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Abstract 
ALICE (A Large Ion Collider Experiment) is a particle 

detector designed to study heavy-ion collisions and the 
physics of strongly interacting matter and the quark–gluon 
plasma at the CERN LHC (Large Hadron Collider). 

ALICE has been successfully collecting physics data 
since 2010. Currently, it is in the preparations for a major 
upgrade of the computing system, called O2 (Online-Of-
fline) and scheduled to be deployed during Long Shutdown 
2 in 2019–2020.  

The O2 system will consist of 268 FLPs (First Level Pro-
cessors) equipped with readout cards and 1500 EPNs 
(Event Processing Node) performing data aggregation, cal-
ibration, reconstruction and event building. The system 
will readout 27 Tb/s of raw data and record tens of PBs of 
reconstructed data per year. 

To allow an efficient operation of the upgraded experi-
ment, a new Monitoring subsystem will provide a complete 
overview of the O2 computing system status, detect perfor-
mance degradation or component failures. The ALICE O2 
Monitoring subsystem will collect and receive up to 600 
kHz of metrics. It will consist of a custom monitoring li-
brary and a toolset to cover four main functional tasks: 
metric collection, metric processing, storage, visualization 
and alarming. 

This paper describes the Monitoring subsystem architec-
ture and the feature set of the monitoring library. It also 
shows the results of multiple benchmarks, essential to en-
sure that the processing and storage performance require-
ments are met. In addition, it presents the evaluation of pre-
selected tools for each of the functional tasks, including 
Collectd, Apache Flume, Apache Spark, InfluxDB and 
Grafana. It concludes by describing the next steps towards 
the final subsystem. 

INTRODUCTION 

The ALICE Experiment 
ALICE (A Large Ion Collider Experiment) [1] is a 

heavy-ion detector designed to study the physics of 
strongly interacting matter (the Quark–Gluon Plasma) at 
the CERN Large Hadron Collider (LHC). ALICE consists 
of a central barrel and a forward muon spectrometer, allow-
ing for a comprehensive study of hadrons, electrons, mu-
ons and photons produced in the collisions of heavy ions. 
The ALICE collaboration also has an ambitious physics 
program for proton–proton and proton–ion collisions. 

After a successful Run 1 ALICE has been taking data in 
Run 2 since the beginning of 2015. In the end of 2018 the 

LHC will enter into a consolidation phase – Long Shut-
down 2. At that time ALICE will start its upgrade to fully 
exploit the increase in luminosity. 

The upgrade foresees a complete replacement of the cur-
rent computing systems (Data Acquisition, High-Level 
Trigger and Offline) by a single, common O2 (Online-Of-
fline) system.  

The ALICE O2 system 
The ALICE O2 computing system [2] will allow the re-

cording of Pb–Pb collisions at 50 kHz interaction rate. 
Some detectors will be read out continuously, without 
physics triggers. Instead of rejecting events the O2 system 
will compress the data by online calibration and partial re-
construction. 

The first part of this process will be done in dedicated 
FPGA cards that receive the raw data from the detectors. 
The cards will perform baseline correction, zero suppres-
sion, cluster finding and inject the data into the memory of 
the FLP (First Level Processors) to create a sub-timeframe. 
Then, the data will be distributed over EPNs (Event Pro-
cessing Node) for aggregation and additional compression. 

The O2 facility will consist of 268 FLPs and 1500 EPNs. 
Each FLP will be logically connected to each EPN through 
high throughput links. The O2 farm will receive data from 
the detectors at 27 Tb/s, which after processing will be re-
duced to 720 Gb/s. 

OBJECTIVES DEFINITION 
The Monitoring subsystem is part of O2 and provides 

comprehensive functionality in metric collection, pro-
cessing, storage, visualization and alarming as shown in 
Fig. 1. Three already short-listed solutions are being eval-
uated: MonALISA [3], Modular Stack (see MODULAR 
STACK section) and Zabbix [4]. This paper aims to pro-
vide details and performance measurements of the Modu-
lar Stack. 

 

 

Figure 1: Functional architecture of the Monitoring subsys-
tem. 

 ___________________________________________  

* E-mail: adam.wegrzynek@cern.ch 
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Overview 
The O² Monitoring subsystem collects three classes of 

metrics: 
 Application. 
 Process. 
 System (and infrastructure). 
Client side metrics are pushed to the processing and ag-

gregation backend, and then written into permanent stor-
age. Some selected metrics are published for alarming and 
real-time visualization. The stored metrics can be browsed 
and plotted in the historical record dashboard.  

System and Infrastructure Monitoring 
The System monitoring provides probes to various oper-

ating system metrics regarding for example: 
 CPU. 
 Memory. 
 Network. 
 Storage. 
 Hardware status. 
It can also query devices such as network switches, rout-

ers and power supplies via standardized or generally avail-
able protocols to obtain their current status. 

System monitoring should be compatible with the 
CERN CentOS 7 and support other UNIX based systems 
on a best effort basis. 

Process Monitoring 
The Process monitoring collects performance metrics of 

each O2 process such as: 
 CPU usage. 
 Memory usage. 
 Bytes sent and received per network interface. 
 Context switches count. 
 Open file descriptors count. 
It can be implemented either as a library linked to the 

process or as an external daemon running on each host. 

Application and Metric Collection 
The Application metric collection provides an entry 

point from O2 processes to the Monitoring subsystem. It 
forwards user defined metrics to the processing backend 
via connection or connection-less transport protocols. 

Metric Aggregation and Processing 
The Metric aggregation and processing correlates and 

manipulates metrics coming from different origins. The 
processing may occur at any step of the monitoring chain, 
including the central collector if correlations between 
widely different metrics are needed. 

The processing task types are the following: 
 Data suppression (e.g. for link status, only store tran-

sitions on/off and off/on). 
 Data enrichment (e.g. add tags). 
 Data aggregation (e.g. cumulative metric for all FLPs 

of a given detector). 
 Data correlation (e.g. detect abnormal situations). 

The output metrics are filtered and routed to storage, 
real-time dashboard and alarming. 

Storage 
The Storage receives and writes metrics into an histori-

cal record. It must support large input metric rates. It ac-
cepts queries to retrieve stored metrics. It also provides ad-
ministration tools to manage its internal parameters. 

Given that the O2 Monitoring subsystem will receive gi-
gabytes of metrics daily, storage needs to support archiving 
and downsampling – aggregating metrics in time to reduce 
their overall size. 

Visualization 
The visualization dashboards display metrics in form of 

plots, gauges, bars and data tables. They can provide views 
for different purposes: 
 Near-real-time – for shift crews, providing a summary 

view of the ongoing ALICE operations; low latency is 
of extreme importance. 

 Historical record – for experts, allowing for drill down 
and detailed views. 

Dashboards can easily be accessed on various operating 
systems and outside of the ALICE Point 2. 

Alarming 
The Alarming scans metrics passing through the moni-

toring system and detects abnormal situations: thresholds 
exceeded, value not present or more advanced detector 
and/or experiment specific logic. 

Two different types of alarming implementations are 
possible: 
 Late stage alarming – based on historical records by 

querying the storage. 
 Online alarming – scanning metrics directly during 

processing. 

REQUIREMENTS 
The list of requirements regarding the monitoring sub-

system has been established from the information available 
in the O2 Technical Design Report [2]. Each solution must 
meet the following mandatory requirements: 
 Compatible with the O² reference operating system 

(currently CERN CentOS 7). 
 Well documented. 
 Actively maintained and supported by developers. 
 Run in isolation when external services and/or connec-

tion to outside of ALICE are not available. 
 Capable of handling 600 kHz input metric rate. 
 Scalable to >> 600 kHz if necessary. 
 Handle at least 100 000 sources. 
 Introduce latency no higher than 500 ms up to the pro-

cessing layer, and 1000 ms to the visualization layer. 
 Impose low storage size per measurement. 
 Aligned with functional architecture specified in OB-

JECTIVE DEFINITION section: 
o System sensors. 
o Metric processing. 
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o Historical record and near-real-time visualisation. 
o Alarming. 
o Storage that supports downsampling. 

In addition, some optional requirements may positively 
influence the final rating: 
 Supported by CERN or used in one of the experi-

ments/departments. 
 Self-recovery in case of connectivity issues. 

MODULAR STACK 
The Modular Stack solution aims at fulfilling the re-

quirements specified in the REQUIREMENTS section by 
using a set of open source tools. Such approach enables the 
possibility of replacing one or more of the selected compo-
nents in case alternative options provide improved perfor-
mance or additional functionalities. 

The selected component responsible for retrieving sys-
tem metrics (related to CPU, memory and I/O) is Collectd 
[5]. These metrics together with the application defined 
metrics require a high-performance collection and multi-
plexing. 

A tool that can cope with such task is Apache Flume [6], 
a distributed service that moves large amount of monitor-
ing data from the O2 processes in an efficient way. Flume 
supports numerous data formats and also provides an API 
to develop custom components [7] for extra functionality: 
 Source – parses received data into Flume events. 
 Sink – parses Flume events into any implemented for-

mat. 
 Interceptor – component attached to a Source that can 

modify Flume events.  
The connectionless UDP protocol was selected to re-

ceive metrics. Contrary to TCP, UDP has no operating sys-
tem limitation regarding the number of sources. 

Flume accomplishes simple processing tasks (e.g. data 
suppression and data enrichment) while the more complex 
computing is executed by Apache Spark [8], “a fast and 
general-purpose engine for large-scale data processing”. 

As a next step the metrics are pushed to an InfluxDB da-
tabase [9] which is optimized to store time series data 
points. It also provides high performing writing, “expres-
sive SQL-like query language tailored to easily query-ag-
gregated data” and low disk occupancy per measurement – 
three bytes for non-string values. The InfluxDB engine 
supports downsampling via Retention Policy and Continu-
ous Queries. The combination of these two features re-
quires only the time resolution and time period to be spec-
ified (e.g. store 1 data point per 30 seconds for data not 
older than 30 days). 

Grafana [10] has been chosen as data visualisation tool. 
It supports both real-time and historical record dashboards. 
It can also generate alarms based on values coming from 
the database.  

Riemann [11] is used as the main alarming tool. It in-
spects metrics on the fly and generates notifications when 
undesired behaviour is detected. 

The selected tools work without the need for external 
services or internet connectivity. They provide extensive 

user and developer documentation. They are also compati-
ble with most of the UNIX based operating systems, in-
cluding CERN CentOS 7. 

All Modular Stack tools are being used in production by 
the CERN IT team to monitor data centres and develop ex-
periment dashboards [12]. This ensures that an increasing 
number of teams at CERN will gain the experience in 
working with these tools and provide potentially valuable 
feedback for the final O2 Monitoring. 

MONITORING LIBRARY 
The O2 Monitoring library [13] covers two tasks: process 

monitoring and application metric collection. The library 
can transport values as integers, floating point numbers, 
strings and long integers. It supports multiple server side 
backends:  
 MonALISA (UDP via ApMon library). 
 InfluxDB (UDP and HTTP). 
 Flume (UDP and HTTP). 
 O2 Logging (custom protocol). 
 Zabbix (Zabbix protocol). 
The library allows gathering process related metrics such 

as: uptime, CPU and memory utilization, bytes sent and re-
ceived per interface. It features calculations of derived val-
ues such as rate and average. It also allows appending a 
metric with metadata (tags) and send multiple values in a 
single transaction. 

RISK ASSESSMENT 
The Modular Stack requires maintaining multiple tools 

and therefore compatibility between them. This results in 
higher system complexity and necessity to acquire 
knowledge on all the components. In case one of the se-
lected tools breaks backward compatibility, becomes obso-
lete or its maintenance or support is dropped, the system 
might need to be adjusted or even redesigned. On the other 
hand, only standardized protocols are used for the commu-
nication which can facilitate any future migration.  

There is also the possibility that newly introduced fea-
tures will require the purchasing of a subscription or li-
cense. 

PERFORMANCE TESTS 

Test Specification 
One of the mandatory requirements is the capability of 

handling 600 kHz of metric points coming from 100 000 
sources. This requirement should be verified under the fol-
lowing test scenarios: 
 No processing – sending data directly to the storage. 
 With processing: 

o Pass-through – forward metric to the storage. 
o Edit a metric – modify one of field of the metric. 
o Aggregation – aggregate metrics of the same 

origin and type coming in a predefined time period 
and calculate the average (simulate aggregation of 
values coming from different detectors). 
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For each scenario, the following parameters should be 
measured: 
 Maximum metric and transaction rate that processing 

and storage can cope with; it can also be presented as 
% of successfully processed/stored metrics as a func-
tion of overall input metric rate. 

 Latency between collecting (benchmark application 
timestamp) and displaying a metric (when we can see 
it). 

 Latency between collecting and processing a metric 
(when we can act on it). 

 Identify what is the limiting factor (e.g. CPU, memory, 
network etc.). 

The tests should be launched in the reference set-up that 
consists of three machines equipped with Intel E5-2640 v3, 
40 GbE and SSD drives. 

Test procedure 
The test procedure is semi-automatized and allowing for 

a test to be quickly repeated in any of the configurations. 
The benchmark is based on the O2 Monitoring library and 
can be deployed and controlled via Ansible [14]. Flume 
publishes counters of sources and sinks which are available 
as JSON formatted strings via the internal HTTP server.  
Custom made scripts read out the Flume counters, probe 
InfluxDB to reveal the number of successfully stored met-
rics and write these values in the dedicated database. Even-
tually all statistics are displayed with Grafana.  

The latency was measured by passing a metric through 
the system and inserting a timestamp at each step. A script 
transforms these values into histograms that can be easily 
viewed in Grafana. To handle the clock synchronization is-
sue, the benchmark and the storage were started on the 
same machine. 

Performance notice 
The Linux kernel uses interrupts to process UDP packets 

coming from NIC (Network Interface Controller). When 
dealing with high packet rate the application running on the 
same core as these interrupts suffers a decrease in perfor-
mance because of the large number of context switches.  

The Linux scheduler (CentOS 7, 3.10.0-
514.26.2.el7.x86_64) tends to move processes and threads 
between CPU cores to optimize their usage but does not 
take into account the influence of network interrupts. Dur-
ing the tests, the benchmark application was moved be-
tween CPUs. As some of them were handling interrupts, 
periodical performance drops were observed. 

Summarising, it is crucial to choose separate CPU cores 
for the network interrupts and the application itself but 
keeping in mind to stay on the same NUMA (Non-uniform 
memory access) node to avoid inter-CPU bus penalty.  

Metric rate 
The Modular Stack was tested in four different configura-
tions to fully understand the impact of each additional com-
ponent. 
 

Configuration 1 – Benchmark to Flume 
Configuration 1, as shown in Fig. 2, includes benchmark 
application sending metrics to a Flume custom UDP source 
and then having a null sink dropping them.  

 
Figure 2: Benchmark to Flume configuration. 

In this simplified configuration the impact of the 
NUMA, the network card interrupts and UDP socket count 
was measured. In addition, a test with a custom timestamp 
interceptor that extends each metric with the current 
timestamp was made. 

Table 1: Metric Rate with Different NUMA and Flume 
Configurations 

Num-
ber of 
UDP 
sources 

Flume in-
terceptor 

NUMA node Metric rate 
[kHz] 

1 - 
- 
- 

0 (interrupts) 
0 (no interrupts) 
1 

46 
121 
112 

1 timestamp 0 (no interrupts) 106 

 
As mentioned in the Performance notice subsection, 

Flume running on the same core as NIC interrupts could 
handle rates two and a half times lower than running them 
on a separate CPU, what can be observed in the first two 
rows of Table 1. 

The introduction of the Flume timestamp interceptor de-
grades metric rate by roughly 10%. 

 
 

Figure 3: Metric rate as a function of the Flume UDP 
sources. 

As each Flume component (e.g. source or sink) runs in a 
single thread, it is limited by the performance of a CPU 
core. Therefore, increasing the number of components pro-
vides an almost linear performance increase until the NIC 
receiving limitation is hit – see Figure 3. The required 600 
kHz rate was reached using a single instance of Flume with 
7 UDP sources. 
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In addition, Flume (as well as InfluxDB) can handle 
multiple metrics per single UDP packet (or so-called meas-
urement). The Figure 4 shows metric and transaction rate 
as a function of the metrics per measurement for 1 UDP 
source. This parameter also scales linearly, therefore the fi-
nal system may require less UDP sources than initially es-
timated. 

  
 
Figure 4: Metric and transaction rate as function of number 
of metrics per measurement. 

Configuration 2 - Benchmark to InfluxDB 

 
Figure 5: Benchmark to InfluxDB configuration. 

The configuration shown in Fig. 5 consists of benchmark 
application sending metrics directly to the database and has 
been used to estimate the writing capability of the In-
fluxDB engine. Figure 6 presents the percentage of suc-
cessfully stored metrics as a function of the metric rate in 
three different configurations: 
 1 UDP listener / HDD drive. 
 3 UDP listeners / HDD drive. 
 3 UDP listeners / SSD drive. 

 
 

Figure 6: Percentage of stored metrics as a function of met-
ric rate. 

The HDD setup reached 142 kHz with a single UDP lis-
tener and 216 kHz with 3 UDP listeners. Further increase 

in the number of listeners did not have any major impact 
on the results. As expected, a sharp drop is observed for 
higher rates. 

The SSD setup behaves differently. The percentage of 
stored metrics decreases slowly, which is not yet fully un-
derstood. At 300 kHz rate 1% of the metrics are lost and 
5% at 480 kHz. 

Configuration 3 – Benchmark-Flume-InfluxDB 
The chain Benchmark-Flume-InfluxDB (see Fig. 7) was 

tested using multiple metric streams and SSD disks only. 
Each metric stream consists of a dedicated Flume source, 
sink and InfluxDB listener. All listeners ran on the same 
database instance. The impact of the interceptor was also 
taken into account. Four streams provided 400 kHz rate 
with acceptable metric loss – the results are presented in 
Fig. 8. Increasing the number of streams resulted in signif-
icant metric drop. The measured value is lower than the 
specified 600 kHz, although it should be sufficient as not 
all the metrics need to be stored in the database (e.g. many 
metrics will be dropped due to data suppression) .  

 
Figure 7: Benchmark through Flume to InfluxDB configu-
ration. 

 
 

Figure 8: Metric rate as a function of data streams 

Configuration 4 – final configuration (no alarming) 
The final configuration accommodates, in addition to 

Configuration 3, Apache Spark applying the batch pro-
cessing (see Fig. 9). For the purpose of the tests Spark ei-
ther passed the values with no modifications or applied av-
erage algorithm over 1000 milliseconds period of time.  

 
Figure 9: Full Modular stack configuration. 

The measured metric rates that the single Spark instance 
could cope with are: 
 207 kHz in pass through mode. 
 180 kHz in batch processing with average value algo-

rithm. 
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Latency 
The latency measurements were executed in Configura-

tion 3 (Benchmark-Flume-InfluxDB). The visualisation 
was not part of the measurement as real-time updates has 
not been implemented yet in Grafana (it relies on the met-
rics from the database). The Figure 10 shows the latency 
histogram for around 2000 metrics. Most of them were 
transmitted through the system within 5 s.  

 

 

Figure 10: Latency histogram – Benchmark to InfluxDB 
via Flume. 

CONCLUSIONS 
The evaluation and results presented in this paper con-

firm that the Modular Stack is capable of monitoring the 
future O2 farm. 

The Modular Stack satisfies all functional requirements 
of metric collection, processing, storage, visualisation and 
alarming. It is also well documented and supported. It can 
run in isolation and it is extensively used in other CERN 
departments and in industry. 

The required metric rate of 600 kHz was reached with a 
single instance of Flume. In addition, a single InfluxDB 
database was able to store 400 kHz of metrics with an ac-
ceptable data loss. 

As the monitoring chain uses connectionless UDP pro-
tocol, it allows handling large number of sources and im-
poses low latency (less than 1 ms) from metric generation 
to the storage. 

The major identified risk is a potential need to replace 
one of the tools. As explained, this risk is acceptable as the 
migration requires the new component to support clearly 
identified and standardized protocols. 

FUTURE WORK 
To complete the Modular Stack latency measurements, 

additional tests are foreseen to be performed with: 
 Visualisation layer. 
 Spark with real case processing scenario. 
The evaluation and performance tests of Zabbix and Mo-

nALISA are ongoing and will be available soon. Once this 
is done, all considered solutions will be compared and the 
final selection decision will be taken. 

Another future step is the collaboration with other sub-
systems and detectors to identify processing scenarios and 
efficiently implement them into the processing unit. 

Finally, it is necessary to design an alarming feedback 
loop that can autonomously take a decision and pass it to 
the control subsystem when an abnormal but predefined 
conditions occur. 
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