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Abstract: We perform a non-perturbative study of the scale-dependent renormalisation factors of

a complete set of dimension-six four-fermion operators. The renormalisation-group (RG) running is

determined in the continuum limit for a specific Schrödinger Functional (SF) renormalisation scheme

in the framework of lattice QCD with two dynamical flavours (Nf = 2). The theory is regularised

on a lattice with a plaquette Wilson action and O(a)-improved Wilson fermions. For one of these

operators, the computation had been performed in ref. [1]; the present work completes the study for

the rest of the operator basis, on the same simulations (configuration ensembles). The related weak

matrix elements arise in several operator product expansions; in ∆F = 2 transitions they contain the

QCD long-distance effects, including contributions from beyond-Standard Model (BSM) processes.

Some of these operators mix under renormalisation and their RG-running is governed by anomalous

dimension matrices. In ref. [2] the RG formalism for the operator basis has been worked out in full

generality and the anomalous dimension matrix has been calculated in NLO perturbation theory.

Here the discussion is extended to the matrix step-scaling functions (matrix-SSFs), which are used in

finite-size recursive techniques. We rely on these matrix-SSFs to obtain non-perturbative estimates

of the operator anomalous dimensions for scales ranging from O(ΛQCD) to O(MW).

http://arxiv.org/abs/1801.09455v1


1 Introduction

In lattice QCD, the renormalisation of composite operators is an important step towards
obtaining estimates of hadronic low-energy quantities in the continuum limit. Quark masses,
decay constants, form factors, etc. are extracted from matrix elements of such operators;
see ref. [3] for a recent review of lattice flavour phenomenology. Of interest to the present
work is the class of dimension-six, four-fermion composite fields, arising in operator product
expansions (OPE), in which the heavier quark degrees of freedom are integrated out. For
∆F = 2 and many ∆F = 1 transitions (F stands for flavour here), the resulting weak matrix
elements of these operators govern long-distance QCD effects. They can be reliably evaluated
by applying an intrinsically non-perturbative approach. Lattice QCD is our regularisation of
choice which, by combining theoretical and computational methods, allows for an evaluation
of these quantities with errors that can be reliably estimated and systematically improved.

Here we address the problem of calculating the renormalisation parameters and their
renormalisation group (RG)-running for the operators defined in Eq. (2.1) below. We
opt for the lattice regularisation consisting in the Wilson plaquette gauge action and the
O(a)-improved Wilson quark action. We renormalise the bare operators in the Schrödinger
Functional (SF) renormalisation scheme. This problem has first been studied with Wilson
fermions for the relatively simple case of the multiplicatively renormalisable operators Q±

1 of
Eq. (2.1), both perturbatively [4] and non-perturbatively in the quenched approximation [5].
Subsequently results for Q±

1 have also been obtained with Nf = 2 dynamical sea quarks [1].
(An analogous study with quenched Neuberger fermions may be found in ref. [6].) Recently
the perturbative calculations have been extended in ref. [2] for the rest of the operator basis
Q±

k (k = 2, . . . , 5) of Eq. (2.1). The present is a companion paper of this work, complement-
ing it by providing non-perturbative results for the operators Q±

k (k = 2, . . . , 5), computed
in Nf = 2 lattice QCD.

As stressed in refs. [2,7], these operators, treated here in full generality, become relevant
for a number of interesting processes, once specific physical flavours are assigned to their
fermion fields. For example, with ψ1 = ψ3 = s and ψ2 = ψ4 = d (cf. Eq. (2.2)), the weak
matrix element 〈K̄0|Q+

1 |K0〉 comprises leading long-distance contributions in the effective
Hamiltonian formalism for neutral K-meson oscillations in the Standard Model (SM). Al-
lowing for beyond-Standard-Model (BSM) interactions introduces similar matrix elements of
the remaining operators Q+

2 , . . . , Q
+
5 . In some lattice regularisations, the corresponding bare

matrix elements are expressed in terms of the operators Q+
1 , . . . ,Q+

5 , with some important
simplifications in their renormalisation properties [7–9]. In refs. [2] other flavour assignments
are listed, leading to four-fermion operators related to the low-energy effects of ∆B = 2 tran-
sitions (B0–B̄0 and B0

s–B̄
0
s mixing) and to the ∆S = 1 effective weak Hamiltonian with an

active charm quark. In the present work we will concentrate on the renormalisation and
RG-runing of Q±

2 , . . . ,Q±
5 .

It is important to keep in mind that the sets {Q±
2 , . . . , Q

±
5 } and {Q±

2 , . . . ,Q±
5 } are parity-

even and parity-odd components of operators with chiral structures (such as “left-left” or
“left-right”) which ensure their transformation under specific irreducible chiral representa-
tions. Chiral symmetry may be broken by the regularisation (e.g. lattice Wilson fermions)
but it is recovered by the continuum theory. An important consequence is that our results,
obtained for the continuum RG-evolution of the parity-odd bases {Q±

2 , . . . ,Q±
5 }, are also

valid for the parity-even ones {Q±
2 , . . . , Q

±
5 }.

The paper is organised as follows: In section 2 we list the operators we are studying
and their basic renormalisation pattern. We also derive their RG-equations, and define the
evolution matrices and the renormalisation-group invariant operators, which are scale- and
scheme-independent quantities. This is an abbreviated version of section 2 of ref. [2]. The
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interesting feature of the renormalisation pattern of operators Q±
k (k = 2, . . . , 5) is that they

mix in pairs1. In the case of Q±
k (k = 2, . . . , 5), mixing is not an artefact of the lattice

regularisation, as it also happens in schemes where all symmetries of the continuum target
theory (QCD) are preserved; cf. ref. [7]. An important consequence of this property is that
the RG-running of these operators is governed by anomalous-dimension and RG-evolution
matrices, rather than scalar functions. The RG-evolution matrices are well known in NLO
perturbation theory; cf. refs. [10, 11]. Here, following ref. [2], we use them in closed form,
suitable for non-perturbative evaluations.
In section 3 we outline our strategy. First we define the SF renormalisation conditions
for the operators Q±

k (k = 1, . . . , 5); again this is an abridged version of subsection 3.3 of
ref. [2]. Next, we define in the SF scheme the matrix step-scaling functions (SSFs) as the
RG-evolution matrices for a change of renormalisation scale by a fixed arbitrary factor; this
factor is 2 in the present work. These are our basic lattice quantities, computed for a se-
quence of lattice spacings, at fixed renormalised gauge coupling. They have a well defined
continuum limit, which is obtained by extrapolation, as explained in the same section. Re-
peating the calculation for a range of renormalisation scales (i.e. a range of renormalised
couplings) and interpolating our data points, we finally have the SSFs as continuous polyno-
mials of the gauge coupling, from which we obtain the anomalous dimension matrices, with
NLO perturbation theory taking over only at O(MW) scales.
In section 4 we present our results. Besides the aforementioned SSFs, RG-evolution matrices
and anomalous-dimension matrices, we also compute the renormalisation matrices for values
of the gauge coupling corresponding to low-energy scales. These renormalisation factors are
needed, in order to renormalise the corresponding bare matrix elements at these hadronic
scales. The computation of the latter requires independent simulations on large physical
lattices (of about 3-5 fm), which is beyond the scope of this work.
Appendix A collects additional tests of the comparision between perturbative and non-
perturbative RG evolution, including the specific renormalisation scale range, [2GeV, 3GeV],
considered in ref. [12]. Further details about one-loop cutoff effects in the SSFs are presented
in Appendix B.

2 Renormalisation of four-quark operators

This section is an abridged version of sect. 2 of ref. [2], which we repeat here for completeness.

2.1 Renormalisation and mixing of four-quark operators

We recapitulate the main renormalisation properties of the four-fermion operators under
study. These results have been obtained in full generality in ref. [7]. The absence of subtrac-
tions is elegantly implemented by using a formalism in which the operators consist of quark

1This is not to be confused with the operator mixing of Q±

1 (the operator arising in ∆F = 2 transitions in
the Standard Model), which mixes with Q±

k (k = 2, . . . , 5) when Wilson lattice fermions are used, and chiral
symmetry is broken by the regularisation.
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fields with four distinct flavours. A complete set of Lorentz-invariant operators is

Q±
1 = O±

VV+AA , Q±
1 = O±

VA+AV ,

Q±
2 = O±

VV−AA , Q±
2 = O±

VA−AV ,

Q±
3 = O±

SS−PP , Q±
3 = O±

PS−SP ,

Q±
4 = O±

SS+PP , Q±
4 = O±

PS+SP ,

Q±
5 = −2 O±

TT , Q±
5 = −2 O±

TT̃
,

(2.1)

where

O±
Γ1Γ2

=
1

2

[

(ψ̄1Γ1ψ2)(ψ̄3Γ2ψ4) ± (ψ̄1Γ1ψ4)(ψ̄3Γ2ψ2)
]

, (2.2)

O±
Γ1Γ2±Γ2Γ1

≡ O±
Γ1Γ2

±O±
Γ2Γ1

. The operator subscripts obviously correspond to the labelling

V → γµ, A → γµγ5, S → 1, P → γ5, T → σµν , T̃ → 1
2
εµνρτσρτ , with σµν ≡ i

2
[γµ, γν ].

Repeated Lorentz indices, such as γµγµ and σµνσµν are summed over. In the above expression
round parentheses indicate spin and colour traces and the subscripts 1, . . . , 4 of the fermion
fields are flavour labels. Note that operators Q±

k are parity-even, and Q±
k are parity-odd.

In the following we will assume a mass-independent renormalisation scheme. Renor-
malised operators can be written as

Q̄±
k = Z±

kl(δlm +∆±
lm)Q±

m ,

Q̄±
k = Z±

kl(δlm +D
±
lm)Q±

m

(2.3)

(summations over l,m are implied), where the renormalisation matrices Z±,Z± are scale-
dependent and reabsorb logarithmic divergences, while ∆±,D± are (possible) matrices of
finite subtraction coefficients that only depend on the bare coupling. Throughout this work
we use boldface symbols for the column vectors of four-fermion operator and the matrices
which act on these vectors (e.g. Q,Q,Z,∆,Z ,D, etc.) while their elements are indicated
with explicit indices (e.g. Qk,Qk, Zkl,∆kl,Zkl,Dkl, etc.). We also introduce a simplification
in our notation, by dropping the ± superscripts , wherever no ambiguity arises. This should
not be a problem as the symmetric operator bases {Q+

k } and{Q+
k } (symmetric under flavour

exchange 2 ↔ 4) never mix with the antisymmetric ones {Q−
k } and {Q−

k }, and thus equations
are valid separately for each basis.

The renormalisation matrices have the generic structure

Z =













Z11 0 0 0 0
0 Z22 Z23 0 0
0 Z32 Z33 0 0
0 0 0 Z44 Z45

0 0 0 Z54 Z55













, ∆ =













0 ∆12 ∆13 ∆14 ∆15

∆21 0 0 ∆24 ∆25

∆31 0 0 ∆34 ∆35

∆41 ∆42 ∆43 0 0
∆51 ∆52 ∆53 0 0













. (2.4)

Analogous expressions hold for Z and D. If chiral symmetry is preserved by the regular-
isation, both ∆ and D vanish. In the case of Wilson fermions, with chiral symmetry ex-
plicitly broken, we have ∆ 6= 0, whereas due to residual discrete flavour symmetries D = 0;
this is the main result of ref. [7]. Therefore the left-left operators Q1 = OVA+AV, which
mediate Standard Model-allowed transitions, renormalise multiplicatively, while operators
Q2, . . . ,Q5, which appear as effective interactions in extensions of the Standard Model, mix
in pairs: {Q2,Q3} and {Q4,Q5}.

In conclusion, with Wilson fermions the parity-odd basis {Qk} renormalises in a pattern
analogous to that of a chirally symmetric regularisation, while the parity-even one {Qk}
has a more complicated renormalisation pattern due to the non-vanishing of ∆. We will
henceforth concentrate on the non-perturbative renormalisation of the parity-odd basis {Qk}
with Wilson fermions.
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2.2 Renormalisation group equations

The scale dependence of renormalised quantities is governed by renormalisation group evo-
lution. Denoting as µ the running momentum scale and µ the renormalisation scale where
mass-independent renormalisation conditions are imposed, we have the following Callan-
Symanzik equations for the gauge coupling and quark masses respectively:

µ
d

dµ
g (µ) = β(g (µ)) , (2.5)

µ
d

dµ
mf(µ) = τ(g (µ))mf(µ) , (2.6)

where f is a flavour label. The scheme mass-independence implies that the Callan-Symanzik
function β and the mass anomalous dimension τ depend only on the coupling. Asymptotic
perturbative expansions read

β(g) ≈
g∼0

−g3(b0 + b1g
2 + . . .) , (2.7)

τ(g) ≈
g∼0

−g2(d0 + d1g
2 + . . .) . (2.8)

Let us now turn to Euclidean correlation functions of gauge-invariant composite opera-
tors, of the form2

Gk(x; y1, . . . , yn) = 〈Qk(x)O1(y1) · · · On(yn))〉 , (2.9)

with x 6= yj ∀j, yj 6= yk ∀j 6= k. For concreteness we have opted for correlation functions of
the parity-odd operators Qk, which are the subject of the present work. Nevertheless, the
results of this section apply to any set of operators that mix under renormalisation. The
operators Ol(l = 1, · · · , n) may be any convenient, multiplicatively renormalisable source
field. For example they could be currents or densities (e.g. Vµ(y), Aµ(y), S(y) and/or P (y)),
or Schrödinger functional sources at the time-boundaries. The latter will be explicitly dis-
cussed in Sect. 3. Renormalised correlation functions satisfy the system of Callan-Symanzik
equations

µ
d

dµ
Ḡj =

∑

k

[

γjk(gR) +
(

n
∑

l=1

γ̃l(gR)
)

δjk

]

Ḡk (2.10)

or, expanding the total derivative,






µ
∂

∂µ
+ β(gR)

∂

∂gR
+

Nf
∑

f=1

τ(gR)mR,f
∂

∂mR,f
−

n
∑

l=1

γ̃l(gR)







Ḡj =
∑

k

γjk(gR) Ḡk , (2.11)

where γ is a matrix of anomalous dimensions describing the mixing of {Qk} (cf. Eq. (2.12)
below), and γ̃l is the anomalous dimension of Ol (defined in a way analogous to Eq. (2.12)).
A possible term arising from the running of the gauge parameter λ of the action is omitted
here, for reasons explained in ref. [2]. A convenient shorthand notation for the anomalous
dimension matrix of the operators Q̄k is thus

µ
d

dµ
Q̄j(µ) =

5
∑

k=1

γjk(g (µ))Q̄k(µ) . (2.12)

2To simplify the notation, we have omitted the dependence of Gk on the coupling, the masses and the UV
cutoff (e.g. the lattice spacing).
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The operator anomalous dimensions admit perturbative expansions of the form

γjk(g) ≈
g∼0

−g2(γ(0)jk + γ
(1)
jk g

2 + . . .) . (2.13)

In standard fashion we can then derive

µ
5
∑

l=1

d

dµ
Zjl(Z−1)lk = γjk . (2.14)

This result implies that the block-diagonal form of the renormalisation matrices Z (and Z)
of Eq. (2.4) induces the same block-diagonal structure for the anomalous dimension ma-
trix γ. Thus the sums in Eqs. (2.12) and (2.14) simplify: for operator Q̄1 and its anomalous
dimension γ11 there is no summation; for operators

{

Q̄2, Q̄3

}

summations run over indices
2 and 3 only, and similarly for the operator sub-basis

{

Q̄4, Q̄5

}

.

2.3 Evolution matrices and renormalisation group invariants

In order to obtain a solution of Eq. (2.12) in closed form, it is convenient to introduce
the renormalisation group evolution matrix U(µ2, µ1) that evolves renormalised operators
between scales3 µ1 and µ2 < µ1:

Q i(µ2) = Uij(µ2, µ1)Q j(µ1) . (2.15)

Substituting the above into Eq. (2.12) we obtain for the running of U(µ2, µ1)

µ2
d

dµ2
U(µ2, µ1) = γ[g (µ2)]U(µ2, µ1) , (2.16)

with initial condition U(µ1, µ1) = 1. Note that the r.h.s. is a matrix product. Following
a standard procedure, the above expression can be converted into a Volterra-type integral
equation and solved iteratively, viz.

U(µ2, µ1) = Texp

{

∫ g (µ2)

g (µ1)
dg

1

β(g)
γ(g)

}

, (2.17)

where as usual the notation Texp denotes a Taylor expansion of the exponent, in which each
term is an ordered (here g-ordered) product. Explicitly, for a generic matrix function M(x),
we have

Texp

{
∫ x+

x−

dxM(x)

}

≡ 1+

∫ x+

x−

dxM(x)

+

∫ x+

x−

dx1M(x1)

∫ x1

x−

dx2M(x2)

+

∫ x+

x−

dx1M(x1)

∫ x1

x−

dx2M(x2)

∫ x2

x−

dx3 M(x3)

+ . . .

= 1+

∫ x+

x−

dxM(x)

+
1

2!

∫ x+

x−

dx1

∫ x+

x−

dx2

{

θ(x1 − x2)M(x1)M(x2)+

θ(x2 − x1)M(x2)M(x1)
}

+ . . .

(2.18)

3Restricting the evolution operator to run towards the IR avoids unessential algebraic technicalities below.
The running towards the UV can be trivially obtained by taking [U(µ2, µ1)]

−1.
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In the specific case of interest, M(g) = γ(g)/β(g), with γ(g) a matrix function and β(g) a
real function. To leading order (LO) we have that M(g) = γ(0)/(b0g) and the independence
of the matrix γ(0) from the coupling g simplifies eq. (2.18), so that the Texp becomes a
standard exponential. One can then easily integrate the exponent in eq. (2.17) and obtain
the LO approximation of the evolution matrix:

U(µ2, µ1) =
LO

[

g 2(µ2)

g 2(µ1)

]

γ
(0)

2b0

≡ ULO(µ2, µ1) . (2.19)

When next-to-leading order corrections are included, the T-exponential becomes non-trivial.
Further insight is gained upon realising that the associativity property of the evolution matrix
U(µ3, µ1) = U(µ3, µ2)U(µ2, µ1) implies that it can actually be factorised in full generality
as

U(µ2, µ1) =
[

Ũ(µ2)
]−1

Ũ(µ1) , (2.20)

and the matrix Ũ(µ) can be expressed in terms of a matrix W(µ), defined through

Ũ(µ) ≡
[

g 2(µ)

4π

]−γ
(0)

2b0

W(µ) . (2.21)

The matrix W can be interpreted as the piece of the evolution operator containing contri-
butions beyond the leading perturbative order. Putting everything together, we see that

U(µ2, µ1) ≡ [W(µ2)]
−1

ULO(µ2, µ1)W(µ1) , (2.22)

and thus we make contact with the literature (see e.g. [10, 11]).
Upon inserting Eq. (2.22) in Eq. (2.16) we obtain for W the RG equation

µ
d

dµ
W(µ) = −W(µ)γ(g (µ)) + β(g (µ))

γ(0)

b0g (µ)
W(µ)

= [γ(g (µ)),W(µ)] − β(g (µ))

(

γ(g (µ))

β(g (µ))
− γ(0)

b0g (µ)

)

W(µ) .

(2.23)

Expanding perturbatively we can check [2] that W is regular in the UV, and all the loga-
rithmic divergences in the evolution operator are contained in ULO; in particular,

W(µ) =
µ→∞

1 . (2.24)

Rewriting Eq. (2.15) as

[

g 2(µ2)

4π

]−γ
(0)

2b0

W(µ2)Q(µ2) =

[

g 2(µ1)

4π

]−γ
(0)

2b0

W(µ1)Q(µ1) , (2.25)

and observing that the l.h.s. (respectively r.h.s.) is obviously independent of µ1 (respectively
µ2), we conclude that these are scale-independent expressions. Thus we can define the vector
of RGI operators as

Q̂ ≡
[

g 2(µ)

4π

]−γ
(0)

2b0

W(µ)Q(µ) = lim
µ→∞

[

g 2(µ)

4π

]−γ
(0)

2b0

Q(µ) , (2.26)

where in the last step we use Eq. (2.24).
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3 Schrödinger Functional renormalisation setup

In this section we introduce the finite volume Schrödinger Functional (SF) renormalisation
schemes and the RG evolution matrix between scales separated by a fixed factor (i.e. the
matrix-step-scaling function).

3.1 Renormalisation conditions

We first define Schrödinger Functional renormalisation schemes for the operator basis of
Eq. (2.1). This section is an abridged version of sec. 3.3 of ref. [2]. We use the standard SF
setup as described in [13], where the reader is referred for full details including unexplained
notation.

We work with lattices of spatial extent L and time extent T ; here we opt for T = L.
Source fields are made up of boundary quarks and antiquarks,

Oαβ [Γ] ≡ a6
∑

y,z

ζ̄α(y)Γζβ(z) , (3.1)

O′
αβ [Γ] ≡ a6

∑

y,z

ζ̄ ′α(y)Γζ
′
β(z) , (3.2)

where α, β are flavour indices, unprimed (primed) fields live at the x0 = 0 (x0 = T ) boundary,
and Γ is a Dirac matrix. The boundary fields ζ, ζ̄ are constrained to satisfy the conditions

ζ(x) = 1
2
(1− γ0)ζ(x) , ζ̄(x) = ζ̄(x) 1

2
(1+ γ0) , (3.3)

and similarly for primed fields. This implies that the Dirac matrices Γ must anticommute
with γ0, otherwise the boundary operators Oαβ [Γ] and O′

αβ [Γ] vanish; thus Γ may be either
γ5 or γk (k = 1, 2, 3).

Renormalisation conditions are imposed in the massless theory, in order to obtain a
mass-independent scheme by construction. They are furthermore imposed on the parity-
odd four-quark operators {Q±

k } of Eq. (2.1), since working in the parity-even {Q±
k } sector

would entail dealing with the extra mixing due to explicit chiral symmetry breaking with
Wilson fermions, cf. Eq. (2.4). In order to obtain non-vanishing SF correlation functions,
we then need a product of source operators with overall negative parity; taking into account
the above observation about boundary fields, and the need to saturate flavour indices, the
minimal structure involves three boundary bilinear operators and the introduction of an
extra, “spectator” flavour (labeled as number 5, keeping with the notation in Eq. (2.2)). We
thus end up with correlation functions of the generic form

Fk;s(x0) ≡ 〈Qk(x)Ss〉 , (3.4)

Gk;s(T − x0) ≡ ηk〈Qk(x)S ′
s〉 , (3.5)
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Figure 1: Four-quark correlation functions Fk;s (left) and the boundary-to-boundary correlators f1, k1
(right), depicted in terms of quark propagators. Euclidean time goes from left to right. The double
blob indicates the four-quark operator insertion, and dashed lines indicate the explicit time-like link
variable involved in boundary-to-boundary quark propagators.

where Ss is one of the five source operators

S1 ≡ W[γ5, γ5, γ5] , (3.6)

S2 ≡
1

6

3
∑

k,l,m=1

ǫklmW[γk, γl, γm] , (3.7)

S3 ≡
1

3

3
∑

k=1

W[γ5, γk, γk] , (3.8)

S4 ≡
1

3

3
∑

k=1

W[γk, γ5, γk] , (3.9)

S5 ≡
1

3

3
∑

k=1

W[γk, γk, γ5] (3.10)

with

W[Γ1,Γ2,Γ3] ≡ L−3O′
21[Γ1]O′

45[Γ2]O53[Γ3] , (3.11)

and similarly for S ′
s, which is defined with the boundary fields exchanged between time

boundaries; e.g O53 ↔ O′
53 etc. The constant ηk is a sign that ensures Fk;s(x0) = Gk;s(x0)

for all possible indices4; it is easy to check that η2 = −1, ηs 6=2 = +1.We also use the two-point
functions of boundary sources

f1 ≡ − 1

2L6
〈O′

21[γ5]O12[γ5]〉 , (3.12)

k1 ≡ − 1

6L6

3
∑

k=1

〈O′
21[γk]O12[γk]〉 . (3.13)

Finally, we define the ratios

Ak;s,α ≡ Fk;s(T/2)

f
3
2−α

1 kα1

, (3.14)

where α is an arbitrary real parameter. The geometry of Fk;s, f1, and k1 is illustrated
in Fig. 1.

4This time reversal property, besides being a useful numerical cross check of our codes, allows taking the
average of Fk;s(x0) and Gk;s(x0) so as to reduce statistical fluctuations. From now on Fk;s(x0) denotes this
average.
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We can now impose Schrödinger functional renormalisation conditions on the ratio of
correlation functions defined in Eq. (3.14), at fixed bare coupling g0, vanishing quark mass,
and scale µ = 1/L. For the renormalisable multiplicative operators Q1 we set

Z11;s,αA1;s,α = A1;s,α|g20=0 . (3.15)

For operators that mix in doublets, we impose5

(

Z22;s1,s2,α Z23;s1,s2,α

Z32;s1,s2,α Z33;s1,s2,α

)(

A2;s1,α A2;s2,α

A3;s1,α A3;s2,α

)

=

(

A2;s1,α A2;s2,α

A3;s1,α A3;s2,α

)

g20=0

, (3.16)

and similarly for Q4,5. The product of boundary-to-boundary correlators in the denominator
of Eq. (3.14) cancels the renormalisation of the boundary operators in Fk;s, and therefore
Zjk;s1,s2,α only contains anomalous dimensions of four-fermion operators. Following [1,5,14],
conditions are imposed on renormalisation functions evaluated at x0 = T/2, and the phase
that parameterises spatial boundary conditions on fermion fields is fixed to θ = 0.5. Together
with the L = T geometry of our finite box, this fixes the renormalisation scheme completely,
up to the choice of boundary source, indicated by the index s, and the parameter α. The
latter can in principle take any value, but we restrict our choice to α = 0, 1, 3/2.

One still has to check that the above renormalisation conditions are well-defined at tree-
level. This is straightforward for Eq. (3.15), but not for Eq. (3.16): it is still possible that
the matrix of ratios A has zero determinant at tree-level, rendering the system of equations
for the renormalisation matrix ill-conditioned. This is indeed obviously the case for s1 = s2,
but the determinant vanishes also for other non-trivial choices of s1 6= s2. In practice, out
of the ten possible schemes one is only left with six, viz.6

(s1, s2) ∈ {(1, 2), (1, 4), (1, 5), (2, 3), (3, 4), (3, 5)} . (3.17)

This property is independent of the choice of θ and α. Thus, we are left with a total of 15
schemes for Q1, and 18 for each of the pairs (Q2,Q3) and (Q4,Q5).

Given the strong scheme dependence of the matrices γ(1);SF (cf. Eq. (2.13)), a criterion
has been devised in ref. [2] in order to single out the scheme with the smallest NLO anomalous
dimension. This consists in choosing the scheme with the smallest determinant and trace
of the matrix 16π2γ(1);SF[γ(0)]−1 for each non-trivial 2× 2 anomalous dimension matrix. It
turns out that the scheme defined by α = 3/2 and (s1, s2) = (3, 5) satisfies these requirements
in all cases (i.e. for the matrices related to (Q2,Q3) and (Q4,Q5)). In the following we will
present non-perturbative results for this scheme only7.

3.2 Matrix-step-scaling functions and non-perturbative computation of RGI

operators

In order to trace the RG evolution non-perturbatively, we introduce matrix-step-scaling
functions (matrix-SSFs), defined as8

σ(u) ≡ U(µ/2, µ)|g 2(µ)=u = [W(µ/2)]−1
ULO(µ/2, µ)W(µ) . (3.18)

5S. Sint, private communication.
6Note that schemes obtained by exchanging s1 ↔ s2 are trivially related to each other.
7Although we have completed our analyses in all schemes discussed here, for reasons of economy of pre-

sentation we will not show these results. In any case, the α = 3/2 and (s1, s2) = (3, 5) scheme displays the
most reliable matching to perturbative RG-running at the electorweak scale.

8The relative factor between the scales is arbitrary; one could introduce a σ(s, u) that evolves from scale
µ to scale µ/s. In this notation, our choice corresponds to s = 2.
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The above definition generalises the step-scaling functions (SSFs) defined for quark masses [14]
and multiplicatively renormalisable four-fermion operators [5] such as Q±

1 . Just like the
anomalous dimension matrix γ, the matrix-SSF σ has a block-diagonal structure. So the
above definition either refers to one of the two multiplicative operators Q±

1 , or to one of
the four pairs of operators that mix under renormalisation; i.e. (Q±

2 ,Q±
3 ) or (Q±

4 ,Q±
5 ). In

the former cases σ is a real function, whereas in the latter cases it is a 2× 2 matrix of real
functions. Again in what follows the ± superscripts will be suppressed.

The advantage of working with step-scaling functions is that they can be computed on
the lattice with all systematic uncertainties under control. More concretely, we define the
lattice matrix-SSF Σ in a finite (L/a)3 × (T/a) lattice; as repeatedly stated previously, in
this work we set L = T . Working in the chiral limit, at a given bare coupling g0 (i.e. at a
given finite UV cutoff a−1) , Σ is defined as the following “ratio” of renormalisation matrices
at two renormalisation scales µ = 1/L and µ/2 = 1/(2L):

Σ(g20 , a/L) ≡ Z

(

g20 ,
a

2L

) [

Z

(

g20 ,
a

L

)]−1
. (3.19)

This quantity has a well defined continuum limit. For a sequence of lattice sizes L/a, we tune
the bare coupling g0(a) (and thus the corresponding lattice spacing a) to a sequence of values
which correspond to a constant renormalised squared coupling ḡ2(1/L) = u. Keeping u fixed
implies that the renormalisation scale µ = 1/L is also held fixed. It is then straightforward
to check that Σ satisfies

σ(u) = lim
a→0

Σ(g20 , a/L)
∣

∣

∣

ḡ2(1/L)=u
. (3.20)

Thus, the computation of the renormalisation matrices Z at a fixed value of the renormalised
squared coupling u and various values of the lattice sizes L/a and 2L/a, allows for a controlled
extrapolation of the matrix-SSFs to the continuum limit.

The strategy for obtaining non-perturbative estimates of RGI operators proceeds in
standard fashion: We start from a low-energy scale µhad = 1/Lmax, implicitly defined by
ḡ2(1/Lmax) = u0. The SSF σ(u) for the coupling, defined as σ(ḡ2(1/L)) = g2(1/(2L)),
is known for Nf = 2 from ref. [15]. Thus we generate a sequence of squared couplings
(u1, . . . , uN ) through the recursion σ−1(un−1) = un, and compute recursively the matrix-
SSFs (σ(u1), . . . ,σ(uN )) which correspond to a sequence of physical lattice lengths (inverse
renormalisation scales) (Lmax/2, . . . , Lmax/2

N ). This is followed by the computation of

U(µhad, µpt) = σ(u1) · · ·σ(uN ) , (3.21)

with µhad = 2−Nµpt = L−1
max. Here µpt ∼ O(MW) is thought of as a high-energy scale, safely

into the perturbative regime, and µhad ∼ O(ΛQCD) as a low-energy scale, characteristic of
hadronic physics. The RGI operators of Eq. (2.26) can finally be constructed as follows:

Q̂ =

[

g 2(µpt)

4π

]−γ
(0)

2b0

W(µpt)
[

U(µhad, µpt)
]−1

Q(µhad) . (3.22)

In other words, once we know the column of renormalised operators Q(µhad) at a hadronic
scale from a standard computation on a lattice of “infinite” physical volume (which is beyond
the scope of the present paper), we can combine it with the non-perturbative evolution matrix
[U(µhad, µpt)

]

(which is the result of this work) and the remaining µpt-dependent factors at
scale µpt (known in NLO perturbation theory from ref. [2]), to obtain the RGI operators9.

9The computation of operators Q(µhad) (i.e. their physical matrix elements) must be known with a
precision similar to that of the evolution matrix.
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All factors on the r.h.s. must be known in the same renormalisation scheme, which here
is the SF. The scheme dependence should cancel in the product of the r.h.s., since Q̂ is
scheme-independent. In practice a residual dependence remains due to the fact that W(µpt)

is only known in perturbation theory (typically to NLO). Finally we stress that Q̂ depends,
through the operators Q(µ), on the values of the quark masses; of course the result also
depends on the flavour content of the QCD model under scrutiny (i.e. Nf).

We mentioned above that the matrix W(µpt) is known in NLO perturbation theory
from ref. [2]. This statement requires a brief elucidation: W(µpt) is obtained by numerically
integrating Eq. (2.23), using the NLO (2-loop) perturbative result for γ and the NNLO (3-
loop) perturbative result for β. In what follows this will be abbreviated as NLO-2/3PT. In
line with ref. [2], also the present work devotes considerable effort to the investigation of the
reliability of NLO-2/3PT at the scale µpt.

3.3 Matrix-step-scaling functions and continuum extrapolations

We now turn to some practical considerations concerning the extrapolation of Σ(u, a/L) to
the continuum limit a/L → 0, from which we obtain σ(u); cf. Eq. (3.20). We stress that
although fermionic and gauge actions are Symanzik-improved by the presence of bulk and
boundary counter-terms, correlation functions with dimension-six operators in the bulk of
the lattice, such as those defined in Eqs. (3.4) and (3.14), are subject to linear discretisation
errors. Their removal could be achieved in principle by the subtraction of dimension-7
counter-terms, but their coefficients are not easy to determine in practice. We therefore
expect linear cutoff effects and consequently fit with the Ansatz

Σ(u, a/L) = σ(u) + ρ(u)(a/L) . (3.23)

In analogy to ref. [16], we explore the reliability of the above extrapolations with the
help of the lowest-order perturbative expression for Σij, which includes O(ag20) terms. In
general the perturbative series for the operator renormalisation matrices has the form [16]

Z(g0, L/a) = 1+

∞
∑

l=1

Z(l)(L/a)g2l0 , (3.24)

where in the limit a/L → 0 the coefficients Z(l) are l-degree polynomials in ln(L/a) up to
corrections of O(a/L). In particular the coefficient of the logarithmic divergence in Z(1) is
given by the one-loop anomalous dimension γ(0), and thus we parametrise Z(1) as

Z(1) = CF z(θ, T/L) − γ(0) ln(L/a) +O(a/L) , (3.25)

with θ = 0.5 and T/L = 1. It is now easy to see that the one-loop perturbative expression
for the matrix-SSF is given by

Σ(g2R, a/L) = 1+ k(L/a)g2R +O(g2R) , (3.26)

with

k(L/a) = Z(1)(2L/a) −Z(1)(L/a) . (3.27)

In the continuum limit (a/L → 0 with ḡ2 = u fixed) we have

k(∞) = γ(0) log(2). (3.28)
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The quantity

δk(L/a) ≡ k(L/a)[k(∞)]−1 − 1. (3.29)

contains all lattice artefacts at O(g20). Results for δk(L/a) are reported in Appendix B.
The “subtracted” matrix-SSF, defined as

Σ̃(u, a/L) ≡ Σ(u, a/L)
[

1+ u log(2)δk(a/L)γ
(0)
]−1
∣

∣

∣

∣

u=ḡ2(L)

(3.30)

also tends to σ in the continuum limit, but has the O(aḡ2) effects removed. We will also use
this quantity when studying the reliability of the linear continuum extrapolations below.

3.4 Perturbative expansion of matrix-step-scaling functions

Once the continuum matrix-SSF σ(u) has been computed for N discrete values of the renor-
malised coupling ḡ2(1/L) = u, it is useful to interpolate the data so as to obtain σ(u) as a
continuous function. This is done by fitting the N points by a suitably truncated polynomial

σ(u) = 1+ r1u+ r2u
2 + r3u

3 + · · · . (3.31)

With only a few (N) points at our disposal, the fit stability is greatly facilitated by fixing
the first two coefficients (matrices) r1 and r2 respectively to their LO and NLO perturba-
tive values, leaving r3 as the only free fit parameter. We will now derive the perturbative
coefficients r1 and r2.

Since the operator RG-running is coupled to that of the strong coupling, we also need
the LO and NLO coefficients of its step-scaling function (SSF); i.e.

σ(u) = u[1 + s1u+ s2u
2 + · · · ] . (3.32)

Given the strong coupling value ḡ2(1/L) = u at a renormalisation scale µ = 1/L, its SSF
is defined as σ(u) = ḡ2(1/2L); cf. ref. [17]. Combining this definition with that of the
Callan-Symanzik β-function of Eq. (2.5), we find that

− ln 2 =

∫

√
σ(u)

√
u

dg

β(g)
. (3.33)

Plugging the NLO expansion of Eq. (2.7) in the above and taking Eq. (3.32) into account,
we obtain the coefficients of the coupling SSF

s1 = 2b0 ln 2 , (3.34)

s2 = 2b1 ln 2 + 4b20 ln
2 2 . (3.35)

Matrix-SSFs for four-quark operators have been introduced in Eq. (3.18). In order to
calculate the coefficients r1 and r2 of its perturbative expansion Eq. (3.31), we first write
down the LO evolution matrix as

ULO(µ/2, µ)|g 2(µ)=u =

[

σ(u)

u

]
γ
(0)

2b0

= exp

{

γ(0)

2b0
ln

[

σ(u)

u

]

}

= 1+ uγ(0) ln 2 + u2
[(

b0 ln 2 +
b1
b0

)

γ(0) ln 2 +
ln2 2

2

(

γ(0)
)2
]

+ . . . .

(3.36)
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Furthermore, the matrix W(µ) of Eq. (3.18) has the NLO perturbative expansion (cf. ref. [2]
and references therein)

W(µ) = 1+ uJ1 + u2J2 + . . . , (3.37)

from which the inverse matrix is readily obtained:

[W(µ/2)]−1 = 1− σ(u)J1 + (J2
1 − J2)σ(u)

2 + . . . = 1− uJ1 + u2(J2
1 − s1J1 − J2) + . . . .

(3.38)

We arrive at the last expression on the rhs by inserting the power-series expansion of σ(u)
form Eq. (3.32). Substituting the various terms in Eq. (3.18) by the perturbative series (3.36),
(3.37) and (3.38), we find

r1 = γ(0) ln 2 , (3.39)

r2 = [γ(0),J1] ln 2− 2b0J1 ln 2 + (b0 ln 2 +
b1
b0
)γ(0) ln 2 +

1

2

(

γ(0)
)2

ln2 2

= γ(1) ln 2 + b0γ
(0) ln2 2 +

1

2

(

γ(0)
)2

ln2 2 . (3.40)

From the first expression obtained for r2 we see explicitly that O(u2) corrections to W do
not contribute (i.e. terms with J2 are absent), in accordance with the fact that the O(u)
term of W already contains all NLO contributions. The second expression for r2 is obtained
by using the property (cf. ref. [2] and references therein)

2b0J1 − [γ0,J1] =
b1
b0
γ(0) − γ(1) . (3.41)

Remarkably, the final result for r2 is the exact analogue of the one found for operators that
renormalise multiplicatively, cf. e.g. Eq. (6.6) in [4].

4 Non-perturbative computations

Our simulations are performed using the lattice regularisation of QCD consisting of the stan-
dard plaquette Wilson action for the gauge fields and the non-perturbatively O(a) improved
Wilson action for Nf = 2 dynamical fermions. The fermion action is Clover-improved with
the Sheikoleslami-Wohlert (SW) coefficient csw determined in [18]. The matrix-SSFs are com-
puted at six different values of the SF renormalised coupling, corresponding to six physical
lattice extensions L (i.e six values of the renormalisation scale µ). For each physical volume
three different values of the lattice spacing a are simulated, corresponding to lattices with
L/a = 6, 8, 12; this is achieved by tuning the bare coupling g0(a) so that the renormalised
coupling (and thus L) is approximately fixed. At the same g0(a) we also generate configura-
tion ensembles at twice the lattice volume; i.e. 2L/a = 12, 16, 24 respectively. We compute
Z(g0, a/L) and Z(g0, a/(2L)) and thus Σ(g20 , a/L); cf. Eq. (3.19). The gauge configuration
ensembles used in the present work and the tuning of the lattice parameters (β, κ) are taken
over from ref. [19] where all technical details concerning these dynamical fermion simula-
tions are discussed. As pointed out in [19], the gauge configurations at the three weakest
couplings have been produced using the one-loop perturbative estimate of ct [20], except for
(L/a = 6, β = 7.5420) and (L/a = 8, β = 7.7206). For these two cases and for the three
strongest couplings the two-loop value of ct [21] has been used.

Statistical errors are computed by blocking (binning) the measurements of each renor-
malisation parameter and calculating the bootstrap error on the binned averages. In order
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u σ
+
(2,3)

(u) σ
−

(2,3)
(u)

0.9793

(

1.0112(71) 0.067(21)
0.0095(40) 0.9227(100)

) (

1.0003(74) −0.074(11)
−0.0094(41) 0.918(11)

)

1.1814

(

1.0167(90) 0.054(23)
0.0073(44) 0.919(10)

) (

1.0098(83) −0.059(11)
−0.0055(40) 0.918(12)

)

1.5078

(

1.016(12) 0.065(30)
0.0116(57) 0.882(14)

) (

1.007(12) −0.089(17)
−0.0106(60) 0.883(18)

)

2.0142

(

1.0061(100) 0.101(33)
0.0186(55) 0.829(11)

) (

0.9952(85) −0.117(11)
−0.0213(55) 0.835(14)

)

2.4792

(

0.988(20) 0.087(42)
0.0171(76) 0.794(22)

) (

0.986(14) −0.095(14)
−0.0200(75) 0.812(21)

)

3.3340

(

0.990(30) 0.138(55)
0.049(11) 0.691(20)

) (

0.950(19) −0.141(21)
−0.0500(95) 0.716(22)

)

Table 1: Continuum matrix-SSFs for the operator bases {Q±

2 ,Q±

3 }.

to take their autocorrelation length into account, we determine the block-size for which the
bootstrap error of a given renormalisation parameter reaches a plateau. This varies for each
of the four matrix elements of a given 2 × 2 renormalisation matrix. We conservatively fix
our preferred block-size to the maximum of all four cases, and estimate our statistical error
accordingly. We crosscheck our results by also applying the Gamma method error analysis
of ref. [22], and by varying the summation-window size. The results from the two methods
agree within the (relevant) uncertainties.

Numerical results for [Z(g0, a/L)]
−1 and Z(g0, a/(2L)), computed from Eq. (3.16), are

collected in Tabs. 7 and 8. The reason we prefer quoting the inverse of Z(g0, a/L) is that it
is this quantity which is required for the computation of the matrix-SSFs; cf. Eq. (3.19).

4.1 Lattice computation of matrix-functions

We perform linear extrapolations in a/L of both Σ and Σ̃ (cf. Eqs. (3.23) and (3.30)), so as
to crosscheck the reliability of the continuum value σ(u). The extrapolation results can be
found in Tabs. 1 and 2, as well as in Figs. 6,7,8, and 9. In most cases both extrapolations
agree; at worst the agreement is within two standard deviations (e.g. in Fig. 6 the difference
between off-diagonal elements of the matrices Σ and Σ̃ is sizeable). We quote, as our best
results, those obtained from linear extrapolations in a/L, involving all three data-points of
the “subtracted” matrix-SSFs. We estimate the systematic error as the difference between
the value of σ obtained by extrapolating Σ and Σ̃. This error is added in quadrature to the
one from the fit.

Similar checks with another two definitions of “subtracted” matrix-SSFs, namely:

Σ′(u, a/L) ≡
[

1+ u log(2)δk(a/L)γ
(0)
]−1

Σ(u, a/L) , (4.1)

Σ′′(u, a/L) ≡ Σ(u, a/L)− u log(2)δk(a/L)γ
(0) , (4.2)

which differ at O(u2) have not revealed any substantial differences in the results.

4.2 RG running in the continuum

In order to compute the RG running of the operators in the continuum limit, matrix-SSFs
have to be fit to the functional form shown in Eq. (3.31). Several fits have been tried out,
with different orders in the polynomial expansion and r2 either kept fixed to its perturbative
value or allowed to be a free fit parameter. Fits with r1 fixed by perturbation theory and
r2 the only free fit parameter do not describe the data well. This is understandable, as
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u σ
+
(4,5)

(u) σ
−

(4,5)
(u)

0.9793

(

0.9554(90) −0.00212(78)
−0.256(41) 1.0479(76)

) (

0.8870(94) −0.00092(79)
0.093(37) 1.0040(66)

)

1.1814

(

0.957(12) −0.0005(10)
−0.195(56) 1.076(11)

) (

0.883(11) −0.0024(10)
0.009(46) 1.0012(95)

)

1.5078

(

0.930(16) −0.0016(15)
−0.252(76) 1.089(16)

) (

0.833(18) −0.0026(13)
0.022(62) 0.994(10)

)

2.0142

(

0.896(14) −0.0034(11)
−0.355(67) 1.105(12)

) (

0.763(11) −0.0021(12)
0.046(55) 0.988(12)

)

2.4792

(

0.874(18) −0.0020(14)
−0.288(82) 1.136(17)

) (

0.718(19) −0.0039(18)
−0.066(67) 0.959(17)

)

3.3340

(

0.812(25) −0.0098(32)
−0.52(13) 1.204(36)

) (

0.587(20) 0.0012(23)
−0.056(92) 0.948(22)

)

Table 2: Continuum matrix-SSFs for the operator bases {Q±

4 ,Q±

5 }.

deviations from LO are large for some matrix elements (for σ+
54 in particular) and knowledge

of the NLO anomalous dimension γ(1) (and therefore r2; cf. Eq. (3.40)) is necessary for a
well-converging fit. It is however an encouraging crosscheck that the r2 value returned by
the fit is close to the perturbative prediction of Eq. (3.40). If, besides r2, we also include
r3 as a free fit parameter, the results have large errors. The best option turns out to be
the one with the polynomial expansion of Eq. (3.31) truncated at O(u4), r1 and r2 fixed to
their perturbative values and r3 left as free fit parameter. The plots of the matrix-SSFs are
collected in Figs. 2 and 3.

In the same Figures we also show the LO and NLO perturbative results, calculated
from Eq. (3.31), truncated at O(u) and O(u2) respectively. The comparison between the
non-perturbative, the LO, and the NLO results provides a useful assessment of the reliability
of the perturbative series. There is coincidence of all three curves at very small (perturbative)
values of the squared gauge coupling u, but this is obviously guaranteed by the form of our
fit function, as described above. At larger u-values one would ideally hope to see the NLO
curves lying closer to the non-perturbative ones, compared to the LO curves. For σ+ this
is mostly the case, as shown in Fig. 2, the only exception being [σ+]23 and [σ+]44. For
the operator basis {Q+

2 ,Q+
3 }, non-perturbative and NLO curves seem in good agreement

for the diagonal elements [σ+]22 and [σ+]33. This is less so for the non-diagonal [σ+]23 and
[σ+]32. For the operator basis {Q+

4 ,Q+
5 }, non-perturbative and NLO curves mostly agree,

with the exception of [σ+]44. We also note that the non-perturbative [σ+]23 tends to decrease
at large u, unlike the monotonically increasing perturbative predictions. For σ− the NLO
curves lie closer to the non-perturbative results compared to the LO ones, in all cases but
[σ−]23 and [σ−]55 (for [σ−]54 LO and NLO are very close to each other). In several cases
non-perturbative and NLO curves are in fair, or even excellent, agreement also at large u-
values (cf. [σ−32], [σ

−
33], [σ

−
44] and [σ−45]). In other cases this comparison in less satisfactory.

Note that the NLO [σ−]54 and [σ−]55 curves are monotonically increasing, as opposed to
the non-perturbative ones. In conclusion the overall picture in the renormalisation scheme
under investigation is in accordance with our general expectations, although there are signs
of slow or bad convergence of the perturbative results to the non-perturbative ones.

Once the matrix-SSFs are known as continuum functions of the renormalised coupling,
we can obtain the RG-running matrix U(µhad, 2

nµhad) = σ(u1) . . .σ(un); cf. Eq. (3.21). We
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Figure 2: Continuum matrix-SSFs for operator bases {Q+
2 ,Q+

3 } (top) and {Q+
4 ,Q+

5 } (bottom). The
LO perturbative result is shown by the dotted black line, while the NLO one by the dashed blue line.
The red line (with error band) is the non-perturbative result from the O(u3) fit as described in the
text. The two error bars on each data point are the statistical and total uncertainties; the systematic
error contributing to the latter has been estimated as explained in the text.
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Figure 3: Continuum matrix-SSFs for operator bases {Q−

2 ,Q−

3 } (top) and {Q−

4 ,Q−

5 } (bottom). The
LO perturbative result is shown by the dotted black line, while the NLO one by the dashed blue line.
The red line (with error band) is the non-perturbative result from the O(u3) fit as described in the
text. The two error bars on each data point are the statistical and total uncertainties; the systematic
error contributing to the latter has been estimated as explained in the text.
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check the reliability of our results by writing Eq. (2.20) as

Ũ(µhad) = Ũ(2nµhad) [U(µhad, 2
nµhad)]

−1

=

[

g 2(2nµhad)

4π

]−γ
(0)

2b0

W(2nµhad) [U(µhad, 2
nµhad)]

−1 . (4.3)

The matrix Ũ(µhad) does not depend on the higher-energy scale 2nµhad, so the n-dependence
on the rhs should in principle cancel out. We check this by computing the second line for
varying n, using our non-perturbative result for U(µhad, 2

nµhad) and the perturbative one
for Ũ(2nµhad). As explained in the comments following Eq. (3.22), the latter is obtained as

the NLO-2/3PT W(2nµhad), multiplied by
[

g 2(2nµhad)/(4π)
]−(γ(0)/2b0). The scale µhad is

held fixed through g 2(µhad) = 4.61, which defines Lmax; see the Nf = 2 running coupling
computation of ref. [19] for details. The higher-energy scale 2nµhad is varied over a range of
values n = 0, . . . , 8; for each of these Ũ(µhad) is computed. Our results are shown in Tabs. 3
and 4. As expected, 2nµhad-independence sets in with increasing n.

More specifically, taking log(ΛSF/µhad) = −1.298(58) from ref. [19] and r0ΛSF = 0.30(3)
from ref. [15] with r0 = 0.50 fm, we obtain the hadronic matching energy scale µhad ≈
432(50)MeV. Our final results for the non-perturbative running at µhad are obtained from
Eq. (4.3) and for n = 8. They are:

Ũ+
(2,3)(µhad) =

(

1.2028(436)(3) 0.1202(692)(180)
−0.0423(36)(2) 0.4572(152)(8)

)

, (4.4)

Ũ+
(4,5)(µhad) =

(

0.5657(158)(2) 0.0224(11)(0)
1.7245(4070)(627) 2.1317(679)(25)

)

, (4.5)

for the operator bases {Q+
2 ,Q+

3 },{Q+
4 ,Q+

5 } and

Ũ−
(2,3)(µhad) =

(

1.2377(281)(19) −0.8289(486)(69)
0.0420(42)(2) 0.4192(131)(8)

)

, (4.6)

Ũ−
(4,5)

(µhad) =

(

0.4297(195)(5) −0.03145(88)(1)
−1.6825(2182)(387) 0.8976(176)(29)

)

, (4.7)

for {Q−
2 ,Q−

3 },{Q−
4 ,Q−

5 }. The first error refers to the statistical uncertainty, while the second
is the systematic one due to the use of NLO-2/3PT at the higher scale 2nµhad. We estimate
the systematic error as the difference between the final result, obtained with perturbation
theory setting in at scale 28µhad, and the one where perturbation theory sets in at 27µhad
(cf. Tabs. 3,4).

We note that systematic errors are almost negligible compared to statistical ones, the
latter being the result of error propagation in the product of matrix-SSFs from µhad to 2

8µhad.
This however does not tell us much about the accuracy of NLO-2/3PT around the scale
µpt = 2nµhad. We investigate this issue in Appendix A, where we compare σ(un), calculated
in NLO-2/3PT and non-perturbatively. For several matrix elements of σ(un) we see that
NLO-2/3PT is not precise enough, even at the largest scale we can reach (corresponding to
n = 8).

We now play the inverse game, keeping fixed µpt = 28µhad and calculating

Ũ(µ) =

[

g 2(µpt)

4π

]−γ
(0)

2b0

W(µpt) [U(µ, µpt)]
−1 . (4.8)

for decreasing µ. The results for Ũ(µ) are shown in Figs. 4 and 5. They are the first
non-perturbative computation of the RG-evolution of operators which mix under renormal-
isation in the continuum. We stress that these results are scheme dependent. Note that
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n Ũ+
(2,3)

(µhad) Ũ−

(2,3)
(µhad)

0

(

1.215505 −0.363611
−0.077786 0.472123

) (

1.132141 −0.607507
0.063161 0.431281

)

1

(

1.2016(190) −0.1649(270)
−0.0532(22) 0.4562(80)

) (

1.1837(126) −0.6972(172)
0.0484(24) 0.4185(67)

)

2

(

1.2022(283) −0.0773(425)
−0.0476(29) 0.4580(112)

) (

1.2057(186) −0.7419(277)
0.0452(32) 0.4200(94)

)

3

(

1.2030(336) −0.0212(499)
−0.0453(32) 0.4595(129)

) (

1.2177(221) −0.7693(344)
0.0440(36) 0.4213(110)

)

4

(

1.2035(369) 0.0212(559)
−0.0441(34) 0.4599(138)

) (

1.2250(243) −0.7886(387)
0.0433(38) 0.4216(118)

)

5

(

1.2035(395) 0.0542(609)
−0.0434(35) 0.4595(144)

) (

1.2298(258) −0.8027(422)
0.0428(40) 0.4212(124)

)

6

(

1.2033(412) 0.0808(644)
−0.0429(35) 0.4588(147)

) (

1.2333(268) −0.8135(447)
0.0424(41) 0.4206(127)

)

7

(

1.2031(426) 0.1022(674)
−0.0425(36) 0.4580(150)

) (

1.2358(276) −0.8220(468)
0.0422(41) 0.4200(130)

)

8

(

1.2028(436) 0.1202(692)
−0.0423(36) 0.4572(152)

) (

1.2377(281) −0.8289(486)
0.0420(42) 0.4192(131)

)

Table 3: The matrix Ũ±

(2,3)(µhad), corresponding to the operator bases {Q±

2 ,Q±

3 }. It is computed for

a fixed low-energy scale µhad and varying higher-scales 2nµhad. For sufficiently large n, the results
should not depend on the higher-energy scale.

the computation thus described enforces the coincidence of our most perturbative point
to the perturbative prediction, which we assume to describe accurately the running from
µpt ∼ O(MW) to infinity. The discrepancies between perturbation theory and our results
are evident at ever decreasing scales µ. These discrepancies are sometimes dramatic; e.g.
[Ũ−]55(µ). This is related to the discussion of Figs. 2 and 3 above, concerning disagree-
ments between non-perturbative and NLO behaviour of several σ matrix elements. Since
[U(µ, µpt)]

−1 in Eq. (4.8) is a product of several σ matrices, these disagreements accumulate,
becoming very sizeable as µ/ΛSF decreases.

Finally, we compare the perturbative (NLO-2/3PT) to the non-perturbative RG evolu-
tion U(µ, µ∗) between scales µ and µ∗, where µ∗ = 3.46 GeV is kept fixed and µ is varied in
the range [0.43 GeV, 110 GeV]. The comparison is described Appendix A and confirms the
unreliability of the perturbative computation of the RG running at scales of about 3GeV.

4.3 Matching to hadronic observables with non-perturbatively O(a) improved

Wilson fermions

Having computed the non-perturbative evolution matrices Ũ(µhad) as in Eq. (4.8), which
provide the RG-running at the low energy scale µhad, we proceed to establish the connection
between bare lattice operators and their RGI counterparts. Starting from the definition
of Eq. (2.26), we write the RGI operator as

Q̂ ≡
[

g 2(µpt)

4π

]−γ
(0)

2b0

W(µpt)Q(µpt) (4.9)

=

[

g 2(µpt)

4π

]−γ
(0)

2b0

W(µpt)U(µpt, µhad) lim
g20→0

[

Z(g20 , aµhad) Q(g20)
]

.
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n Ũ+
(4,5)

(µhad) Ũ−

(4,5)
(µhad)

0

(

0.522119 0.028246
2.648160 2.098693

) (

0.492746 −0.032468
−2.607554 0.771786

)

1

(

0.5417(73) 0.0242(7)
2.3620(1360) 2.1229(300)

) (

0.4531(96) −0.0304(5)
−2.2066(850) 0.8223(81)

)

2

(

0.5537(106) 0.0232(9)
2.2306(2151) 2.1222(446)

) (

0.4474(134) −0.0305(7)
−2.0604(1298) 0.8502(119)

)

3

(

0.5602(126) 0.0228(10)
2.1242(2675) 2.1205(534)

) (

0.4443(159) −0.0307(8)
−1.9636(1558) 0.8670(142)

)

4

(

0.5636(136) 0.0226(11)
2.0255(3040) 2.1214(585)

) (

0.4411(172) −0.0309(8)
−1.8862(1750) 0.8779(154)

)

5

(

0.5652(143) 0.0225(11)
1.9411(3365) 2.1237(619)

) (

0.4379(181) −0.0311(8)
−1.8213(1884) 0.8854(163)

)

6

(

0.5656(150) 0.0225(11)
1.8581(3668) 2.1266(643)

) (

0.4350(186) −0.0312(9)
−1.7669(2009) 0.8905(168)

)

7

(

0.5659(154) 0.0224(11)
1.7872(3884) 2.1292(663)

) (

0.4322(191) −0.0314(9)
−1.7212(2105) 0.8947(174)

)

8

(

0.5657(158) 0.0224(11)
1.7245(4070) 2.1317(679)

) (

0.4297(195) −0.0315(9)
−1.6825(2182) 0.8976(176)

)

Table 4: The matrix Ũ±

(4,5)(µhad), corresponding to the operator bases {Q±

4 ,Q±

5 }. It is computed for

a fixed low-energy scale µhad and varying higher-scales 2nµhad. For sufficiently large n, the results
should not depend on the higher-energy scale.

Q̂ is independent of any renormalisation scheme or scale; of course it is also independent of
the regularisation. It is a product of several quantities:

• The factors [g 2(µpt)/(4π)]
−γ

(0)

2b0 and W(µpt) depend on a high-energy scale µpt and are
calculated in NLO perturbation theory. This was one of the main objectives of ref. [2].

• The running matrix U(µpt, µhad) is known between the high-energy scale µpt and a
low-energy scale µhad; its non-perturbative computation for Nf = 2 QCD is the main
objective of the present work.

• The product of the last two factors Z(g20 , aµhad) Q(g20) stands for the usual lattice
computation of bare hadronic quantities and their renormalisation constants on large
physical volumes and for several bare couplings, with the continuum limit taken though
extrapolation.

Although the last item in the above list is beyond the scope of this paper, we have
computed Z(g20 , aµhad) following [19], at three values of the lattice spacing, namely β =
6/g20 = {5.20, 5.29, 5.40}, which are in the range commonly used for simulations of Nf = 2
QCD in physically large volumes. The results are listed in Tabs. 5, 6. In order to interpolate
to the target renormalized coupling u(µhad) = 4.61, the data can be fitted with a polynomial.
Our numerical studies reveal that additional values of β would be needed to improve the
quality of the interpolation to the target value of the coupling.
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β κcr L/a ḡ2(L) Z
+
(23)

Z
−

(23)

5.20 0.13600
4 3.65

(

0.5992(11) 0.31835(83)
0.08539(42) 0.35980(88)

) (

0.5048(11) −0.12417(81)
−0.08479(37) 0.39148(77)

)

6 4.61

(

0.6026(12) 0.34048(59)
0.08647(33) 0.29400(61)

) (

0.50745(86) −0.17402(63)
−0.08586(34) 0.31768(58)

)

5.29 0.13641
4 3.39

(

0.6179(11) 0.31837(69)
0.08123(33) 0.38268(82)

) (

0.53117(83) −0.12960(76)
−0.08047(41) 0.41335(68)

)

6 4.30

(

0.6212(11) 0.33681(81)
0.07975(35) 0.31743(68)

) (

0.53520(90) −0.17551(80)
−0.07941(40) 0.34077(70)

)

8 5.65

(

0.6274(13) 0.35466(78)
0.08400(49) 0.27293(68)

) (

0.5317(10) −0.2035(10)
−0.08554(50) 0.29424(62)

)

5.40 0.13669
4 3.19

(

0.6367(10) 0.31526(70)
0.07672(32) 0.40904(83)

) (

0.55721(81) −0.13146(75)
−0.07610(28) 0.43891(82)

)

6 3.86

(

0.63422(95) 0.33226(72)
0.07429(37) 0.34047(67)

) (

0.55768(81) −0.17545(73)
−0.07358(35) 0.36360(59)

)

8 4.75

(

0.6422(13) 0.35228(79)
0.07738(41) 0.29670(64)

) (

0.55925(84) −0.20644(70)
−0.07761(50) 0.31681(65)

)

Table 5: Renormalisation constants at hadronic-scale β-values for the operator bases {Q±

2 ,Q±

3 }.

β κcr L/a ḡ2(L) Z
+
(45)

Z
−

(45)

5.20 0.13600
4 3.65

(

0.4921(11) −0.02039(13)
−1.1531(32) 0.8350(19)

) (

0.24875(92) 0.01084(10)
0.2681(16) 0.5416(10)

)

6 4.61

(

0.4293(10) −0.02340(19)
−1.3971(38) 0.9190(18)

) (

0.17779(68) 0.00886(11)
0.2660(16) 0.5373(11)

)

5.29 0.13641
4 3.39

(

0.5133(12) −0.01910(13)
−1.1264(31) 0.8385(15)

) (

0.27459(88) 0.009909(86)
0.2838(16) 0.56761(95)

)

6 4.30

(

0.4509(12) −0.02075(23)
−1.3442(46) 0.9189(20)

) (

0.20420(76) 0.00734(13)
0.2741(19) 0.5621(11)

)

8 5.65

(

0.4120(11) −0.02498(26)
−1.5596(49) 1.0027(26)

) (

0.15562(58) 0.00676(17)
0.2607(14) 0.5514(11)

)

5.40 0.13669
4 3.19

(

0.5372(10) −0.01782(13)
−1.0918(31) 0.8416(15)

) (

0.30436(89) 0.008962(76)
0.2935(16) 0.59197(98)

)

6 3.86

(

0.4717(12) −0.01848(20)
−1.2852(44) 0.9099(19)

) (

0.23038(72) 0.006133(95)
0.2827(18) 0.5833(11)

)

8 4.75

(

0.43354(94) −0.02131(20)
−1.4867(41) 0.9867(18)

) (

0.18096(60) 0.00509(12)
0.2753(16) 0.5788(10)

)

Table 6: Renormalisation constants at hadronic-scale β-values for the operator bases {Q±

4 ,Q±

5 }.

5 Conclusions

In the present work we have studied the non-perturbative RG-running of the parity-odd,
dimension-six, four-fermion operators Q±

2 , . . . ,Q±
5 , defined in Eqs. (2.1) and (2.2). Assign-

ing physical flavours to the generic fermion fields ψ1, . . . , ψ4, the above operators describe
four-quark effective interactions for various physical processes at low energies. Under renor-
malisation, these operators mix in pairs, as discussed in Section 2. This mixing is not an
artefact of the eventual loss of symmetry due to the (lattice) regularisation; rather it is
a general property of operators belonging to the same representations of their symmetry
groups. It follows that also the RG-running of each operator is governed by two anomalous
dimensions, and the corresponding RG-equations are imposed on 2 × 2 evolution matrices.
This makes the problem of RG-running more complicated than the cases of multiplicatively
renormalised quantities, such as the quark masses or BK.

The novelty of the present work is that, using long-established finite-size scaling tech-
niques and the Schrödinger Functional renormalisation conditions described in Section 3, we
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[Ũ
] 3

2
(µ

)

 

 

2/3 PT

NP

10
0

10
1

10
2

10
3

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

µ/Λ

[Ũ
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Figure 4: Non-perturbative running Ũ+
(2,3)(µ) for the operator basis {Q+

2 ,Q+
3 } (top) and Ũ+

(4,5)(µ)

of the operator basis {Q+
4 ,Q+

5 } (bottom). Results are compared to the perturbative predictions,
obtained by numerically integrating Eq. (2.23), with the NLO result for γ and the NNLO one for β,
in the SF scheme.
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Figure 5: Non-perturbative running Ũ−

(2,3)(µ) of the operator basis {Q−

2 ,Q−

3 } (top) and Ũ−

(4,5)(µ)

of the operator basis {Q−

4 ,Q−

5 } (bottom). Results are compared to the perturbative predictions,
obtained by numerically integrating Eq. (2.23), with the NLO result for γ and the NNLO one for β,
in the SF scheme. 23



have computed the non-perturbative evolution matrices of these operators between widely
varying low- and high-energy scales µhad ∼ O(ΛQCD) and µpt ∼ O(MW ) for QCD with two
dynamical flavours. Our results are shown in Figs. 4 and 5 and Eqs. (4.4) – (4.7). The
accuracy of our results for the diagonal matrix elements ranges from 3% to 5%. The accu-
racy on the determination of the non-diagonal matrix elements ranges from as high as 3%
to as poor as 60%. Clearly there is room for improvement. In our next project concerning
the renormalisation and RG-running of the same operators for QCD with three dynamical
flavours, we plan to introduce several novelties, which ought to improve the precision of our
results significantly.

Perturbation theory is to be used for the RG-running for scales above µpt ∼ O(MW ). In
our SF scheme the perturbative results at our disposal are NNLO (3-loops) for the Callan-
Symanzik β-function and NLO (2-loops) for the four-fermion operator anomalous dimensions.
In Figs. 4 and 5 we see the presence of possibly relevant non-perturbative effects already
at scales of about 3 GeV, where it is often assumed that beyond-LO perturbation theory
converges well10. We have also performed some checks by computing the RG-evolution
matrix from a generic scale to a scale of about 3 GeV and found some matrix elements
where the NLO perturbative result significantly differs from the non-perturbative one (see
Appendix A). This should serve as a warning for other non-perturbative approaches which
assume that perturbation theory is convergent at such scales.

Finally, at a fixed hadronic scale and for three values of the bare gauge coupling, we
have computed the renormalisation constants (again in 2×2 matrix form) of our four-fermion
operators.

As a closing remark we wish to point out that the non-perturbative evolution matri-
ces computed in this work describe not only the RG-running of the parity-odd operators
Q±

2 , . . . ,Q±
5 , but also that of their parity-even counterparts Q±

2 , . . . , Q
±
5 . This is because

evolution matrices are continuum quantities: in the continuum, each parity-odd operator
combines with its parity-even counterpart to form an operator which transforms in a given
chiral representation, both parts having consequently the same anomalous dimension matri-
ces.

In the case, for instance, of ∆S = 2 transitions, we are dealing with operator matrix
elements between two neutral K-meson states and therefore only the parity-even operators
(Q+

1 in the SM and Q+
2,··· ,5 for BSM) contribute. Our results for the continuum RG-evolution,

obtained for the parity-odd basis, can be used in this case. The renormalization of the bare
operators, however, depends on the details of the lattice action. If the lattice regularisation
respects chiral symmetry (e.g. lattice QCD with Ginsparg-Wilson fermions), then the parity-
even and parity-odd parts of a given basis of chiral operators renormalise with the same
renormalisation constants. Consequently they also have the same matrix-SSFs and evolution
matrices. All results obtained for the parity-odd operators Q±

2 , . . . ,Q±
5 are then also valid

for the Q±
2 , . . . , Q

±
5 , without further ado.

Things are somewhat more complicated if the regularisation breaks chiral symmetry
(e.g. lattice QCD with Wilson fermions). Then parity-even and parity-odd operators again
have the same anomalous dimensions, as these are continuum quantities, but the “ratio”

of their renormalisation matrices
{

Z−1Z
}

is a finite (scale-independent) matrix which is a

function of the bare gauge coupling; it becomes the unit matrix in the continuum limit. This
“ratio” is fixed by lattice Ward identities, as discussed for example in ref. [7]. So the subtlety
here is that once the renormalisation condition has been fixed for say, the parity-odd operator
bases at a value g20 of the squared gauge coupling, the condition for the parity-even coun-

10We have checked that other SF schemes, with different choices of α and (s1, s2) (see subsection 3.1),
display similar overall behaviour.
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terparts is also fixed through
{

Z−1Z
}

. Consequently, renormalisation matrix “ratios” like

Z
(

g20 ,
a
2L

) [

Z
(

g20 ,
a
L

)]−1
are equal to their parity-even counterparts Z

(

g20 ,
a
2L

) [

Z
(

g20 ,
a
L

)]−1
.

Thus matrix-SSFs Σ(g20 , a/L) and evolution matrices are the same for parity-odd and parity-
even cases; cf. Eq. (3.19). But if we wish to use the evolution matrices of the present work
also for the parity-even operators, we must ensure that these are renormalised in the “same”
SF scheme employed for their parity-odd counterparts. This is ensured by writing the RGI
parity-even operator column (in analogy to Eq. (4.9)) as:

Q̂ ≡
[

g 2(µpt)

4π

]−γ
(0)

2b0

W(µpt)Q(µpt) (5.1)

=

[

g 2(µpt)

4π

]−γ
(0)

2b0

W(µpt)U(µpt, µhad) lim
g20→0

[

Z(g20 , aµhad)
{

Z−1Z
}

Qsub(g
2
0)
]

,

where Qsub ≡ (1 +∆)Q is the “subtracted” bare operator, as suggested by Eq. (2.3). The
term in square brackets of the last expression is the renormalised parity-even operator ZQ. It
is computed however in a way that ensures that the bare operatorQ(g20) is renormalised in our
SF scheme: the SF renormalisation parameter Z(g20 , aµhad) (which removes the logarithmic

divergences) is multiplied by the scheme-independent, scale-independent “ratio”
{

Z−1Z
}

.

Clearly, the procedure sketched above for the renormalisation of parity-even operators
is fairly cumbersome. It is also prone to enhanced statistical uncertainties, as it involves
subtracted operators Qsub with non-zero ∆. Fortunately, there is a way to circumvent the
problem: it is well known that, using chiral (axial) transformations of the quark fields, we
can obtain continuum correlation functions of specific parity-even composite operators in
terms of bare correlation functions of parity-odd operators of the same chiral multiplet,
regularised with twisted-mass (tmQCD) Wilson fermions [23]. The prototype example is the
one expressing renormalized correlation functions of the axial current in terms of bare twisted-
mass Wilson-fermion correlation functions of the properly renormalised vector current. The
situation is more complicated with four-fermion operators: in ref. [8] it was shown that
such chiral rotations do indeed relate parity-even to parity-odd 4-fermion operators, but the
resulting tmQCD Wilson-fermion determinant is not real, and thus unsuitable for numerical
simulations. This problem is circumvented by working with a lattice theory with sea- and
valence-quarks regularised with different lattice actions [9]. The valence action is the so-
called Osterwalder-Seiler [24] variety of tmQCD, with valence twisted-mass fermion fields
suitably chosen so as to enable the mapping of correlation functions involving parity-even
operators {Qk} to those of the parity-odd basis {Qk}. The sea-quark action may be any
tenable lattice fermion action. While the price to pay is the loss of unitarity at finite values
of the lattice spacing, this is, however, outweighed by the advantage of vanishing finite
subtractions (D = 0 in eq. (2.3)).
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ḡ2(L) β = 6/g20 κcr L/a
[

Z
+
(2,3)

(g0, a/L)
]

−1
Z

+
(2,3)

(g0, a/2L) Σ
+
(2,3)

(g0, a/L)

0.9793
9.50000 0.131532 6

(

1.2133(17) −0.3792(35)
−0.05744(71) 1.4505(27)

) (

0.8410(13) 0.2446(20)
0.03188(52) 0.6457(13)

) (

1.0063(20) 0.0358(39)
0.00157(79) 0.9244(26)

)

9.73410 0.131305 8

(

1.2049(16) −0.3904(39)
−0.05411(82) 1.4807(27)

) (

0.8470(17) 0.2516(42)
0.0310(10) 0.6326(15)

) (

1.0069(24) 0.0416(69)
0.0030(14) 0.9246(28)

)

10.05755 0.131069 12

(

1.1897(14) −0.4106(34)
−0.05176(66) 1.5153(25)

) (

0.8612(30) 0.2740(47)
0.0332(14) 0.6196(34)

) (

1.0102(39) 0.0613(84)
0.0075(18) 0.9253(57)

)

1.1814
8.50000 0.132509 6

(

1.2566(16) −0.4655(35)
−0.07279(84) 1.5573(30)

) (

0.8200(29) 0.2682(50)
0.0353(13) 0.5956(23)

) (

1.0110(38) 0.0361(82)
0.0010(17) 0.9113(41)

)

8.72230 0.132291 8

(

1.2436(26) −0.4875(58)
−0.0713(13) 1.5927(42)

) (

0.8332(18) 0.2850(33)
0.03712(84) 0.5874(18)

) (

1.0159(33) 0.0475(64)
0.0042(13) 0.9175(38)

)

8.99366 0.131975 12

(

1.2249(19) −0.5071(46)
−0.06697(100) 1.6373(34)

) (

0.8436(32) 0.2934(44)
0.0356(11) 0.5700(26)

) (

1.0137(40) 0.0528(75)
0.0055(15) 0.9154(46)

)

1.5078
7.54200 0.133705 6

(

1.3140(20) −0.5896(40)
−0.09652(87) 1.7162(33)

) (

0.7937(27) 0.2981(30)
0.04239(88) 0.5325(23)

) (

1.0142(40) 0.0435(59)
0.0043(13) 0.8890(45)

)

7.72060 0.133497 8

(

1.3037(39) −0.6279(73)
−0.0959(17) 1.7721(65)

) (

0.8071(43) 0.3162(42)
0.0437(14) 0.5201(34)

) (

1.0216(59) 0.0541(78)
0.0070(20) 0.8943(63)

)

8.02599 0.133063 12

(

1.2785(49) −0.660(12)
−0.0924(25) 1.826(11)

) (

0.8166(40) 0.3313(55)
0.0439(16) 0.5001(31)

) (

1.0138(62) 0.066(11)
0.0099(23) 0.8846(74)

)

2.0142
6.60850 0.135260 6

(

1.4150(27) −0.8110(54)
−0.1425(12) 2.0090(49)

) (

0.7514(19) 0.3335(15)
0.05167(57) 0.4401(13)

) (

1.0157(31) 0.0605(40)
0.01041(96) 0.8421(32)

)

6.82170 0.134891 8

(

1.3812(53) −0.814(11)
−0.1295(26) 2.043(10)

) (

0.7719(23) 0.3554(27)
0.05420(98) 0.4320(17)

) (

1.0199(52) 0.0974(74)
0.0189(17) 0.8385(51)

)

7.09300 0.134432 12

(

1.3519(40) −0.8891(89)
−0.1335(22) 2.1328(77)

) (

0.7844(26) 0.3691(25)
0.05261(86) 0.4150(18)

) (

1.0113(43) 0.0897(67)
0.0157(14) 0.8385(47)

)

2.4792
6.13300 0.136110 6

(

1.4969(45) −1.0111(81)
−0.1878(20) 2.2820(81)

) (

0.7280(50) 0.3519(39)
0.0587(16) 0.3780(35)

) (

1.0236(79) 0.0672(88)
0.0169(25) 0.8031(86)

)

6.32290 0.135767 8

(

1.4557(36) −1.0256(76)
−0.1743(20) 2.3371(71)

) (

0.7340(53) 0.3602(44)
0.0558(17) 0.3621(39)

) (

1.0063(86) 0.089(12)
0.0183(29) 0.7893(99)

)

6.63164 0.135227 12

(

1.4076(47) −1.078(10)
−0.1677(28) 2.401(10)

) (

0.7640(65) 0.3826(32)
0.0569(15) 0.3608(41)

) (

1.0111(96) 0.0945(94)
0.0195(23) 0.8051(98)

)

3.3340
5.62150 0.136665 6

(

1.6592(74) −1.411(13)
−0.2842(37) 2.863(15)

) (

0.6776(84) 0.3716(53)
0.0714(29) 0.2796(41)

) (

1.019(14) 0.1080(98)
0.0392(41) 0.700(10)

)

5.80970 0.136608 8

(

1.5838(67) −1.415(16)
−0.2655(46) 2.888(16)

) (

0.7001(70) 0.3851(43)
0.0738(19) 0.2822(31)

) (

1.006(11) 0.1215(95)
0.0419(28) 0.7107(94)

)

6.11816 0.136139 12

(

1.5063(82) −1.424(20)
−0.2385(57) 2.907(19)

) (

0.7347(86) 0.4113(46)
0.0755(26) 0.2776(29)

) (

1.009(14) 0.149(11)
0.0474(38) 0.6999(72)

)

ḡ2(L) β = 6/g20 κcr L/a
[

Z
−

(2,3)
(g0, a/L)

]

−1
Z

−

(2,3)
(g0, a/2L) Σ

−

(2,3)
(g0, a/L)

0.9793
9.50000 0.131532 6

(

1.2280(14) 0.1801(22)
0.05161(71) 1.4101(23)

) (

0.8246(12) −0.1423(16)
−0.02854(53) 0.6572(14)

) (

1.0052(19) −0.0522(28)
−0.00113(82) 0.9217(25)

)

9.73410 0.131305 8

(

1.2186(14) 0.2053(27)
0.04869(82) 1.4443(23)

) (

0.8302(14) −0.1575(27)
−0.0277(10) 0.6420(16)

) (

1.0040(21) −0.0568(45)
−0.0026(14) 0.9215(28)

)

10.05755 0.131069 12

(

1.2029(14) 0.2361(27)
0.04650(80) 1.4813(25)

) (

0.8418(32) −0.1770(34)
−0.0302(13) 0.6284(34)

) (

1.0044(42) −0.0633(57)
−0.0070(18) 0.9239(56)

)

1.1814
8.50000 0.132509 6

(

1.2763(15) 0.2281(25)
0.06654(82) 1.5057(24)

) (

0.8000(23) −0.1615(34)
−0.0323(13) 0.6079(25)

) (

1.0102(34) −0.0607(59)
−0.0008(18) 0.9078(45)

)

8.72230 0.132291 8

(

1.2627(26) 0.2609(42)
0.0644(13) 1.5455(46)

) (

0.8110(16) −0.1758(23)
−0.03383(87) 0.5988(18)

) (

1.0127(28) −0.0600(45)
−0.0042(14) 0.9166(38)

)

8.99366 0.131975 12

(

1.2437(17) 0.2982(31)
0.06091(98) 1.5937(30)

) (

0.8219(26) −0.1912(22)
−0.03184(97) 0.5797(28)

) (

1.0107(35) −0.0597(44)
−0.0043(14) 0.9145(48)

)

1.5078
7.54200 0.133705 6

(

1.3425(17) 0.2977(28)
0.08950(82) 1.6457(28)

) (

0.7646(17) −0.1822(17)
−0.03943(92) 0.5461(17)

) (

1.0102(25) −0.0723(36)
−0.0040(13) 0.8869(30)

)

7.72060 0.133497 8

(

1.3295(34) 0.3403(68)
0.0886(21) 1.7028(62)

) (

0.7765(30) −0.2011(34)
−0.0405(14) 0.5319(30)

) (

1.0143(49) −0.0787(71)
−0.0067(21) 0.8915(64)

)

8.02599 0.133063 12

(

1.3040(46) 0.3987(88)
0.0858(26) 1.7652(88)

) (

0.7873(35) −0.2226(47)
−0.0406(17) 0.5114(36)

) (

1.0076(57) −0.0792(98)
−0.0089(27) 0.8864(79)

)

2.0142
6.60850 0.135260 6

(

1.4601(24) 0.4226(35)
0.1357(12) 1.8967(42)

) (

0.7107(13) −0.2099(13)
−0.04891(53) 0.4548(13)

) (

1.0092(24) −0.0978(33)
−0.00972(94) 0.8419(29)

)

6.82170 0.134891 8

(

1.4195(56) 0.4610(75)
0.1223(30) 1.9437(87)

) (

0.7288(21) −0.2327(21)
−0.0515(12) 0.4451(16)

) (

1.0060(46) −0.1166(59)
−0.0187(21) 0.8414(49)

)

7.09300 0.134432 12

(

1.3903(33) 0.5490(66)
0.1259(24) 2.0377(67)

) (

0.7451(24) −0.2508(24)
−0.0502(13) 0.4277(25)

) (

1.0042(38) −0.1019(61)
−0.0160(19) 0.8436(53)

)

2.4792
6.13300 0.136110 6

(

1.5594(39) 0.5362(61)
0.1815(21) 2.1251(69)

) (

0.6741(37) −0.2273(29)
−0.0565(18) 0.3925(32)

) (

1.0097(68) −0.1217(65)
−0.0169(28) 0.8037(75)

)

6.32290 0.135767 8

(

1.5131(30) 0.6039(49)
0.1678(21) 2.2016(54)

) (

0.6854(38) −0.2428(24)
−0.0545(17) 0.3758(34)

) (

0.9962(57) −0.1208(70)
−0.0194(26) 0.7946(73)

)

6.63164 0.135227 12

(

1.4544(40) 0.6853(76)
0.1586(30) 2.2771(86)

) (

0.7177(41) −0.2635(17)
−0.0553(16) 0.3752(31)

) (

1.0019(64) −0.1080(61)
−0.0208(26) 0.8163(78)

)

3.3340
5.62150 0.136665 6

(

1.7596(65) 0.7674(91)
0.2862(43) 2.597(12)

) (

0.6020(53) −0.2474(28)
−0.0741(28) 0.2977(42)

) (

0.9882(98) −0.1803(75)
−0.0450(42) 0.716(11)

)

5.80970 0.136608 8

(

1.6746(64) 0.850(14)
0.2609(51) 2.664(15)

) (

0.6190(48) −0.2516(46)
−0.0754(16) 0.2997(28)

) (

0.9710(78) −0.145(12)
−0.0479(26) 0.7344(78)

)

6.11816 0.136139 12

(

1.5789(79) 0.924(16)
0.2346(74) 2.710(18)

) (

0.6588(47) −0.2865(40)
−0.0755(18) 0.2924(23)

) (

0.9733(74) −0.168(10)
−0.0504(32) 0.7229(72)

)

Table 7: Renormalisation matrices and lattice matrix-SSFs for the operator bases {Q±

2 ,Q±

3 }.

27



ḡ2(L) β = 6/g20 κcr L/a
[

Z
+
(4,5)

(g0, a/L)
]

−1
Z

+
(4,5)

(g0, a/2L) Σ
+
(4,5)

(g0, a/L)

0.9793
9.50000 0.131532 6

(

1.3013(20) 0.00768(15)
0.8563(75) 1.0872(15)

) (

0.7328(14) −0.00488(16)
−0.7433(64) 0.9690(19)

) (

0.9495(23) 0.00031(20)
−0.138(10) 1.0479(25)

)

9.73410 0.131305 8

(

1.3213(18) 0.00683(18)
0.8960(86) 1.0678(16)

) (

0.7228(17) −0.00473(36)
−0.789(14) 0.9851(20)

) (

0.9508(26) −0.00011(41)
−0.160(20) 1.0465(27)

)

10.05755 0.131069 12

(

1.3389(19) 0.00600(18)
0.9538(82) 1.0363(15)

) (

0.7180(25) −0.00528(31)
−0.884(11) 1.0188(35)

) (

0.9562(38) −0.00115(35)
−0.211(17) 1.0505(39)

)

1.1814
8.50000 0.132509 6

(

1.3671(20) 0.00986(18)
1.0429(87) 1.1019(15)

) (

0.6919(27) −0.00566(47)
−0.845(18) 0.9711(45)

) (

0.9400(41) 0.00059(53)
−0.142(27) 1.0618(50)

)

8.72230 0.132291 8

(

1.3865(33) 0.00919(29)
1.103(12) 1.0754(24)

) (

0.6906(14) −0.00607(26)
−0.9209(87) 1.0022(20)

) (

0.9509(30) −0.00019(36)
−0.171(18) 1.0694(35)

)

8.99366 0.131975 12

(

1.4106(22) 0.00796(22)
1.1609(94) 1.0381(17)

) (

0.6780(32) −0.00536(40)
−0.984(12) 1.0382(43)

) (

0.9501(47) −0.00017(40)
−0.182(20) 1.0700(48)

)

1.5078
7.54200 0.133705 6

(

1.4600(23) 0.01299(19)
1.2985(86) 1.1144(18)

) (

0.6422(24) −0.00750(31)
−0.998(10) 0.9825(37)

) (

0.9278(37) −0.00002(38)
−0.180(18) 1.0819(43)

)

7.72060 0.133497 8

(

1.4907(51) 0.01228(49)
1.381(20) 1.0858(37)

) (

0.6360(43) −0.00776(54)
−1.081(15) 1.0163(55)

) (

0.9372(68) −0.00064(61)
−0.208(29) 1.0904(70)

)

8.02599 0.133063 12

(

1.5172(63) 0.01140(51)
1.471(23) 1.0442(45)

) (

0.6214(33) −0.00777(69)
−1.175(18) 1.0523(64)

) (

0.9308(66) −0.00102(78)
−0.236(36) 1.0849(80)

)

2.0142
6.60850 0.135260 6

(

1.6235(31) 0.01888(23)
1.7229(97) 1.1352(20)

) (

0.5644(17) −0.01041(21)
−1.2111(59) 1.0006(32)

) (

0.8983(32) −0.00114(27)
−0.242(12) 1.1131(42)

)

6.82170 0.134891 8

(

1.6431(61) 0.01625(58)
1.743(23) 1.0896(38)

) (

0.5624(22) −0.01143(44)
−1.324(11) 1.0439(36)

) (

0.9044(48) −0.00330(56)
−0.355(27) 1.1162(53)

)

7.09300 0.134432 12

(

1.6778(56) 0.01590(50)
1.890(18) 1.0359(35)

) (

0.5494(19) −0.01069(34)
−1.4154(83) 1.0946(36)

) (

0.9016(40) −0.00233(44)
−0.306(22) 1.1116(51)

)

2.4792
6.13300 0.136110 6

(

1.7653(57) 0.02424(41)
2.075(17) 1.1435(34)

) (

0.5112(34) −0.01334(62)
−1.380(16) 1.0334(63)

) (

0.8747(60) −0.00287(73)
−0.294(27) 1.1484(75)

)

6.32290 0.135767 8

(

1.7950(40) 0.02187(39)
2.133(13) 1.0929(23)

) (

0.4950(39) −0.01251(59)
−1.452(15) 1.0690(87)

) (

0.8621(73) −0.00284(67)
−0.326(28) 1.1366(96)

)

6.63164 0.135227 12

(

1.8152(59) 0.01965(57)
2.224(18) 1.0303(33)

) (

0.5009(24) −0.01228(34)
−1.5776(83) 1.1426(48)

) (

0.8820(52) −0.00283(43)
−0.323(21) 1.1463(64)

)

3.3340
5.62150 0.136665 6

(

2.0537(100) 0.03521(64)
2.720(21) 1.1637(50)

) (

0.4202(72) −0.0213(15)
−1.662(33) 1.079(15)

) (

0.805(12) −0.0099(15)
−0.479(40) 1.196(17)

)

5.80970 0.136608 8

(

2.0571(90) 0.03204(84)
2.758(27) 1.0912(47)

) (

0.4272(61) −0.0214(11)
−1.770(29) 1.153(14)

) (

0.819(11) −0.0097(11)
−0.458(36) 1.202(15)

)

6.11816 0.136139 12

(

2.052(14) 0.0275(12)
2.771(37) 1.0145(70)

) (

0.4279(39) −0.0219(13)
−1.950(28) 1.241(14)

) (

0.8171(75) −0.0106(13)
−0.563(41) 1.206(16)

)

ḡ2(L) β = 6/g20 κcr L/a
[

Z
−

(4,5)
(g0, a/L)

]

−1
Z

−

(4,5)
(g0, a/2L) Σ

−

(4,5)
(g0, a/L)

0.9793
9.50000 0.131532 6

(

1.5644(33) −0.00363(17)
−0.5050(81) 1.1866(11)

) (

0.5723(14) −0.00084(12)
0.2759(46) 0.83999(93)

) (

0.8957(29) −0.00308(18)
0.0073(97) 0.9956(15)

)

9.73410 0.131305 8

(

1.6118(35) −0.00099(22)
−0.5070(92) 1.1835(11)

) (

0.5548(19) −0.00178(28)
0.280(11) 0.8424(21)

) (

0.8952(37) −0.00267(36)
0.023(19) 0.9967(26)

)

10.05755 0.131069 12

(

1.6685(36) 0.00201(20)
−0.5117(99) 1.17541(97)

) (

0.5338(26) −0.00232(23)
0.2988(79) 0.8526(16)

) (

0.8920(47) −0.00166(30)
0.062(15) 1.0027(21)

)

1.1814
8.50000 0.132509 6

(

1.7063(38) −0.00486(20)
−0.6226(89) 1.2260(11)

) (

0.5133(25) −0.00119(31)
0.291(11) 0.8139(28)

) (

0.8766(49) −0.00395(40)
−0.009(19) 0.9964(36)

)

8.72230 0.132291 8

(

1.7642(57) −0.00233(32)
−0.643(15) 1.2165(17)

) (

0.4994(21) −0.00162(21)
0.3023(76) 0.8242(11)

) (

0.8821(48) −0.00313(29)
0.004(16) 1.0019(21)

)

8.99366 0.131975 12

(

1.8399(44) 0.00194(25)
−0.636(12) 1.2090(10)

) (

0.4773(24) −0.00316(25)
0.2918(91) 0.8278(24)

) (

0.8801(49) −0.00288(33)
0.010(18) 1.0014(30)

)

1.5078
7.54200 0.133705 6

(

1.9239(42) −0.00667(20)
−0.7804(88) 1.2815(13)

) (

0.4388(22) −0.00085(24)
0.3045(66) 0.7780(16)

) (

0.8450(45) −0.00400(33)
−0.021(13) 0.9950(22)

)

7.72060 0.133497 8

(

2.0113(90) −0.00333(55)
−0.809(22) 1.2730(25)

) (

0.4203(35) −0.00157(36)
0.3177(100) 0.7884(38)

) (

0.8470(77) −0.00340(53)
−0.000(25) 1.0026(53)

)

8.02599 0.133063 12

(

2.112(14) 0.00116(67)
−0.844(29) 1.2565(27)

) (

0.3959(38) −0.00270(40)
0.323(12) 0.7938(21)

) (

0.8380(97) −0.00291(53)
0.013(30) 0.9978(32)

)

2.0142
6.60850 0.135260 6

(

2.3354(67) −0.01089(30)
−1.059(11) 1.3788(19)

) (

0.3342(11) −0.00052(14)
0.3116(33) 0.7219(12)

) (

0.7808(38) −0.00436(22)
−0.037(10) 0.9920(22)

)

6.82170 0.134891 8

(

2.405(15) −0.00394(70)
−1.025(27) 1.3541(36)

) (

0.3200(15) −0.00089(22)
0.3311(50) 0.7392(20)

) (

0.7702(60) −0.00249(38)
0.039(19) 0.9996(39)

)

7.09300 0.134432 12

(

2.570(11) 0.00073(73)
−1.111(22) 1.3266(27)

) (

0.3004(15) −0.00244(21)
0.3275(48) 0.7489(18)

) (

0.7751(49) −0.00303(34)
0.009(18) 0.9939(35)

)

2.4792
6.13300 0.136110 6

(

2.737(11) −0.01545(61)
−1.300(18) 1.4600(33)

) (

0.2654(21) −0.00006(36)
0.2997(81) 0.6818(36)

) (

0.7264(65) −0.00421(60)
−0.067(23) 0.9909(55)

)

6.32290 0.135767 8

(

2.8542(96) −0.00675(53)
−1.288(16) 1.4303(23)

) (

0.2483(34) −0.00164(38)
0.2972(87) 0.6861(34)

) (

0.711(10) −0.00401(58)
−0.035(26) 0.9792(51)

)

6.63164 0.135227 12

(

2.992(14) 0.00089(77)
−1.343(20) 1.3787(29)

) (

0.2424(28) −0.00267(43)
0.3056(54) 0.7129(36)

) (

0.7286(98) −0.00346(62)
−0.043(19) 0.9830(56)

)

3.3340
5.62150 0.136665 6

(

3.640(20) −0.0259(11)
−1.759(25) 1.6207(53)

) (

0.1619(27) 0.00166(52)
0.2764(65) 0.6050(52)

) (

0.586(10) −0.00149(84)
−0.058(24) 0.9736(88)

)

5.80970 0.136608 8

(

3.750(24) −0.0150(13)
−1.758(36) 1.5532(45)

) (

0.1617(23) 0.00119(34)
0.2714(49) 0.6194(59)

) (

0.6044(91) −0.00055(55)
−0.073(23) 0.9581(96)

)

6.11816 0.136139 12

(

3.836(26) −0.0011(17)
−1.736(43) 1.4802(54)

) (

0.1535(15) 0.00048(57)
0.2928(68) 0.6551(37)

) (

0.5883(80) 0.00053(92)
−0.013(31) 0.9694(66)

)

Table 8: Renormalisation matrices and lattice matrix-SSFs for the operator bases {Q±

4 ,Q±

5 }.
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Appendix A Non-perturbative vs perturbative behaviour of the RG evo-

lution

In analogy to Appendix C of ref. [12] we construct the quantity:

D(n) ≡ [Ũ(2nµhad)U(µhad, 2
nµhad)

−1][Ũ(2n+1µhad)U(µhad, 2
n+1µhad)

−1]−1 − 1

= [Ũ(2nµhad)]σ(un+1)[Ũ(2n+1µhad)]
−1 − 1

= [Ũ(2n+1µhad)][U(2nµhad, 2
n+1µhad)

−1σ(un+1)][Ũ(2n+1µhad)]
−1 − 1 (A.1)

Once again Ũ(2nµhad), Ũ(2n+1µhad), and U(2nµhad, 2
n+1µhad) are perturbative quantities

known in NLO-2/3PT , while σ(un+1) is a single non-perturbative matrix-SSF. In the last
line of Eq. (A.1), the product [U(2nµhad, 2

n+1µhad)
−1σ(un +1)] is the ratio of the non-

perturbative over the perturbative RG evolution between scales 2nµhad and 2n+1µhad. If
perturbation theory were reliable at these high scales, D(n) would vanish at large n. The
results for the D(n) matrix elements are shown in Figs. 10, 11. At the largest n values some
of them are compatible with 0 while others are not. The latter case signals that due to large
anomalous dimensions, NLO-2/3PT performs poorly even at scales as high as 2nµhad and
2n+1µhad.

Moreover, in Appendix C of ref. [12] the non-perturbative RG evolution U(µ, µ∗) be-
tween scales µ and µ∗ has been compared to the result from NLO-2/3PT. In ref. [12], µ is
kept fixed to 2 GeV while µ∗ is varied in the range [2 GeV, 3 GeV]. We perform a similar
study by fixing the reference scale µ∗ = 3.46GeV = 23µhad, corresponding to the squared
coupling u3. This is the scale closest to the interval [2 GeV, 3 GeV] of ref. [12], for which
we have directly computed the matrix-SSFs non-perturbatively. The scale µ is varied in the
range [0.43 GeV, 110 GeV]. We compute U(µ, µ∗) in the following way:

U(µ, µ∗) = [Ũ(µ)]−1Ũ(µ∗)

= [U(µ, µpt)] [W(µpt)]
−1

[

g 2(µpt)

4π

]

γ
(0)

2b0
[

g 2(µpt)

4π

]−γ
(0)

2b0

W(µpt) [U(µ∗, µpt)]
−1

= U(µ, µpt)U(µ∗, µpt)
−1 . (A.2)

U(µ, µ∗) can be evaluated in a purely non-pertubative way for integer n1 = log2(µpt/µ) and
n2 = log2(µpt/µ∗). The results are presented Figs. 12, 13. Very dominant non-perturbative
effects are clearly visible for the elements (2, 2), (4, 5), (5, 4) and (5, 5) of the operators
{Q−

2 ,Q−
3 } and {Q−

4 ,Q−
5 }. Given the large deviation from the NLO-2/3PT running already

seen in Fig. 5, these results are not surprising and simply confirm the non-reliability of the
NLO-2/3PT computation of the RG running at scales around 3GeV. Notice that the scale
interval where this comparison has been performed in ref. [12] is completely contained in our
plots between the third and the fourth point which correspond to scales of 1.73 GeV and
3.46 GeV. We remind the reader that a direct comparison between our results and those of
ref. [12] is meaningless, the crucial differences being, among many others, the renormalisation
scheme and the Nf -value.
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Figure 6: Continuum limit extrapolation of Σ+(u, a/L) in red and Σ̃
+
(u, a/L) in

blue, the operator basis {Q+
2 ,Q+

3 }. The values of the renormalised coupling, u =
0.9793, 1.1814, 1.5078, 2.0142, 2.4792, 3.3340, grow from top to bottom for each element of the matrix-
SSFs.

30



0.91
0.93
0.95
0.97
0.99
1.01

0.91
0.93
0.95
0.97
0.99
1.01

0.89
0.91
0.93
0.95
0.97
0.99

 [
] 44

0.85
0.87
0.89
0.91
0.93
0.95

0.83
0.85
0.87
0.89
0.91
0.93

0 0.03 0.06 0.09 0.12 0.15 0.18
a/L

0.77
0.79
0.81
0.83
0.85
0.87

-5.0
-3.0
-1.0
1.0
3.0
5.0

10 -3

-5.0
-3.0
-1.0
1.0
3.0
5.0

10 -3

-5.0
-3.0
-1.0
1.0
3.0
5.0

 [
] 45

10 -3

-8.0
-6.0
-4.0
-2.0
0.0
2.0

10 -3

-8.0
-6.0
-4.0
-2.0
0.0
2.0

10 -3

0 0.03 0.06 0.09 0.12 0.15 0.18
a/L

-0.020
-0.016
-0.012
-0.008
-0.004
0.000

-0.5
-0.4
-0.3
-0.2
-0.1
0.0

-0.5
-0.4
-0.3
-0.2
-0.1
0.0

-0.5
-0.4
-0.3
-0.2
-0.1
0.0

 [
] 54

-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0 0.03 0.06 0.09 0.12 0.15 0.18
a/L

-0.8
-0.7
-0.6
-0.5
-0.4
-0.3

1.02
1.04
1.06
1.08
1.10
1.12

1.02
1.04
1.06
1.08
1.10
1.12

1.02
1.04
1.06
1.08
1.10
1.12

 [
] 55

1.06
1.08
1.10
1.12
1.14
1.16

1.10
1.12
1.14
1.16
1.18
1.20

0 0.03 0.06 0.09 0.12 0.15 0.18
a/L

1.16
1.18
1.20
1.22
1.24
1.26

Figure 7: Continuum limit extrapolation of Σ+(u, a/L) in red and Σ̃
+
(u, a/L) in

blue, the operator basis {Q+
4 ,Q+

5 }. The values of the renormalised coupling, u =
0.9793, 1.1814, 1.5078, 2.0142, 2.4792, 3.3340, grow from top to bottom for each element of the matrix-
SSFs.
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Figure 8: Continuum limit extrapolation of Σ−(u, a/L) in red and Σ̃
−

(u, a/L) in
blue, the operator basis {Q−

2 ,Q−

3 }. The values of the renormalised coupling, u =
0.9793, 1.1814, 1.5078, 2.0142, 2.4792, 3.3340, grow from top to bottom for each element of the matrix-
SSFs.
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Figure 9: Continuum limit extrapolation of Σ−(u, a/L) in red and Σ̃
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blue, the operator basis {Q−
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5 }. The values of the renormalised coupling, u =
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Appendix B One-loop cutoff effects in the step scaling function

In Tab. 9 we gather numerical values for δk(L/a), defined in Eq. (3.29). We have calculated
this quantity for a fermionic action with (csw = 1) and without (csw = 0) a Clover term.
These results are also displayed in Figs. 14, 15, 16, and 17 (the target scheme α = 3/2,
(s1, s2) = (3, 5) is plotted with a blue triangle). Notice that the element (3, 2) of δk is
independent from α due to an accidental cancellation. This is why all data-points in the
corresponding figures are not in colour. As expected, the Clover term has an important effect
on the discretisation errors, which are significantly reduced when csw = 1. The observed
O(ag20) discretisation effects in Figs. 14 and 15 are only due to the unimproved operators,
the action being tree-level improved.
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Figure 12: Non-perturbative evolution factor U+(µ, µ∗) = [Ũ+(µ)]−1Ũ+(µ∗), where µ∗ = 3.46GeV,
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40



[16] ALPHA Collaboration, S. Sint and P. Weisz, The Running quark mass in the SF
scheme and its two loop anomalous dimension, Nucl. Phys. B545 (1999) 529–542,
[hep-lat/9808013].

[17] M. Luscher, R. Sommer, U. Wolff, and P. Weisz, Computation of the running coupling
in the SU(2) Yang-Mills theory, Nucl. Phys. B389 (1993) 247–264, [hep-lat/9207010].

[18] ALPHA Collaboration, K. Jansen and R. Sommer, O(α) improvement of lat-
tice QCD with two flavors of Wilson quarks, Nucl. Phys. B530 (1998) 185–203,
[hep-lat/9803017]. [Erratum: Nucl. Phys.B643,517(2002)].

[19] ALPHA Collaboration, M. Della Morte, R. Hoffmann, F. Knechtli, J. Rolf, R. Sommer,
I. Wetzorke, and U. Wolff, Non-perturbative quark mass renormalization in two-flavor
QCD, Nucl. Phys. B729 (2005) 117–134, [hep-lat/0507035].
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Figure 14: Matrix elements of δk(L/a) with csw = 1 for the operator bases {Q+
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Figure 15: Matrix elements of δk(L/a) with csw = 1 for the operator bases {Q−

2 ,Q−

3 } (top) and
{Q−

4 ,Q−

5 } (bottom). Different colours distinguish the various choices of α and different symbols the
various choices of (s1, s2).
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Figure 16: Matrix elements of δk(L/a) with csw = 0 for the operator bases {Q+
2 ,Q+

3 } (top) and
{Q+

4 ,Q+
5 } (bottom). Different colours distinguish the various choices of α and different symbols the

various choices of (s1, s2).

44



0 0.05 0.1 0.15 0.2 0.25
1 8

1 6

1 4

1 2

1

0 8

0 6

0 4

[δ
k
] 

2
2

1 4

[δ
k
] 

3
2

0 0.05 0.1 0.15 0.2 0.25
0 05

0

0.05

0.1

0.15

0.2

0.25

0.3

[δ
k
] 

4
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

[δ
k
] 

4
5

[δ
]

Figure 17: Matrix elements of δk(L/a) with csw = 0 for the operator bases {Q−

2 ,Q−

3 } (top) and
{Q−

4 ,Q−

5 } (bottom). Different colours distinguish the various choices of α and different symbols the
various choices of (s1, s2).
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