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Abstract

Edge-TCT and charge collection measurements with passive test structures

made in LFoundry 150 nm CMOS process on p-type substrate with initial re-

sistivity of over 3 kΩcm are presented. Measurements were made before and

after irradiation with reactor neutrons up to 2·1015 neq/cm2. Two sets of de-

vices were investigated: unthinned (700 µm) with substrate biased through the

implant on top and thinned (200 µm) with processed and metallised backplane.

Depletion depth was estimated with Edge-TCT and collected charge was

measured with 90Sr source using an external amplifier with 25 ns shaping time.

Depletion depth at given bias voltage decreased with increasing neutron fluence

but it was still larger than 70 µm at 250 V after the highest fluence. After

irradiation much higher collected charge was measured with thinned detectors

with processed backplane although the same depletion depth was observed with

Edge-TCT. Most probable value of collected charge of over 5000 electrons was

measured also after irradiation to 2·1015 neq/cm2. This is sufficient to ensure

successful operation of these detectors at the outer layer of the pixel detector in

the ATLAS experiment at the upgraded HL-LHC.
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1. Introduction

The upgrade of the Large Hadron Collider (LHC) to High Luminosity LHC

(HL-LHC) [1] foreseen in the next decade will significantly increase the rate of

proton collisions at the interaction point. As a result the number of charged

tracks generated in each bunch crossing will increase leading to a harsher ra-

diation environment [2]. This will require replacement of the present pixel de-

tectors in general purpose experiments like ATLAS [3, 4] and CMS [5] because

their granularity and radiation hardness is not sufficient for HL-LHC. In the

upgraded ATLAS experiment [6] large areas will be covered with silicon detec-

tors so cost, production time and complexity of assembly require attention in

addition to tracking performance to ensure the success of the project. All these

could be greatly improved with monolithic depleted pixel detectors produced

in a commercial CMOS process. Charge collection from the depletion region is

necessary for sufficient speed and radiation hardness for application at high lu-

minosity hadron colliders. Monolithic detector approach would greatly simplify

the assembly, and production in an industrial CMOS process on large wafers in

high volume foundries would speed up the production and lower the cost.

Research of this detector technology for application at LHC was initiated by

developments in HV-CMOS process [7] and has become very intensive recently.

Promising results showing sufficient radiation hardness of depleted CMOS de-

tectors from various designs and producers were published in a large number of

publications - references [8]- [17] represent just a few more recent ones. CMOS

technology is being investigated as an option for the outermost layer of the pixel

detector in the upgraded ATLAS experiment [6] where expected displacement

damage in silicon caused by energetic hadrons will be equivalent to the damage

caused by a fluence of 2·1015 1 MeV neutrons per cm2 [2].

One of the investigated versions of depleted CMOS detectors is produced

by LFoundry [18] - [21] in a 150 nm process on a p-type substrates with initial
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resistivities exceeding 2 kΩcm and typically in the range between 4 and 5 kΩcm

[18]. Such a high resistivity material ensures a large depletion depth already at

moderate bias voltages. An irradiation study using Edge-TCT technique with

passive test structures manufactured by LFoundry was published in [17] and it

was shown that depletion depth of over 50 µm is achieved at 120 V bias also after

irradiation with 8·1015 neq/cm2. In this paper we report on measurements with

a new set of samples produced in the same process. Samples were characterised

using Edge-TCT technique similar as described in [17]. In addition, collected

charge deposited in the detector by a passage of a fast electron from 90Sr source

was measured and compared to the value estimated from the depletion depth

measured by Edge-TCT. Two sets of devices were investigated: devices from an

unthinned wafer with substrate biased through the implant on top and devices

from a thinned wafer with processed and metallised backplane for substrate

contact.

2. Samples and irradiation

The photo in Fig. 1a) shows the LFoundry chip with several test structures.

Measurements were made with test structure B schematically shown in drawings

in Fig. 1b and 1c. Structure B is an array of 15 × 6 passive n+p pixels with

a pixel size of 50×520 µm2. The structure has 11 bonding pads: a pad for

all pixels except one connected together and a separate bonding pad for this

single pixel (see Fig. 1c)). The remaining bonding pads connect to the p-type

implants between n-wells in the pixel area, the n-ring surrounding the pixels

and several guard rings. The outermost p-type implant ring also has a separate

bonding pad and was used to bias the substrate.

Chips are produced on 700 µm thick wafers and unthinned samples with no

backplane processing were diced from the wafer. A set of samples was taken

from a wafer thinned to 200 µm with processed and metallised backplane.

Before measurements each chip was fixed to an aluminium support using

conductive glue (see Fig. 1). For unthinned samples the substrate was contacted
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a)

b) c)

Figure 1: a) Photo of the thinned LFoundry chip biased through the backplane prepared for

measurement. b) Schematic cross section of test structure B. c) Layout of (part of) structure

B with bonding pads.

via a wire bond to the p-type ring while for thinned samples contact to the

substrate was achieved via the backplane through the conductive glue.

Chips were irradiated with neutrons in the TRIGA reactor in Ljubljana

[24, 25] to 1 MeV neutron equivalent fluences ranging from 1·1013 neq/cm2

to 2·1015 neq/cm2. In the reactor, irradiation is performed by inserting the

samples into the core through irradiation tubes. The maximal power of the

4



TRIGA reactor in Ljubljana is 250 kW. At this power 1 MeV neutron equivalent

flux in the irradiation channel is 1.5·1012 neq/cm2/s therefore the fluence of

1·1014 neq/cm2 is reached in 65 s. Irradiation to lower fluences is performed at

lower reactor power to increase irradiation time and thus reduce irradiation time

uncertainties due to insertion and extraction. Neutron flux in the irradiation

channel is periodically controlled by measurement of leakage current increase

in dedicated silicon diodes irradiated in this irradiation channel [26]. Before

measurements samples were annealed for 80 minutes at 60◦C.

3. Experimental techniques

Edge-TCT is a variant of Transient Current measurement Technique in

which sub-nanosecond pulses of infra-red (λ = 1064 nm) laser light are directed

to the edge (i.e. laser beam runs parallel with the surface) of the investigated

device. Narrow laser beam with a diameter of less than 10 µm is used so that

charge carriers are released at a known depth in the investigated device posi-

tioned in the beam with high precision moving stages. Edge-TCT method was

first described in [27] and has by now become a standard tool for investigating

radiation effects in silicon detectors. Measurements within this work were car-

ried out with an Edge-TCT system produced by Particulars [28]. Edge-TCT

data taking and analysis techniques are very similar to those described in [17]

and details can be found there.

Figure 2: Scheme of experimental setup for charge collection measurements with 90Sr source.
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Charge collection measurements were made with the experimental setup

shown in Fig. 2. The DUT was placed between two aluminium collimators with

1 mm diameter holes with 90Sr source on one side and a small scintillator coupled

to a photomultiplier on the other. Only electrons from the high energy end of

the 90Sr spectrum have sufficient energy to pass the silicon chip and trigger the

readout by depositing sufficient energy in the scintillator. Collimators minimize

the contribution of electrons scattered by a large angle in the setup.

This enables measurement of charge released in the detector by passage of a

particle which is a close approximation of a Minimum Ionising Particle (MIP).

But it should be mentioned that because of lower energy and larger scattering

of electrons from 90Sr compared to MIPs measured collected charge will be of

the order of 10% larger than in the case of MIPs.

When triggered by the photomultiplier digital oscilloscope records the wave-

form from the custom made shaping circuit with 25 ns peaking time processing

the signal from the Ortec 142 charge sensitive preamplifier. Active area of the

structure B used in this work (see Fig. 1b) is 0.75 mm x 3.1 mm which is a

bit too small compared to collimator hole diameter to ensure a sample with

large fraction of waveforms with charge deposited in the structure B. So there is

about 50% of waveforms in the sample where electrons from the source triggered

the readout but did not deposit charge in the structure B. Therefore collected

charge could be estimated if peaks of measured distribution with and without

charge signal in the structure could be clearly separated. This was the case if

Most Probable Value (MPV) extracted from the fit of convolution of Landau

and Gaussian distributions to the signal spectrum was larger than about 4000

electrons.

The system was calibrated by measuring the Most Probable Value (MPV)

of collected charge of a standard 300 µm thick fully depleted silicon detector

and confirmed with 59.5 keV photons from 241Am source. More detail about

this measurement setup is in [12, 29].
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4. Measurements

4.1. Edge-TCT

In Edge-TCT current pulses induced on readout electrodes by movement

of charge carriers released in the detector by a short laser pulse are recorded

and analysed. The time integral - integration time was 25 ns in this work - of

the current pulse is defined as the charge. In Edge-TCT measurements shown

in this work single pixel (see Fig. 1) was connected to the wide bandwidth

amplifier while other pixels were connected to the same potential but not to the

amplifier. High voltage was connected to the pixels and decoupled from readout

by a Bias-T while substrate contact was at ground potential.

Figure 3a shows charge as a function of substrate depth at an increasing

bias voltage for an unthinned device before irradiation. Charge is given in

arbitrary units because the signal depends on laser power, laser beam focusing,

edge surface quality etc... and thus cannot be compared between devices. It

can be seen how the width of the charge collection profile, which is a measure

of depletion depth, increases with bias voltage. In Fig. 3b the FWHM of the

profile is plotted vs. bias voltage and fitted with:

w(Vbias) = w0 +

√
2εrε0
e0Neff

Vbias (1)

where Neff is the effective space charge concentration, Vbias the bias voltage, e0

the elementary charge, ε0 the dielectric constant and εr the relative permittivity

of silicon. In the approximation of abrupt junction and uniform doping the

parameter w0 would be zero at zero bias voltage (neglecting the builtin voltage).

However, it is known [11, 12, 17, 30] that in Edge-TCT measurements at shallow

depletion depths a significant offset is observed due to a finite laser beam width,

charge collected by diffusion and by laser beam reflections from the metallised

surfaces.

We observe that the Eq. 1 function fits the data in Fig. 3 well if Neff and w0

are free parameters. Neff returned by the fit corresponds to an initial resistivity

of 3 kΩcm, in agreement with spectification.
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a)

b)

Figure 3: Figure a): charge collection profiles for an unthinned device before irradiation at

bias voltages from 0 to 250 V in 5 V steps. The narrowest profile was measured at 0 V. Figure

b): FWHM of charge collection profiles vs. bias voltage.

Figure 4a) shows charge collection profiles of thinned and unthinned devices

after different neutron fluences at 250 V bias. For each irradiation fluence a

different device was measured and the charge profiles for different devices were

rescaled to have equal maximal charge. It can be seen that for unthinned devices

the charge profile gets narrower with increasing fluence. For thinned devices the

profiles up to the fluence of 1·1014 neq/cm2 have similar widths of about 180 µm
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a)

b)

Figure 4: Figure a): charge collection profiles at Vbias = 250 V and b) width of profiles

vs. bias voltage at different fluences for thinned and unthinned devices. For each fluence a

different device was measured.

because they are fully depleted at this bias voltage. It is also important to note

that at higher fluences the profile widths for thinned and unthinned devices are

similar (except at the fluence of 1·1015 neq/cm2 - the reason for this deviation

is not understood).

In Fig 4b) charge profile widths are plotted versus bias voltage. It can nicely

be seen that in thinned devices the depletion depth grows with bias voltage in
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accordance with equation Eq. 1 until full depletion is reached. Before full deple-

tion the dependence on bias voltage is very similar for thinned and unthinned

devices (except for the already mentioned case of Φeq = 1·1015 neq/cm2). It

can be seen that width at full depletion depths is 190 µm for two fluences and

170 µm for the other two. For each fluence different device was measured so

this may be the consequence of variation of the thickness of active depth after

thinning and backplane processing.

Figure 5: Effective doping concentration as a function of 1 MeV equivalent neutron fluence.

Neff can be estimated from the fit to Eq. 1 also after irradiation. Figure

5 shows Neff , the average of values from thinned and unthinned devices, as a

function of neutron fluence and it can be seen that it increases linearly with

fluence with slope gc ∼ 0.03 cm−1. This is somewhat larger than the stable

damage introduction rate usually found in p-type silicon (gc ∼ 0.02 cm−1 [31])

but it is consistent with a similar measurement with LFoundry samples from

[17]. No decrease of Neff with fluence - a strong indication of initial acceptor

removal - was observed in this work. In measurements in [17] a decrease of

Neff was measured at 1·1013 neq/cm2 and 5·1013 neq/cm2 and acceptor removal

parameters could be estimated. But it should be noted that the initial resistivity

of samples measured in [17] was ∼2 kΩcm while for samples measured in this

work it is over 3 kΩcm (see Fig. 3). It may be expected, based on observations in
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[12, 32], that the acceptor removal effects would be observable at lower fluences

than measured in this work because of higher initial resistivity.

4.2. Charge collection measurements

For charge collection measurements with 90Sr source all pixels of device B

(see Fig. 1) were connected together forming an effective pad detector. Spectra

measured before irradiation at 250 V for unthinned and thinned samples are

shown in Fig. 6a) and 6b). A convolution of Landau and Gaussian functions is

fitted to the spectra. The most probable value of the Landau function (MPV)

estimated from the fitted function is the measure of the collected charge. It can

be seen in Fig. 6a) that a larger MPV was measured with unthinned devices.

It corresponds to the charge of 20000 electrons, while with the thin sample a

MPV of 13700 electrons was measured. This is a bit smaller than expected from

Edge-TCT measurements of depletion depth shown in Fig. 3. A MIP releases

∼ 77 electrons per µm of silicon with the largest probability but due to lower

energy and scattering of 90Sr electrons about 10% larger charge is expected.

Figure 6c) and 6d) show the spectra after irradiation with 5·1013 neq/cm2

and it can be now clearly observed that a significantly larger charge is measured

with the thinned detector although the depletion depth obtained from Edge-

TCT is significantly larger in the unthinned sample as shown in Fig. 4.

Depletion depth at 5·1013 neq/cm2 and 260 V bias voltage is 260 µm in the

unthinned sample and 180 µm in the thinned sample which is fully depleted

(see Fig. 4) at this bias voltage. Therefore, a fast electrons selected from

90Sr spectrum releases ∼ 22000 electrons MPV in the depletion region of the

unthinned device and ∼ 15000 electrons in the thinned one. In Fig. 6c) and d) it

can be seen that the MPV of collected charge is 9000 electrons in the unthinned

device and 13000 electrons in the thinned one. So while in the thinned device

almost all charge is collected in the unthinned less than 50% is seen.

Measurements were made also at other fluences and bias voltages as shown

in Figure 7a). At the highest fluence bias voltage of over 350 V had to be applied

to collect more than 4000 electrons. The devices could be biased to such a high
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a) b)

c) d)

Figure 6: Spectrum of signals caused by electrons from 90Sr source for: unthinned (a) and

thinned (b) device before irradiation, c) unthinned and d) thinned device after irradiation to

5·1013 neq/cm2.The charge is in kilo-electrons (kel.).

voltage because breakdown performance improves with irradiation.

In thinned devices with backplane contact the collected charge after irra-

diation is about 15% smaller than expected but it follows roughly the change

of depletion depth measured with Edge-TCT. This is not the case for the un-

thinned devices without backplane where a large drop of collected charge is

observed already at lowest fluence and much lower collected charge is measured

than it is released in the depletion region by electrons from 90Sr. This is shown

in Fig. 7b) where collected charge is plotted as a function of fluence at 260 V

bias. Shown are measured values and values calculated from depletion depth

estimated with Edge-TCT as shown in Figure 4. Charge values were calculated

by multiplying the depletion depth with 84 electrons per µm (i.e. 10% larger
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Figure 7: Collected charge vs. bias voltage for unthinned and thinned devices at different

fluences is shown in figure a). Figure b) shows charge vs. fluence at 260 V bias. Shown are

measured values and values calculated from depletion depth obtained from E-TCT.

charge for 90Sr electrons than 77 electrons/µm released by a MIP) and a factor

roughly taking into account charge trapping. This factor is smaller than 15% at

highest fluence. The trapping factor was estimated with a simplified simulation

using measured trapping probabilities from [31]. The simulation was made with

KDetSim simulation tool - a ROOT based library specialized for simulation of

charge drift in static electric field in silicon detectors [33]. More detail about

the simulation method can be found in [34].
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The large difference between measured and TCT values for unthinned devices

follows from different contacting schemes of the unthinned and thinned devices.

As explained in section 2 in unthinned devices the substrate is biased via the p-

type implant ring on top of the device while in the thinned devices the backplane

was processed and metallised enabling contact to the substrate.

In case of top bias the drift paths of holes from the depletion region below

the positively biased implant to the substrate contact are passing through the

low field regions of the detector which does not significantly affect the charge

collection before irradiation because trapping is negligible and the ohmic con-

ductivity of the undepleted substrate is high enough to bring the zero weighting

potential close to the border of the depletion region. In this case charge carriers

drifting in the electric field of the depletion region cross at the same time a large

part of the weighting field - the condition necessary for high charge collection

according to Ramo’s theorem. This explanation is supported by measurements

before irradiation in Fig. 6a) and b) where the measured collected charge agrees

with the charge deposited in the depletion depth measured with Edge-TCT.

The situation becomes different after irradiation because of trapping and

increased ohmic resistivity of the substrate [35]. In case of unthinned devices

the zero weighting field potential is at the top of the sensor and therefore distant

from the region of high electric field and carriers are trapped in the detector

volume with low electric field before they reach the contact. For the thinned

devices the zero weighting potential electrode is at the backplane. In the case

of full detpletion this is at the border of the depletion region and in the case of

partial depletion significantly closer than in the unthinned and top biased device.

This reasoning implies that both - thinning and backplane processing improve

charge collection in partially depleted detectors after irradiation. However it has

to be repeated that measurements were made with all pixels of the structure

connected together forming an affective pad detector in which weighting field is

significantly different than in (small) pixel geometry. It can be expected that the

effect of thinning and back biasing on charge collection would be significantly

smaller in the pixel geometry where movement of carriers near pixel electrode
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contributes most to the collected charge.

a) b)
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Figure 8: Absolute value of electric field at 250 V bias voltage in a) unthinned structure

biased from top and b) thinned structure with processed backplane before irradiation. Col-

lected charge deposited along the centre of the structure (simulating a MIP) as a function of

integration time before irradiation c) and after irradiation to two different fluences d), at bias

of 250 V.

4.3. TCAD Simulations

A TCAD simulation of a simplified structure was made with the aim to qual-

itatively support the above discussion about the differences of charge collection

efficiencies for samples with and without processed backplane. A n-type im-

plant was positioned in a p-type substrate with an initial resistivity of 3 kΩcm

and two cases were considered: a 200 µm thick device with substrate contacted

through the backplane and a 700 µm thick structure with substrate contacted

on the area surrounding the implant on top.

Figures 8a) and 8b) show the distribution of the absolute value of electric

field in the structure biased with 250 V before irradiation. Electric field in

15



unthinned structure (Fig. 8a) extends into substrate deeper than 200 µm as

expected for 3 kΩcm resistivity while the thinned device is fully depleted.

A passage of a MIP was simulated by injecting 77 electron-hole pairs per µm

along the straight line through the centre of the structure. The current induced

on the implant electrode by movement of the charge carriers in the electric field

was calculated. Time integral of the induced current is the collected charge and

it is shown in Figures 8c) and 8d) as a function of the integration time. It can

be seen in Fig. 8c) that before irradiation in the thinned sample with backplane

bias all charge is collected rapidly while in the unthinned case a slow increase is

seen after a steep rise. The slow component is the consequence of drift of carriers

through the low field regions towards the contact on the top and also the conse-

quence of the charge entering the field region by diffusion from the undepleted

substrate. The simulation predicts that a larger charge would be collected with

the unthinned device which is in agreement with measurements as can be seen in

Figs. 6a) and 6b). On the other hand, in simulation equal charge in thinned and

unthinned device is collected after ∼ 50 ns while 20000 electrons are collected in

100 ns in unthinned device. This is considerably slower than in measurements

but it clearly illustrates the importance of backplane biasing for charge collec-

tion. The reason for the discrepancy with measurements was not studied in

detail but it should be attributed to the simplifications used in the simulation:

measurements were performed with an array of pixels while in simulation a sin-

gle implant was considered. Also the slow charge collecting component in thick

structure indicates that zero weighting field potential is not near the border of

depletion zone which could be a consequence of underestimated conductivity

of undepleted bulk. The discrepancy between 13700 electrons, measured with

thinned device before irradiation with the charge sensitive amplifier with 25 ns

shaping time, and 16000 electrons collected in simulation in Figure 8c) is partly

a consequence of thickness of real device (see Fig. 4b) being only ∼ 180 µm.

The significance of thinning and back processing for charge collection effi-

ciency can be much better seen after irradiation. Properties of irradiated silicon

were modeled in the simulation using the so called Perugia model [36, 37]. Col-
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lected charge as a function of integration time is shown in Fig. 8d) for two

fluences at 250 V bias. It can be seen that with the unthinned structure about

a factor of 2 smaller charge is collected compared to the thinned sample. The

value of measured collected charge is smaller than the charge in simulation how-

ever the factor of 2 difference is in agreement with measurements in Fig. 7 at

fluence of 1·1014 neq/cm2. At 1·1015 neq/cm2 collected charge in the unthinned

device was too small to be measured with this measurement system. The cause

for such a large difference between thinned and unthinned devices is the trap-

ping of charge carriers in the low field regions of the unthinned sample, before

they reach the contacts and so traverse the entire weighting field needed for full

charge collection.

5. Conclusions

Measurements with a set of passive pixel detectors made in LFoundry 150 nm

CMOS technology irradiated with neutrons were presented in this work. Two

sets of devices were studied and compared: unthinned devices without processed

backplane and biased through the implant on top and thinned devices with

processed and metallised backplane enabling contact to the substrate. Depletion

depth was measured with Edge-TCT and it was found that it increases with

bias voltage following the square root dependence as expected in the case of

abrupt junction and uniform doping concentration. From this dependence, the

effective doping concentration Neff was extracted. It was found that in the

range of fluences studied here Neff increases linearly with fluence with somewhat

larger introduction rate than usual for float zone silicon detector materials. This

result is consistent with measurement in [17]. The measurements confirm that

also after irradiation with 2·1015 neq/cm2 depletion depths exceeding 50 µm can

easily be reached at bias voltages which can safely be applied in this technology.

Charge collection measurements with MIPs from 90Sr source revealed a large

advantage of thinned devices with processed and metallised backplane after

irradiation. Much larger collected charge was measured with irradiated thinned
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devices which brings a strong message that thinning (up to the level to remove

the undepleted bulk) and backplane processing would improve charge collection

of irradiated CMOS devices by modifying the electric and weighting field in the

detector. However, it should be mentioned that measurements were made with

effectively pad detectors so the effect in pixel geometry is expected to be smaller

because of different weighting field.

Collected charge was measured up to the fluence of 2·1015 neq/cm2 and most

probable value exceeding 5000 electrons was measured also at highest fulence

if high enough bias voltage was applied. This amount of collected charge is

sufficient for successful operation in the experiments at the HL-LHC.
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[24] L. Snoj, G. Žerovnik and A. Trkov, Computational analysis of irradiation

facilities at the JSI TRIGA reactor, Appl. Radiat. Isot. 70 (2012) 483.
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