eq. (52)
and obtain from the difference between Eqs. (52) and (74)
the “asymptotic” initial condition

δB(asy) =
3τΠṁ

m− 4τΠṁ
Π. (75)

As before (see footnote 5) m and ṁ can be expressed in
terms of the energy density E and its LRF time deriva-
tive. Having thus specified the initial profile for the mean
field B = Beq + δB we can proceed to extract the initial
anisotropic parameters and compute the initial values for
the transport coefficients.

For far-from-equilibrium initial conditions, such as
those provided by the IP-Glasma model [37] where PL

starts out with a very large negative value PL = −E
and, after classical Yang-Mills evolution for a time of
the order of the inverse saturation momentum, settles to
around zero [75, 76], the implied deviation PL−Peq can
become so large that, with this initial choice of B, the
quasiparticle model cannot accommodate it within the
allowed ranges for (Λ, α⊥, αL). Since typically B< 0 at
high temperatures (see Fig. 1), the kinetic longitudinal

pressure, P(k)
L = PL+B, may in this situation be nega-

tive. Specifically, the anisotropic parameter initialization
is found to fail when PL/P⊥ . 0.08. To overcome this
problem, in the case of such extreme initial conditions for
PL we simply adjust our initial guess for δB and increase
the initial value for B until a solution for (Λ, α⊥, αL) can
be found. More meaningful ways of dealing with this
shortcoming will be left to future work.

V. BJORKEN FLOW

In this Section we test our anisotropic hydrodynamic
formalism by comparing it to standard viscous hydrody-
namics for the case of (0+1)-dimensional Bjorken expan-
sion, using the state-of-the-art lattice QCD equation of
state referenced in Fig. 1. We begin by simplifying the
anisotropic evolution equations (10)-(12), (35)-(36), and
(54)-(55) for systems with Bjorken symmetry. In Milne
coordinates, the fluid velocity is uµ = (1, 0, 0, 0), the lon-
gitudinal and transverse expansion rates are zµDzu

µ =
1/τ and θ⊥ = 0, and the residual shear stress components
Wµ
⊥z and πµν⊥ vanish by symmetry. The component T ττ

trivially reduces to E . As a result, the anisotropic hydro-
dynamic equations simplify to

Ė = −E + PL
τ

, (76a)

ṖL = −P̄−Peq

τΠ
− PL−P⊥

3τπ/2
+
ζ̄Lz
τ
, (76b)

Ṗ⊥ = −P̄−Peq

τΠ
+
PL−P⊥

3τπ
+
ζ̄⊥z
τ
, (76c)

Ḃ = −B−Beq

τΠ
+
E+PL
τm

dm

dT

dT

dE
(
E−2P⊥−PL−4B

)
,

(76d)

where in (76d) we used

ṁ

m
= −E+PL

τm

dm

dT

dT

dE
(77)

as well as E(k)−2P(k)
⊥ −P

(k)
L = E−2P⊥−PL−4B.

To fix the relaxation times τπ and τΠ we proceed as
follows: we use a temperature dependent parametrization
for the specific shear viscosity η/S [6],

η/S =

{
(η/S)min + (η/S)slope(T−Tc) for T > Tc ,
(η/S)min for T ≤ Tc ,

(78)
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FIG. 2. (Color online) The temperature dependence of (a) the specific shear viscosity η/S, (b) the specific bulk viscosity ζ/S,
and (c) the bulk viscosity ζ itself in units of fm−3, given by the parameterizations (78) and (79) [6]. We note that the peak
of ζ/S in (b) occurs at the temperature T = 0.995Tc ≈ Tc whereas the bulk viscosity ζ = (ζ/S)× S in panel (c) peaks at the
higher temperature T = 1.05Tc.

where S = S(E) is the lattice QCD entropy density and
Tc = 154 MeV is the pseudo-critical temperature. The
model parameters (η/S)min = 0.08 and (η/S)slope =
0.85 GeV−1 were extracted from a global Bayesian analy-
sis of RHIC and LHC heavy-ion collision data [6].9 Sim-
ilarly, we use for the specific bulk viscosity ζ/S the pa-
rameterization from Ref. [77]:

ζ/S = (ζ/S)normf(T/Tp) (79)

where the function f(x) is given by

f =

{ C1 + λ1 exp
[
x−1
σ1

]
+ λ2 exp

[
x−1
σ2

]
(x< 0.995),

A0 +A1x+A2x
2 (0.995≤x≤ 1.05),

C2 + λ3 exp
[

1−x
σ3

]
+ λ4 exp

[
1−x
σ4

]
(x> 1.05),

(80)
with A0 = −13.45, A1 = 27.55, A2 = −13.77, C1 = 0.03,
C2 = 0.001, λ1 = 0.9, λ2 = 0.22, λ3 = 0.9, λ4 = 0.25,
σ1 = 0.0025, σ2 = 0.022, σ3 = 0.025 and σ4 = 0.13. For
the normalization factor we choose (ζ/S)norm = 1.25 [6],
and we fix the location of the peak of the specific bulk
viscosity by taking Tp = Tc.

10 Fig. 2 shows the behavior
of the specific shear and bulk viscosities as a function of
temperature.

The relaxation times are then obtained from the kinetic
theory relations (38), rewritten in the form

τπ =
η

S
S
βπ
, τΠ =

ζ

S
S
βΠ

, (81)

9 Note that, while some of these parameters where fitted to ex-
perimental data [6], this was done with standard viscous hydro-
dynamics, and slightly different values might be expected when
repeating that exercise with anisotropic hydrodynamics. The
precise values of the parameters in Eqs. (78)-(80) should there-
fore not be taken too seriously.

10 Note that this puts the peak of the bulk viscosity at a much lower
temperature than assumed in most previous implementations of
this parametrization (see e.g. [6, 77–80]).

using the following quasiparticle versions of the isotropic
thermodynamic integrals βπ and βΠ [52]:

βπ =
1

T

∫
p

(−p ·∆ · p)2

15(u · p)
feq, (82)

βΠ =
5βπ
3
− c2s(E+Peq) + c2sm

dm

dT

∫
p

−p ·∆ · p
3(u · p)

feq.

Here c2s(E) is the squared speed of sound from lattice
QCD. The system of ordinary differential equations (76)
is solved using Huen’s method. After each intermediate
and full time step the anisotropic parameters are updated
by numerically solving Eq. (68).

These anisotropic hydrodynamic results will be com-
pared with those from second-order viscous hydrodynam-
ics in the 14-moment approximation. The corresponding
evolution equations and transport coefficients are derived
in Appendix E. For Bjorken flow, the set of independent
dynamical variables reduces to the energy density E , the
shear stress π = −τ2πηη = 2

3 (P⊥−PL), and the bulk vis-

cous pressure Π = 1
3 (2P⊥+PL) − Peq. Their evolution

equations simplify to

Ė = −E + Peq + Π− π
τ

, (83a)

π̇ = − π

τπ
− 4βπ

3τ
−

(
τππ + 3δππ

)
π − 2λπΠΠ

3τπτ
, (83b)

Π̇ = − Π

τΠ
− βΠ

τ
− δΠΠΠ− λΠππ

τΠτ
. (83c)

For the non-equilibrium mean field contribution δB we
use the second-order expression [52]

δB(2) = −3τΠ
m

dm

dT

dT

dE
(E + Peq) Π θ (84)

where θ= ∂µu
µ = 1/τ is the scalar expansion rate. In

Eq. (84), we replaced the relaxation time τr by τΠ.
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FIG. 3. (Color online) The Bjorken evolution of the normalized energy density E/E0, bulk viscous pressure Π, longitudinal
shear stress component π, pressure anisotropy PL/P⊥, total mean field B, and non-equilibrium component of the mean field
δB, calculated in anisotropic hydrodynamics (solid red, vaHydro) as well as in standard viscous hydrodynamics (dashed blue
and green, vHydro and vHydro 2). The solid red and long-dashed blue lines (vaHydro and vHydro) use transport coefficients
derived from kinetic theory for medium-dependent quasiparticles while the dashed green lines (vHydro 2) use kinetic theory
transport coefficients derived in the small fixed mass limit. The fluid starts out in thermal equilibrium at longitudinal proper
time τ0 = 0.25 fm/c with initial temperature T0 = 0.5 GeV. In panel (f), the short-dashed purple line shows the “asymptotic
approximation” (75) for δB, computed using data from the anisotropic hydrodynamic evolution whereas the long-dashed blue
line uses Eq. (84) and data from the viscous hydrodynamic evolution. Π, π, B, and δB are plotted in units of GeV/fm3.

The relaxation times τπ and τΠ are obtained from
Eqs. (81) and (82) while the second-order transport co-
efficients τππ, δππ, λπΠ, δΠΠ and λΠπ are computed from
the quasiparticle model in the 14-moment approximation
(after expansion around a local equilibrium distribution,
see Appendix E). We will also look at how the trans-
port coefficients, including the relaxation times, affect
the viscous hydrodynamic results when computed in the
small fixed mass approximation z � 1 and dm/dT ≈ 0,
without a mean field, which is commonly implemented
in viscous hydrodynamic simulations. [78, 81, 82]

A. Equilibrium initial conditions

In Figure 3 we show the Bjorken evolution of the hy-
drodynamic variables in anisotropic hydrodynamics, in-
cluding the total mean field and its non-equilibrium com-
ponent in the quasiparticle (QP) model used to compute
the transport coefficients, and compare it with that in
the standard viscous hydrodynamic models. Figure 4
shows the same for the associated Knudsen and inverse
Reynolds numbers. In this subsection we impose equi-
librium initial conditions with initial temperature T0 =
0.5 GeV at longitudinal proper time τ0 = 0.25 fm/c, i.e.
all non-equilibrium effects are initially zero. Figure 3a
shows that all three models (anisotropic hydrodynamics
with QP transport coefficients in solid red lines, stan-

dard viscous hydrodynamics with QP transport coeffi-
cients in long-dashed blue lines and transport coefficients
from a Boltzmann gas in a small fixed mass expansion in
short-dashed green lines) produce almost identical evolu-
tions for the energy density. The energy density decreases
somewhat more slowly than for a conformal ideal fluid,
indicated by the thin black line ∼ τ−4/3. This is due to
the smaller pressure of our EOS (which thus performs
less longitudinal work) and to viscous heating. For refer-
ence we note that the system passes through the pseudo-
critical temperature Tc = 154 MeV at τc∼ 37 fm/c, with a
small spread of less than 2 fm/c between the three mod-
els.

Panel (c) shows that, if a QP model is used for the
transport coefficients, the mean field B also evolves al-
most identically in anisotropic and standard viscous hy-
drodynamics. Small differences between anisotropic and
standard viscous hydrodynamics with QP transport coef-
ficients are observed in the evolution of the shear stress π
(O(2%)) and the pressure ratio PL/P⊥ (O(10%)): the ef-
fective resummation of shear viscous effects in anisotropic
hydrodynamics leads to a slight reduction of the shear
stress, resulting in a slightly reduced pressure anisotropy.
Standard viscous hydrodynamics, with transport coef-
ficients calculated in the small fixed mass expansion
(short-dashed green lines), produces somewhat (O(15%))
larger shear stresses and stronger pressure anisotropies.

Given that the pressure anisotropy gets quite large,
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FIG. 4. (Color online) The shear (top row) and bulk (bottom row) Knudsen and inverse Reynolds numbers numbers associated
with Fig. 3. For Bjorken flow, the formulas for the Knudsen and inverse Reynolds numbers reduce to Knπ = τπ

√
σµνσµν =√

2/3 τπ/τ , KnΠ = τΠθ = τΠ/τ , R−1
π =

√
πµνπµν/Peq =

√
3/2π/Peq, and R−1

Π = |Π| /Peq. The last column (panels (c,f))

shows the Navier-Stokes limits of the shear and bulk inverse Reynolds numbers, R−1
π,NS =

√
8/3 η/(τPeq) and R−1

Π,NS = ζ/(τPeq).

with PL/P⊥ decreasing to about 30% at τ ∼ 1 fm/c,
the excellent agreement between standard viscous and
anisotropic hydrodynamics is somewhat unexpected. It
suggests that the widely used standard viscous hydrody-
namic approach is quite robust and quantitatively re-
liable even for large shear stresses. Similar observa-
tions were made before in [72] as well as in studies of
the Bjorken dynamics of strongly coupled theories where
second-order viscous hydrodynamics could be directly
compared with an exact numerical solution of the un-
derlying strong-coupling dynamics [83, 84].

The largest differences between anisotropic and stan-
dard viscous hydrodynamics are seen in the evolution
of the bulk viscous pressure Π (Fig. 3d) and the non-
equilibrium part of the mean field δB (Fig. 3f). The
two panels expose strong correlations between the evo-
lutions of these two quantities. Both are small: (i) The
bulk viscous pressure at early times is about 100 times
smaller than the shear stress. While the evolution of Π
is qualitatively similar (although quantitatively different
by more than a factor 2 at early times) for anisotropic
and standard viscous hydrodynamics with QP transport
coefficients, it exhibits qualitatively different dynamics in
standard viscous hydrodynamics with transport coeffi-
cients computed from the small fixed mass expansion.
(ii) Compared to the equilibrium mean field, the non-
equilibrium part δB is about two orders of magnitude
smaller (see panels (c) and (f) of Fig. 3). Here one ob-
serves very different trajectories for δB between the evo-
lutions from anisotropic and standard viscous hydrody-

namics, although their shapes are qualitatively similar.
In addition, panel (f) shows for comparison the “asymp-
totic approximation” (75) (short-dashed purple curve)
which should be compared to the exact numerical solu-
tion (red solid line). Obviously, the large expansion rate
at early times makes the asymptotic trajectory, which
is based on the assumption that δB evolves more slowly
than the bulk relaxation rate, a rather crude approxima-
tion.

Figure 4 shows the Knudsen and inverse Reynolds
numbers associated with the shear and bulk viscous
stresses. While the Knudsen and inverse Reynolds num-
bers associated with shear stress dominate the non-
equilibrium dynamics at early times, those associated
with bulk viscosity are the most relevant at late times
when the system passes through the QCD phase transi-
tion. 11

In spite of the shear Knudsen number (Fig. 4a) start-
ing out large with a value of around 2.5, the shear in-
verse Reynolds number (Fig. 4b) never exceeds a value
of about 75-85%. This results from the delay caused by
the microscopic shear relaxation time which controls the
approach of the shear stress π from its zero starting point
to its Navier-Stokes value and has at τ0 = 0.25 the value

11 Note that the Knudsen numbers for vaHydro (solid red) and
vHydro (long-dashed blue) are almost identical due to the very
similar energy density and temperature evolution, see Eq. (82)
and Fig. 3a.
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FIG. 5. (Color online) Same as Fig. 3 but for Glasma-like initial conditions, with the same initial temperature at the same initial
time. The initial pressures are set to PL0 = 4.975× 10−3 E0 and P⊥0 = 0.4975 E0. For the anisotropic hydrodynamic evolution
(solid red line) the magnitude of the initial mean field B0 is reduced to 15.3 % of the default value (purple short-dashed line)

B(asy) = Beq +δB(asy). For the standard viscous hydrodynamic evolution with quasiparticle transport coefficients (long-dashed
blue lines) B and δB are determined as described in the text. Π, π, B, and δB are plotted in units of GeV/fm3.

τπ ≈ 0.8 fm/c. By the time R−1
π reaches its Navier-Stokes

limit (shown in Fig. 4c), the shear Knudsen number has
already dropped to values well below 1. We reiterate that
at the peak value ∼ 3/4 of the shear inverse Reynolds
number the differences between anisotropic and standard
viscous hydrodynamic evolution are less than 6% as long
as both are evaluated with transport coefficients com-
puted from the same underlying kinetic theory.

Fig. 4e shows the evolution of the bulk inverse
Reynolds number R−1

Π , which peaks due to critical dy-
namics near the QCD phase transition temperature Tc;
the corresponding Navier-Stokes value is shown in Fig. 4f.
Because τΠ ∝ ζ (see Eq. (81)), the bulk relaxation rate
slows down when the bulk viscosity peaks. This leads
to “critical slowing down” of the evolution of the bulk
viscous pressure Π, limiting its growth as the system
cools down to Tc [33, 35]. Comparing the solid red and
dashed blue curves in Figs. 4e and f we see that Π and
thus R−1

Π never reaches much more than about half of its
peak Navier-Stokes value, and it also peaks later (around
τ ∼ 38 fm/c≈ τc, corresponding to T ≈ 0.995Tc) than the
Navier-Stokes limit which reaches its maximum already
at τ ∼ 27 fm/c (corresponding to T ≈ 1.05Tc). One ob-
serves that even near its peak at τ ∼ 38 fm/c, R−1

Π evolves
almost identically in anisotropic and standard viscous hy-
drodynamics with QP transport coefficients.12

12 The reason for this will become clearer in Fig. 7 below where we
will see that at late times anisotropic hydrodynamics reduces in
good approximation to 2nd order viscous hydrodynamics.

A marked difference is observed, however, when the
system is evolved with standard hydrodynamics us-
ing transport coefficients from a massless Boltzmann
gas without a mean field (green short-dashed lines in
Figs. 4d,e). It turns out that the thermodynamic inte-
gral βΠ in Eq. (82) is remarkably sensitive to the degree
of nonconformality of the Boltzmann gas, giving rise to
a much longer bulk viscous relaxation time in the QP
model than for the light Boltzmann gas without a mean
field, especially in the neighborhood of Tc. This is re-
flected in the large difference between the short-dashed
green line and the other two curves for the bulk Knudsen
number shown in Fig. 4d which causes the correspond-
ing large difference in the evolution of the bulk inverse
Reynolds number shown in panel (e): The much shorter
relaxation time for the light Boltzmann gas allows the
bulk viscous pressure to follow its Navier-Stokes limit
(shown in Fig. 4f) much more closely, causing R−1

Π to
rise much more steeply and to a larger peak value as the
system cools towards Tc than in the other two approaches
where βΠ is calculated from the QP model.

We have studied thermal equilibrium initial conditions
with several other combinations of initial temperature
T0 and τ0, resulting in significantly different evolutions
of the energy density and viscous pressure components
(not shown here). Two features appear to be univer-
sal, however: (i) As long as we use transport coefficients
computed from the same microscopic QP kinetic theory,
the evolution of all components of the energy-momentum
tensor, as well as of the mean field B, shows only very
small differences (of the same order as shown in Fig. 3)
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FIG. 6. (Color online) The shear and bulk Knudsen numbers and inverse Reynolds numbers associated with Fig. 5.

between anisotropic and standard viscous hydrodynam-
ics. (ii) Using instead transport coefficients for a Boltz-
mann gas of light fixed-mass particles, standard viscous
hydrodynamics leads to significantly different evolutions
for the bulk viscous pressure Π. For a meaningful com-
parison between anisotropic and standard viscous hydro-
dynamics it is therefore important that a consistent set
of transport coefficients is being employed. Also, for a
medium with broken conformal invariance (such as the
quark-gluon plasma and other forms of QCD matter)
non-conformal effects on the transport coefficients can
have a large effect on the evolution of the bulk viscous
pressure which may not be properly captured when using
transport coefficients derived from a theory with weakly
interacting degrees of freedom that have small masses.

B. Glasma-like initial conditions

In this subsection we repeat the exercise of the previ-
ous one for a different set of initial conditions, resembling
those that one would get from matching the hydrody-
namic evolution to a pre-equilibrium stage described by
the IP-Glasma model [37]. As already described, this
model predicts approximately vanishing initial longitu-
dinal pressure PL≈ 0 and P⊥≈E/2 [75]. (In practice,
we set PL/P⊥ = 0.01 initially). We use the same initial
longitudinal proper time and temperature as before. The
corresponding results are plotted in Figs. 5 and 6.

For this extreme initial condition, the default magni-
tude of B must be reduced by about 85% in order to
be able to successfully initialize the anisotropic micro-
scopic parameters; for B this is shown in Fig. 5c while the
implications for the anisotropic microscopic parameters
will be discussed in the following subsection. The highly

non-equilibrium initial conditions manifest themselves in
large starting values for the shear and bulk stresses and
the non-equilibrium mean field. The initial shear stress
(Fig. 5b) is about five times larger than its peak value
for equilibrium initial conditions. The bulk viscous pres-
sure (Fig. 5d) and non-equilibrium part of the mean field
(Fig. 5f) are for the first fm/c one to two orders of mag-
nitude larger than for equilibrium initial conditions. In
spite of this, anisotropic and standard viscous hydrody-
namics still lead to almost identical evolution trajectories
for the energy density (Fig. 5a) and viscous pressures
(Figs. 5b,d) if QP transport coefficients are used, and if
the latter are swapped out for those from a light Boltz-
mann gas, a significant change in the standard viscous
hydrodynamic evolution is only seen for the bulk vis-
cous pressure (short-dashed green curve in Fig. 5d). The
shear stress π and the pressure ratio PL/P⊥ emphasize
the differences in the hydrodynamic models somewhat
at early times (Figs. 5b,e), pushing the pressure ratio
towards isotropy somewhat faster in anisotropic than in
standard viscous hydrodynamics, but all three dynamical
approaches converge to a common late-time behavior for
π and PL/P⊥ after about 2 fm/c (i.e. after about 3 times
the initial shear relaxation time of about 0.8 fm/c). It is,
however, not the case that equilibrium and Glasma-like
initial conditions lead to the same temperature evolution
of the system: A careful comparison of Figs. 3a and 5a
shows that for the non-equilibrium initial conditions vis-
cous heating by the large initial bulk and shear stresses
causes the energy density (and therefore temperature) to
drop somewhat more slowly than for equilibrium initial
conditions, especially at early times.

Figure 5f shows again that the “asymptotic approx-
imation” (75) for δB(asy) (dashed purple line) is not a
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good approximation for the full numerical evolution of
δB shown by the solid red line. Since for the Glasma-like
initial conditions the non-equilibrium mean field contri-
bution δB is initially of the same order of magnitude as
the equilibrium contribution Beq, the breakdown of this
approximation is visible even in the evolution of the total
mean field B (solid red line) which is not at all described
by B(asy) ≡ Beq+δB(asy).

Looking at the Knudsen and inverse Reynolds numbers
in Fig. 6 the only striking (although obvious) difference
are the large starting values for both shear and bulk in-
verse Reynolds numbers when using Glasma-like initial
conditions. Similar to the shear stress π and pressure
ratio PL/P⊥ in Figs. 5b,e, these two observables exhibit
noticeable differences at early times between anisotropic
and standard viscous hydrodynamic evolution.

C. Evolution of the microscopic kinetic parameters

Although the parameters (Λ, α⊥, αL) describing the
slope and anisotropy of the momentum distribution of
the microscopic degrees of freedom are vestiges from an
underlying kinetic theory whose traces we have tried
to erase as much as possible in our formulation of
anisotropic hydrodynamics (hoping that eventually we
can obtain the transport coefficients of QCD matter
from a more fundamental approach), it is interesting to
“look under the hood” and see how our parametrized

anisotropic EOS works, i.e. how the QP model adjusts its
microscopic parameters to accommodate the macroscopic
anisotropic hydrodynamic initial conditions provided,
and how it evolves them in response to the anisotropic
hydrodynamic evolution of the energy-momentum ten-
sor.

Figs. 7a,b compare, for equilibrium initial conditions,
the evolution of the effective temperature parameter Λ
with that of the true temperature T extracted from the
energy density, and of the momentum anisotropy param-
eter αL with that of α⊥, respectively. A comparison
of Figs. 7a,b with Figs. 4b,e shows that large inverse
Reynolds numbers in both the shear and bulk sectors cor-
relate with effective temperatures Λ>T and longitudinal
momentum deformation parameter αL< 1. Large shear
inverse Reynolds numbers correlate with α⊥ deviating
from unity in the opposite direction (i.e. with α⊥> 1),
leading to narrower longitudinal and wider transverse
momentum distributions than in the equilibrium distri-
bution feq, consistent with PL/P⊥ < 1. Large bulk in-
verse Reynolds numbers push down both αL and α⊥, cor-
responding to negative bulk viscous pressures. At late
times, when both the shear and bulk inverse Reynolds
numbers approach zero, the momentum distribution ap-
proaches local equilibrium, αL,⊥ → 1 and Λ→ T .

For Glasma-like initial conditions, shown in Figs. 7c,d,
these generic statements for the deformation parameters
α remain true but at early times the relationship between
T and Λ is completely changed: the effective temperature
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Λ starts out much smaller than the true temperature.
A low effective temperature Λ would narrow the micro-
scopic momentum distribution in the transverse plane if
it were not compensated by a very large (O(10)) initial
value of α⊥, which upholds the kinetic energy density
and transverse pressure. On the other hand, αL starts
out almost at zero, reinforcing the narrowing of the lon-
gitudinal momentum distribution generated already by
the small Λ value and thereby causing a very small ratio
of the kinetic contributions to PL and P⊥. This is, of
course, forced upon the system by the very anisotropic
initial condition PL/P⊥ = 0.01.

While the microscopic kinetic parameters (Λ,α) con-
trol only the kinetic contributions to energy density and
pressures, the qualitative agreement of their tendencies
extracted from this analysis of Figs. 7c,d with those of
the total energy density and pressures shown in Fig. 5
demonstrates that the mean field B, even where large,
cannot alter the sign of the pressure anisotropy (shear
stress). Its value shifts the average kinetic pressure rela-
tive to the kinetic energy density and thereby has a large
influence on the bulk viscous pressure.

VI. CONCLUSIONS AND OUTLOOK

In this work we presented a purely macroscopic formu-
lation of anisotropic hydrodynamics in 3+1 space-time
dimensions, parametrized with Milne coordinates. To
obtain the Lorentz structure of the anisotropic hydro-
dynamic equations, including the relaxation equations
for the dissipative flows, we started from a microscopic
description in terms of a relativistic Boltzmann-Vlasov
equation with a relaxation-time approximated collision
term. The mean field in the Boltzmann-Vlasov equation
is constructed such that the energy density and equilib-
rium pressure of this kinetic theory satisfy an equation of
state that agrees with the lattice QCD EOS of strongly
interacting matter. The macroscopic equations of mo-
tion are derived from an anisotropic moment expansion
of this Boltzmann-Vlasov equation, where the distribu-
tion function is split into a momentum-anisotropic lead-
ing order term fa and a residual correction δf̃ . To close
the anisotropic moment expansion we use for the resid-
ual correction δf̃ the 14-moment approximation. The
leading-order term is constructed such that it can non-
perturbatively account for the two largest dissipative ef-
fects encountered in relativistic heavy-ion collisions, a
large longitudinal-transverse pressure anisotropy at early
times and a large bulk viscous pressure during the phase
transition of the matter from a quark-gluon plasma to
color-confined hadronic matter. This requires the intro-
duction of two momentum-anisotropy parameters αL, α⊥
into fa whose dynamics is fixed by a novel generaliza-
tion of the Landau matching conditions that ensures that
there are no residual corrections from δf̃ to the longitudi-
nal and transverse pressures of the system. This match-
ing scheme allows us to completely eliminate the micro-

scopic parameters that define fa, and to write down, for
the first time, a set of macroscopic anisotropic hydrody-
namic evolution equations which make no explicit refer-
ence at all to their microscopic kinetic origin.

There are ten evolution equations for the ten compo-
nents of the energy-momentum tensor. No specific as-
sumptions are made for the equation of state relating
the energy density and thermal pressure in thermal equi-
librium, i.e. the equations can be used to describe any
form of matter that behaves like a dissipative fluid. Two
of these equations evolve the longitudinal and transverse
pressures PL and P⊥. Instead of splitting them into a
thermal equilibrium pressure, a bulk viscous pressure and
a longitudinal-transverse shear stress, with the latter two
quantities assumed to be small and perturbatively treat-
able, in our approach PL and P⊥ themselves are evolved,
with the transport coefficients controlling how far they
may deviate from the thermal equilibrium pressure.

The evolution of the energy-momentum tensor compo-
nents is controlled by a standard set of driving forces,
such as the longitudinal and transverse expansion rates,
the various components of the velocity shear tensor, the
flow vorticity, etc. In addition, the dissipative flows are
characterized by a set of relaxation times describing their
relaxation towards their first-order Navier-Stokes limits.
Consistent with the anisotropic parametrization of the
leading-order distribution fa, the dissipative forces are
separated into longitudinal and transverse parts using
a systematic procedure involving orthogonal projection
operators that was developed in Ref. [42]. They are mul-
tiplied by a set of two dozen transport coefficients. These
transport coefficients, as well as the relaxation times,
are material properties of the dissipative fluid to be de-
scribed.

We do not know how to compute these transport coeffi-
cients for QCD matter from first principles. Therefore we
use in this work a kinetic theory for weakly-interacting
quasiparticles with temperature-dependent masses as a
model for computing them. We write the distribution
function for these quasiparticles as f = fa+δf̃ and
parametrize fa in the same way as in the kinetic the-
ory from which we first started. From the solution of the
anisotropic hydrodynamic equations we then take the en-
ergy density E , longitudinal pressure PL and transverse
pressure P⊥, as well as the mean field B, and describe
the deviations of PL and P⊥ from the equilibrium pres-
sure Peq(E) (which is taken from lattice QCD) in terms
of the microscopic anisotropic parameters of the kinetic
model. Having thus fixed the parameters of the kinetic
model from the macroscopic hydrodynamic output, we
can use it to compute all the transport coefficients in
kinetic theory.

For the relaxation times we take previously introduced
phenomenological parametrizations that were recently
calibrated by a global comparison of a sophisticated dy-
namical model involving dissipative relativistic fluid dy-
namics at its core with experimental heavy-ion collision
data collected at the LHC [6, 85].
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As a first application of this new approach we have here
studied the Bjorken evolution of a longitudinally boost-
invariant, transversely homogeneous system, evolving it
both with anisotropic and standard viscous hydrodynam-
ics for comparison. We found remarkable agreement
between the two approaches if both used quasiparticle
transport coefficients but noticeable disagreements with
a standard viscous hydrodynamic simulation using trans-
port coefficients for a weakly interacting Boltzmann gas
in the small fixed-mass limit. This suggests an unex-
pected robustness of the standard viscous hydrodynamic
approach even in the presence of large shear and bulk vis-
cous effects. A final assessment of the relative strengths
and weaknesses of anisotropic vs. standard viscous hy-
drodynamics will, however, have to await the availabil-
ity of full (3+1)-dimensional numerical evolution com-
parisons which are presently being pursued.

A key motivation for anisotropic hydrodynamics is
that by accounting for the large dissipative components
already at leading order, by parametrizing them into
the leading-order distribution function fa, the remain-
ing dissipative flows arising from the residual deviation
δf̃ in the decomposition f = fa+δf̃ should be smaller
than the dissipative flows in standard viscous hydrody-
namics where they arise from δf in the decomposition
f = feq+δf . Bjorken flow does not allow to test this
expectation because for systems with Bjorken symmetry
the residual dissipative flows arising from δf̃ vanish any-
how exactly by symmetry. Full (3+1)-dimensional sim-
ulations will allow to answer this question. Taking the
results reported in the last chapter of Ref. [72] (based
on a version of the present framework that did not treat
the bulk viscous pressure non-perturbatively) as guid-
ance for what to expect, anisotropic hydrodynamics as
formulated here should indeed make the residual shear
stress components significantly smaller in the center of
the fireball, where the largest shear stresses are gener-
ated at early times by longitudinal expansion. However,
the same may not necessarily hold for cells near the trans-
verse edge of the fireball where the transverse expansion
rate can exceed the longitudinal one and where account-
ing non-perturbatively for large effects associated with
anisotropies relative to the beam axis (as we do here) may
not offer significant advantages. We hope to be able to
soon present numerical results that show how these ex-
pectations bear out in practice.

We close by noting that the observed sensitivity of the
Bjorken evolution to the chosen model for computing the
transport coefficients puts some urgency to the question
how to compute the transport coefficients of anisotropic
hydrodynamics from first principles for a theory such as
hot and dense QCD. We have to leave this as a challenge
for future work.
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Appendix A: Anisotropic integrals

In this section, we define the anisotropic integrals that
appear in this paper and show how to integrate them
numerically. The anisotropic integrals Inrqs and Jnrqs
are defined as

Inrqs =

∫
p

(u · p)n−r−2q

(2q)!!
(−z ·p)r(−p ·Ξ ·p)q(p ·Ω ·p)s/2fa,

(A1)

Jnrqs =

∫
p

(u · p)n−r−2q

(2q)!!
(−z·p)r(−p·Ξ·p)q(p·Ω·p)s/2faf̄a,

(A2)
where the distribution function fa is

fa = feq

 1

Λ

√
p2
⊥,LRF

α2
⊥

+
p2
z,LRF

α2
L

+m2

 . (A3)

For particles with Boltzmann statistics Inrqs = Jnrqs.
Although there is no known analytical solution for these
integrals for massive particles, their dimensionality can
be reduced to one. After substituting the spherical coor-
dinates

px,LRF = α⊥Λ p̄ sin θ cosφ,

py,LRF = α⊥Λ p̄ sin θ sinφ,

pz,LRF = αLΛ p̄ cos θ,

(A4)
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with p̄ = p/Λ, the angular integrals in Eqs. (A1,A2) can
be evaluated analytically, yielding

Inrqs =
α2q+2
⊥ αr+1

L Λn+s+2

4π2(2q)!!

∫ ∞
0

dp̄ p̄n+s+1×

Rnrq(α⊥, αL; m̄/p̄)feq(
√
p̄2 + m̄2),

(A5)

Jnrqs =
α2q+2
⊥ αr+1

L Λn+s+2

4π2(2q)!!

∫ ∞
0

dp̄ p̄n+s+1Rnrq feq f̄eq,

(A6)
where m̄ = m/Λ and the functions Rnrq are defined as

Rnrq(α⊥, αL; m̄/p̄) = w n−r−2q−1×∫ 1

−1

d cos θ sin2q θ cosr θ(1 + z sin2 θ)(n−r−2q−1)/2,
(A7)

with w =
√
α2
L + (m̄/p̄)2 and z =

α2
⊥ − α2

L

w2
. The radial

momentum integral can be computed numerically with
generalized Gauss-Laguerre quadrature. For reference,
we list the functions Rnrq that are needed in this paper:

R200 = w
(
1 + (1 + z)t(z)

)
(A8a)

R220 =
−1 + (1 + z)t(z)

zw
(A8b)

R201 =
1 + (z − 1)t(z)

zw
(A8c)

R240 =
3 + 2z − 3(1 + z)t(z)

z2w3
(A8d)

R202 =
3 + z + (1 + z)(z − 3)t(z)

z2(1 + z)w3
(A8e)

R221 =
−3 + (3 + z)t(z)

z2w3
(A8f)

R441 =
−15 + 13z + 3(1 + z)(5 + z)t(z)

4z3w3
(A8g)

R402 =
3(z − 1) + (z(3z − 2) + 3)t(z)

4z2w
(A8h)

R421 =
3 + z + (1 + z)(z − 3)t(z)

4z2w
(A8i)

R422 =
15 + z + (z(z − 6)− 15)t(z)

4z3w3
(A8j)

R403 =
(z − 3)(5 + 3z) + 3(1 + z)(z(z − 2) + 5)t(z)

4z3(1 + z)w3

(A8k)

where t(z) =
arctan

√
z√

z
.

Appendix B: Anisotropic integral identities

Here we show how to derive the identities (73). First,
we express the anisotropic integrals (A1) and (A2) as

Inrqs =
1

(2q)!!

∫
p

En−r−2q
LRF prz,LRF p

2q
⊥,LRFE

s
a fa, (B1)

Jnrqs =
1

(2q)!!

∫
p

En−r−2q
LRF prz,LRF p

2q
⊥,LRFE

s
a faf̄a, (B2)

where Ea =

√
m2 +

p2
⊥,LRF

α2
⊥

+
p2
z,LRF

α2
L

. From here on

out, we will suppress the LRF subscripts. To obtain the
first identity (73a), we introduce rapidity coordinates

E = m⊥ cosh y, pz = m⊥ sinh y , (B3)

where m⊥ =
√
m2 + p2

⊥, to rewrite (B2) as

Jnrqs = g

∫
dy d2p⊥

(2π)3(2q)!!
mn−2q
⊥ (cosh y)n−r−2q

× (sinh y)r p2q
⊥ E

s
a faf̄a.

(B4)

Next, one can write the distribution term faf̄a as

faf̄a = − Λα2
LEa

m2
⊥ cosh y sinh y

∂fa
∂y

. (B5)

After integrating by parts with respect to the variable y
(where the boundary term vanishes for r ≥ 2) one obtains
the relation

Jnrqs = Λα2
L (n−r−2q−1) In−2,r,q,s+1 (B6)

+Λα2
L (r−1) In−2,r−2,q,s+1 + Λ (s+1) In,r,q,s−1 ,

which for (n, r, q, s) = (4, 2, 0,−1) yields Eq. (73a).
For the second identity (73b) one uses cylindrical co-

ordinates

E =
√
m2+p2

⊥+p2
z, px = p⊥ cosφ, py = p⊥ sinφ

(B7)
to express the integral (B2) as

Jnrqs = g

∫
dp⊥dpz

(2π)2(2q)!!
En−r−2q−1 prz p

2q+1
⊥ Esa faf̄a.

The term faf̄a can be written as

faf̄a = −Λα2
⊥Ea
p⊥

∂fa
∂p⊥

. (B8)

Integration by parts with respect to p⊥, with the bound-
ary term vanishing for q ≥ 1, gives

Jnrqs = Λα2
⊥ (n−r−2q−1) In−2,r,q,s+1

+ Λα2
⊥ In−2,r,q−1,s+1 + Λ (s+1) In,r,q,s−1 ,

(B9)

which for (n, r, q, s) = (4, 0, 1,−1) yields Eq. (73b).
Finally, to get the third identity (73c) we use spherical

coordinates

E =
√
m2 + p2, pz = p cos θ ,

px = p sin θ cosφ, py = p sin θ sinφ
(B10)

in the integral (B2)

Jnrqs = g

∫
dp d(cos θ)

(2π)2(2q)!!
En−r−2q−1 pr+2q+2

× (cos θ)r (sin θ)2q Esa faf̄a

(B11)
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and write the term faf̄a as

faf̄a = −Λα2
⊥α

2
L

α2
⊥−α2

L

Ea
p2 cos θ

∂fa
∂ cos θ

. (B12)

Integrating by parts with respect to cos θ, where the
boundary term vanishes for q ≥ 1, gives the following
relation:

Jnrqs =
Λα2
⊥α

2
L

α2
⊥−α2

L

(
(r−1) In−2,r−2,q,s+1−In−2,r,q−1,s+1

)
+ Λ (s+1) In,r,q,s−1 , (B13)

which for (n, r, q, s) = (4, 2, 1,−1) yields Eq. (73c).

Appendix C: Anisotropic transport coefficients

We list the transport coefficients that appear in the
relaxation equations (33)–(36). Some of the expressions
contain terms ∝ dm/dT (see footnote 5). For the quasi-
particle model described in Sec IV A, the temperature-
dependent mass m(T ) and its derivative dm/dT should
be taken from Fig. 1.

The coefficients controlling the evolution of the kinetic

longitudinal pressure P(k)
L are

ζ̄L(k)
z = I2400 − 3P(k)

L +m
dm

dT

dT

dE
(E+PL)I0200, (C1a)

ζ̄
L(k)
⊥ = I2210 − P(k)

L +m
dm

dT

dT

dE
(E+P⊥)I0200, (C1b)

λ̄
L(k)
Wu =

J4410

J4210
+m

dm

dT

dT

dE
I0200, (C1c)

λ̄
L(k)
W⊥ = 1− λ̄L(k)

Wu , (C1d)

λ̄L(k)
π =

J4220

J4020
+m

dm

dT

dT

dE
I0200. (C1e)

Those controlling the evolution of the kinetic transverse

pressure P(k)
⊥ are

ζ̄⊥(k)
z = I2210 − P(k)

⊥ +m
dm

dT

dT

dE
(E+PL)I0010, (C2a)

ζ̄
⊥(k)
⊥ = 2

(
I2020 − P(k)

⊥
)

+m
dm

dT

dT

dE
(E+P⊥)I0010,

(C2b)

λ̄
⊥(k)
W⊥ =

2J4220

J4210
+m

dm

dT

dT

dE
I0010, (C2c)

λ̄
⊥(k)
Wu = λ̄

⊥(k)
W⊥ − 1, (C2d)

λ̄⊥(k)
π = 1− 3J4030

J4020
−mdm

dT

dT

dE
I0010. (C2e)

The evolution of the longitudinal momentum diffusion

current Wµ
⊥z involves the coefficients

η̄Wu = 1
2

(
P(k)
L − I2210

)
, (C3a)

η̄W⊥ = 1
2

(
P(k)
⊥ − I2210

)
, (C3b)

τ̄Wz = P(k)
L − P(k),

⊥ (C3c)

δ̄WW = λ̄WW⊥− 1
2 +m

dm

dT

dT

dE
(E+P⊥)

(
J2210

J4210

)
, (C3d)

λ̄WWu = 2− J4410

J4210
−mdm

dT

dT

dE
(E+PL)

(
J2210

J4210

)
, (C3e)

λ̄WW⊥ =
2J4220

J4210
− 1, (C3f)

λ̄Wπu =
J4220

J4020
(C3g)

λ̄Wπ⊥ = λ̄Wπu − 1, (C3h)

while that of the transverse shear stress tensor πµν⊥ in-
volves the coefficients

η̄⊥ = P(k)
⊥ − I2020, (C4a)

δ̄ππ = 3
4 τ̄

π
π + 1

2 −m
dm

dT

dT

dE
(E+P⊥)

(
J2020

J4020

)
, (C4b)

τ̄ππ = 2− 4J4030

J4020
, (C4c)

λ̄ππ = λ̄Wπu − 1 +m
dm

dT

dT

dE
(E+PL)

(
J2020

J4020

)
, (C4d)

λ̄πWu = λ̄WW⊥ − 1, (C4e)

λ̄πW⊥ = λ̄πWu + 2. (C4f)

Additional transport coefficients appear for systems with
conserved charges and associated diffusion currents [42].

Appendix D: Transport coefficients for PL and P⊥ in
the quasiparticle model

Here we redefine the transport coefficients controlling
the macroscopic longitudinal and transverse pressures af-
ter adding to Eqs. (33)-(34) the mean field terms from
Eq. (52). The transport coefficients for the total longitu-
dinal pressure PL are

ζ̄Lz = ζ̄L(k)
z − 1

m

dm

dT

dT

dE
(E+PL)

(
E(k)−2P(k)

⊥ −P
(k)
L

)
,

(D1a)

ζ̄L⊥ = ζ̄
L(k)
⊥ − 1

m

dm

dT

dT

dE
(E+P⊥)

(
E(k)−2P(k)

⊥ −P
(k)
L

)
,

(D1b)

λ̄LWu = λ̄
L(k)
Wu −

1

m

dm

dT

dT

dE

(
E(k)−2P(k)

⊥ −P
(k)
L

)
, (D1c)

λ̄LW⊥ = 1− λ̄LWu, (D1d)

λ̄Lπ = λ̄L(k)
π +

1

m

dm

dT

dT

dE

(
E(k)−2P(k)

⊥ −P
(k)
L

)
. (D1e)
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Those controlling the evolution of the total transverse
pressure P⊥ are

ζ̄⊥z = ζ̄⊥(k)
z − 1

m

dm

dT

dT

dE
(E+PL)

(
E(k)−2P(k)

⊥ −P
(k)
L

)
,

(D2a)

ζ̄⊥⊥ = ζ̄
⊥(k)
⊥ − 1

m

dm

dT

dT

dE
(E+P⊥)

(
E(k)−2P(k)

⊥ −P
(k)
L

)
,

(D2b)

λ̄⊥W⊥ = λ̄
⊥(k)
W⊥ −

1

m

dm

dT

dT

dE

(
E(k)−2P(k)

⊥ −P
(k)
L

)
, (D2c)

λ̄⊥Wu = λ̄⊥W⊥ − 1, (D2d)

λ̄⊥π = λ̄⊥(k)
π +

1

m

dm

dT

dT

dE

(
E(k)−2P(k)

⊥ −P
(k)
L

)
. (D2e)

Appendix E: Viscous hydrodynamic equations

Here we derive the viscous hydrodynamic equa-
tions (83) and their transport coefficients. We start with
the quasiparticle case (long-dashed blue) and derive the
relaxation equation for δB and its second-order solution
(84). The general evolution equation for δB is given by
[52]

δḂ = −δB
τΠ

+
ṁ

m
(3Π + 4 δB) , (E1)

where the ṁ/m term can be written as

ṁ

m
=

1

m

dm

dT

dT

dE
Ė . (E2)

We replace the time derivative Ė with the energy conser-
vation law in viscous hydrodynamics

Ė + (E + Peq + Π)θ − πµνσµν = 0 , (E3)

where θ = ∂µu
µ is the scalar expansion rate and σµν =

∆αβ
µν ∂βuα is the velocity shear tensor. For the second-

order relaxation equation, we only need the first-order
approximation Ė ≈ −(E + Peq)θ, thus

ṁ

m
≈ − 1

m

dm

dT

dT

dE
(E + Peq)θ. (E4)

The equation of motion for δB then reduces to

δḂ = −δB
τΠ
− E + Peq

m

dm

dT

dT

dE
(3Π + 4 δB) θ. (E5)

To first order in deviations from equilibrium δB = 0. The
second-order solution is given by (84) [52]. In Eq. (E5),
we truncate the third-order term ∝ δB θ to arrive at the
second-order relaxation equation

δḂ = −δB
τΠ
− 3(E + Peq)

m

dm

dT

dT

dE
Π θ. (E6)

Next, we derive the relaxation equations for the viscous
components Π and πµν in the same manner as in Sec.

III. We start by taking the time derivative of their quasi-
kinetic definitions [52]

Π̇ =
1

3
D

∫
p

(−p ·∆ · p)δf − δḂ, (E7a)

π̇〈µν〉 =
1

3
∆µν
αβ D

∫
p

p〈α pβ〉δf , (E7b)

where δf is the non-equilibrium correction to the distri-
bution function

f = feq + δf , (E8)

with feq = exp
(
−u · p/T

)
being the local equilibrium

Boltzmann distribution. The time derivative δḂ is given
by (E6). We substitute the terms containing δḟ using
the Boltzmann equation (13) and Eq. (E8):

δḟ = − ḟeq +
C[f ]−m∂µm∂

(p)
µ f

u · p

− p〈µ〉∇µfeq

u · p
− p〈µ〉∇µδf

u · p
,

(E9)

where p〈µ〉 = ∆µ
νp
ν and ∇µ = ∆ν

µ∂ν is the spatial gra-
dient. To close the system of equations we use the 14-
moment approximation for δf [81]

δf

feq
= cE(u · p)2 +

1

3
cΠ (−p ·∆ · p) + c〈µν〉π p〈µ pν〉, (E10)

where p〈µ pν〉 = ∆αβ
µν pαpβ . To solve for the coefficients

we insert the expression (E10) into the energy matching
condition and the definitions of Π and πµν :

δE =

∫
p

(u · p)2δf = 0, (E11a)

Π = −1

3

∫
p

pµpν∆µνδf, (E11b)

πµν =

∫
p

p〈µ pν〉δf. (E11c)

Since the 14-moment approximation is first-order in the
dissipative flows, we neglect the second-order contribu-
tion ∼ δB to the energy density and bulk viscous pressure
in (E11). After some algebra, the coefficients are

cE = − I41 Π
5
3I40I42 − I2

41

, (E12a)

cΠ =
I40 Π

5
3I40I42 − I2

41

, (E12b)

c〈µν〉π =
πµν

2 I42
, (E12c)

where we defined the thermodynamic integrals

Inq =

∫
p

(u · p)n−2q

(2q + 1)!!
(−p ·∆ · p)qfeq. (E13)
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The final expression for δf is

δf

feq
=
(
c̄E(u · p)2 +

1

3
c̄Π (−p ·∆ · p)

)
Π +

1

2
c̄πp〈µ pν〉π

µν ,

(E14)
where c̄E = cE/Π, c̄Π = cΠ/Π and c̄π = 1/I42. After
integration by parts and inserting for δf the 14-moment
approximation (E14), the relaxation equations for Π and
πµν reduce to

Π̇ = − Π

τΠ
− βΠθ − δΠΠΠθ + λΠππ

µνσµν , (E15a)

π̇〈µν〉 = − πµν

τπ
− βπσµν + 2πλ〈µω

ν〉
λ

− τπππλ〈µσν〉λ − δπππ
µνθ + λπΠΠσµν .

(E15b)

Here ωµν = ∆µ
α∆ν

β∂[βuα] is the vorticity tensor. The
transport coefficients are

βπ =
I32

T
, (E16a)

βΠ =
5

3
βπ − c2s(E + Peq) + c2sm

dm

dT
I11, (E16b)

δΠΠ = 1− c2s −
m4

9
(c̄E I00 + c̄Π I01)

−mdm

dT

dT

dE
(E + Peq)

(
c̄E I21 +

5

3
c̄Π I22 +

3

m2

)
,

(E16c)

λΠπ =
1

3
− c2s +

c̄πm
2I22

3
, (E16d)

τππ =
10

7
+

4 c̄πm
2I22

7
, (E16e)

δππ =
4

3
+
c̄πm

2I22

3
− c̄πm

dm

dT

dT

dE
(E + Peq)I22, (E16f)

λπΠ =
6

5
− 2m4

15
(c̄E I00 + c̄Π I01). (E16g)

In an expansion in powers of z = m/T � 1, taking the
fixed-mass limit dm/dT = 0, the leading terms for these
transport coefficients are [81]

βπ =
E(k)

eq + P(k)
eq

5
+O(z2), (E17a)

βΠ = 15
(1

3
−
(
c(k)
s

)2)2(
E(k)

eq + P(k)
eq

)
+O(z5), (E17b)

δΠΠ =
2

3
+O(z2 ln z), (E17c)

λΠπ =
8

5

(1

3
−
(
c(k)
s

)2)
+O(z4), (E17d)

τππ =
10

7
+O(z2), (E17e)

δππ =
4

3
+O(z2), (E17f)

λπΠ =
6

5
+O(z2 ln z). (E17g)

Here
(
c
(k)
s

)2
= I31/I30 is the kinetic theory definition

for the squared speed of sound. Although E(k)
eq , P(k)

eq

and
(
c
(k)
s

)2
are kinetic theory expressions, it is com-

mon practice to replace them in the above expressions
with those from lattice QCD, and we will do so here.
For Bjorken flow, the energy conservation law (E3) and
relaxation equations (E15) simplify greatly. The gra-
dient terms are σµν = diag(0, 1

3τ ,
1
3τ ,−

2
3τ3 ), θ = 1/τ ,

and ωµν = 0. The shear stress components are πµν =
diag(0,− 1

2τ
2πηη,− 1

2τ
2πηη, πηη). As a result, the viscous

hydrodynamic equations reduce to (83).
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