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We introduce a class of iterated integrals that generalize multiple polylogarithms to elliptic curves.
These elliptic multiple polylogarithms are closely related to similar functions defined in pure mathematics
and string theory. We then focus on the equal-mass and non-equal-mass sunrise integrals, and we develop a
formalism that enables us to compute these Feynman integrals in terms of our iterated integrals on elliptic
curves. The key idea is to use integration-by-parts identities to identify a set of integral kernels, whose
precise form is determined by the branch points of the integral in question. These kernels allow us to
express all iterated integrals on an elliptic curve in terms of them. The flexibility of our approach leads us to
expect that it will be applicable to a large variety of integrals in high-energy physics.
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I. INTRODUCTION

With the discovery of the Higgs boson at the Large
Hadron Collider (LHC) at CERN and the absence of signals
of physics beyond the Standard Model (SM), we have
entered a new era of precision physics. Indeed, the mass of
the Higgs boson was the last free parameter of the SM
whose value had not yet been determined by experiments.
Therefore, with the measurement of the Higgs mass, the
SM is a fully predictive theory that can be valid, at least in
principle, all the way up to the Planck scale. Even if the
scale of new physics is beyond the reach of the LHC, small
deviations to SM predictions may still show up in total
cross sections and distributions, due to the effect of virtual
particles in the loops. It is, therefore, of paramount
importance that we are able to provide very precise
theoretical predictions which match the precision reached
by experimental measurements at the LHC.
Precision calculations for LHC observables require the

evaluation of Feynman diagrams where additional virtual or

real particles are present in the process. While next-to-
leading order computations, which include contributions
with one additional real or virtual particle, were fully
automated a few years ago, we are currently living through
an era where next-to-next-to-leading order computations are
becoming the new standard. Key in this progress has been,
among other things, an improved understanding of how to
perform two-loop computations. In particular, it has become
clear that large classes of Feynman integrals can be expressed
in terms of a class of special functions known as multiple
polylogarithms (MPLs) [1–3]. One of the main advantages
of working with MPLs is that their underlying mathematical
and algebraic structures are well understood [4,4–8].
It is well known, however, that not all two-loop Feynman

integrals can be expressed in terms of MPLs alone. The first
appearance of a two-loop integral that cannot be expressed
in terms of MPLs goes back to QED [9], where it was
observed that the electron self-energy involves integrals of
elliptic type. Similar functions have recently shown up in
two-loop computations relevant to LHC processes, like for
example top-quark pair production [10–12], Higgs pro-
duction in association with a jet [13] and top-mass effects in
diphoton and dijet production [14]. The previous processes
all explicitly involve a heavy massive particle in the
loop, and it was assumed for a long time that massive
propagators are a necessary condition for the appearance of
nonpolylogarithmic structures. Recently, however, it was
shown that elliptic integrals also show up in planar
N ¼ 4 Super Yang-Mills [15–17]. Although the previous
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examples make it clear that progress in multiloop compu-
tations will require a deeper understanding of Feynman
integrals of elliptic type, still very little is known about the
mathematical properties of the resulting class of functions.
This, in turn, has sparked a lot of activity in recent years in
trying to uncover the mathematics of elliptic Feynman
integrals [12,18–33]
The most prominent elliptic Feynman integral is the so-

called sunrise integral, i.e., the two-loop integral with three
massive propagators. It had been observed already fifteen
years ago that the maximal cut of this integral can be
expressed in terms of complete elliptic integrals of the first
kind [21]. The result for the full (uncut) integral, however,
remained mysterious for more than a decade. In a landmark
paper, Bloch and Vanhove have shown that the sunrise
integral with three equal masses in two dimensions can
naturally be written in terms of a generalization of the
dilogarithm to an elliptic curve [23]. The latter is a special
case of a more general class of functions, called elliptic
multiple polylogarithms (eMPLs) [34–36], and they have
recently appeared also in the context of superstring ampli-
tudes at one loop [37–39]. The result of Ref. [23] has
sparked a wealth of new results and representations for the
sunrise integral, including also higher-order terms in
dimensional regularization and results in four spacetime
dimensions [12,24–31]. A common feature of these results
is that most of them require the introduction of a new
elliptic generalization of MPLs, whose relationship to the
eMPLs that have appeared in pure mathematics and string
theory is often unclear. This is somewhat disconcerting,
because in the nonelliptic case it was precisely the
realization that ordinary MPLs constitute the right class
of functions with beautiful algebraic properties that was at
the heart of a lot of progress in multiloop computations.
In the present paper, we try to close this gap, and we

introduce a class of functions that are defined as iterated
integrals on an elliptic curve. The ensuing functions have at
most logarithmic singularities—thereby constituting a
genuine generalization of polylogarithms to elliptic curves.
We discuss how one can easily compute the sunrise integral
in term of these functions, and we present analytic results
for all the master integrals of the sunrise topology in
d ¼ 2 − 2ϵ dimensions. In particular, we present for the
first time an analytic expression for the second master
integral in the case of three unequal masses. In a companion
paper [40], we study in detail some of the properties of our
functions. In particular, we show that they are equivalent to
the eMPLs introduced in the mathematics literature. As
such, our functions genuinely deserve being called elliptic
multiple polylogarithms as well. At the same time, this
shows how the sunrise integral is connected to the eMPLs
that have appeared in mathematics and string theory.
The outline of the paper is as follows: after providing a

lightning overview of some background on the sunrise
integrals in Sec. II, we will jump into the evaluation of the

first master integral for the equal-mass sunrise integral in
Sec. III. This integral will serve as our prime example of
how eMPLs naturally arise in the context of the sunrise
integrals. After this first encounter with iterated integrals on
elliptic curves, we will discuss and compute the second
master integral for the equal-mass sunrise integral in Sec. IV.
We will collect structural results of the first sections,
including the complete set of integration kernels that define
eMPLs, in a brief summary Sec. V. In Sec. VI, wewill apply
our new language to the more complex scenario of sunrise
integrals with three different masses. In particular, we will
discuss the unitary cut of the sunrise integral as well as the
unequal-mass master integrals for the sunrise topology from
dispersion relations. In Sec. VII, we draw our conclusion.

II. THE SUNRISE INTEGRAL: OVERVIEW

The most popular example of a family of Feynman
integrals that cannot be computed in terms of multiple
polylogarithms are the sunrise integrals, which have
received a lot of attention over the last few years. The
sunrise integrals can be represented by the following graph,

and the corresponding family of Feynman integrals reads

Sν1ν2ν3ðS;m2
1; m

2
2; m

2
3Þ

¼
Z

Ddk1Ddk2
ðk21 −m2

1Þν1ðk22 −m2
2Þν2ððk1 − k2 þ pÞ2 −m2

3Þν3
;

ð2:1Þ
where the integration measure is defined as

Z
Ddk≡ eγEϵ

Z
ddk

iπd=2
; ð2:2Þ

γE ¼ −Γ0ð1Þ is the Euler-Mascheroni constant and νi ∈ Z
denote the multiplicities of the propagators. We work in
dimensional regularization in d ¼ d0 − 2ϵ dimensions,
where d0 is even. We define S ¼ −s ¼ −p2, and the
quantities ki and mi denote the loop momenta and the
masses of the propagators respectively.
In terms of Feynman parameters, the integral in Eq. (2.1)

can equivalently be written as

Sν1ν2ν3ðS;m2
1; m

2
2; m

2
3Þ

¼ e2γEϵΓðν − dÞð−1Þν
Γðν1ÞΓðν2ÞΓðν3Þ

Z
∞

0

dx1dx2dx3x
ν1−1
1 xν2−12 xν3−13

×
Uν−3=2d

F ν−d δð1 − x3Þ; ð2:3Þ
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with ν≡P
3
i¼1 νi, and the Symanzik polynomials are

U ¼ x1x2 þ x2x3 þ x1x3 and

F ¼ x1x2x3Sþ ðm2
1x1 þm2

2x2 þm2
3x3ÞU: ð2:4Þ

In order to get a feeling for the class of functions that
show up when evaluating the integral in Eq. (2.3), let us
first consider the case where all masses are equal,
mi ¼ m ≠ 0. We will return to the unequal-mass case in
Sec. VI. Throughout this paper, we only discuss the sunrise
integrals in d ¼ 2 − 2ϵ dimensions. This allows us to focus
on the elliptic core of the integrals. We stress that the
restriction to two dimensions is not a limitation, because the
results in d ¼ 4 − 2ϵ dimensions can always be recovered
via dimensional recurrence relations [41,42].
Equation (2.1) defines an infinite family of Feynman

integrals, but not all members of the family are independent.
We can use integration-by-parts (IBP) identities to reduce
any member in the sunrise topology with three equal
(nonzero) masses to a linear combination of three master
integrals, which we can choose to be S111, S211 and S110.
S110 is a product of one-loop integrals and will not be
discussed any further. Note that, of course, in order to obtain
an integral family for the sunrise graph closed under IBP
identities we need to add two independent scalar products to
the definition in Eq. (2.1). In the following we will often
refer to S111 and S211 loosely as the first and second master
integrals. These two master integrals will be our guiding
examples for exploring the world of elliptic multiple
polylogarithms in this article. We stress that our paper is
not the first to consider the sunrise integrals, but they have
been computed in various different guises in terms of
functions that cannot be expressed in terms of multiple
polylogarithms (MPLs). The goal of this paper is to show
that there is a natural class of iterated integrals on an elliptic
curve throughwhich our results can be expressed. This class
of iterated integrals, whose mathematical properties are
spelled out in more detail in a companion paper [40], have at
most logarithmic singularities on the elliptic curve, and as
such they deserve to be called elliptic multiple polylogar-
ithms (eMPLs). Moreover, in Ref. [40] we show that these
elliptic polylogarithms are indeed very closely related to the
multiple elliptic polylogarithms considered in the math-
ematics literature [34–36].
In the next two sections, we will describe in detail the

computation of the first and second master integrals.

III. FIRST MASTER INTEGRAL
OF THE EQUAL-MASS SUNRISE

A. The first master integral in d = 2 dimensions

Starting from Eq. (2.3), the first master integral of
the equal-mass sunrise topology admits the integral
representation

S111ðS;m2Þ≡ S111ðS;m2; m2; m2Þ

¼ −Γð3 − dÞe2γEϵ
Z

∞

0

dx1dx2dx3δð1 − x3Þ

×
U−3=2ðd−2Þ

F 3−d : ð3:1Þ

The integral is convergent in two dimensions, and so we
can simply perform the expansion in the dimensional
regulator ϵ at the integrand level. At leading order in ϵ,
the integral S111 is determined solely by the polynomial F
defined in Eq. (2.4):

S111ðS;m2Þjϵ0

¼ −
Z

∞

0

dx1dx2
1

m2ðx1 þ x2 þ 1Þs2ðx1; x2; 1Þ þ Sx1x2
:

ð3:2Þ
The denominator is a quadratic polynomial in x2. We
perform the change of variables x1 ¼ x=ð1 − xÞ, andwe find

S111ðS;m2Þjϵ0

¼−
Z

1

0

dx
Z

∞

0

dx2
1

m2ðxþx2Þð1þð1−xÞx2ÞþSð1−xÞxx2
:

ð3:3Þ

After linearizing the denominator by partial fractioning in
x2, the remaining integral is easily performed, yielding

S111ðS;m2Þjϵ0 ¼
1

ðm2 þ SÞ
Z

1

0

dx
log χ
y

; ð3:4Þ

with

χ ¼ xðx − 1Þðm2 þ SÞ −m2 − ðm2 þ SÞy
xðx − 1Þðm2 þ SÞ −m2 þ ðm2 þ SÞy ; ð3:5Þ

and

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − a1Þðx − a2Þðx − a3Þðx − a4Þ

p
; ð3:6Þ

where ai, 1 ≤ i ≤ 4, denote the roots of the quartic poly-
nomial inside the square root

a1 ¼
1

2

�
1−

ffiffiffiffiffiffiffiffiffiffiffi
1þ ρ

p �
; a2 ¼

1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ ρ

p �
;

a3 ¼
1

2

�
1−

ffiffiffiffiffiffiffiffiffiffiffi
1þ ρ̄

p �
; a4 ¼

1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ ρ̄

p �
: ð3:7Þ

The auxiliary variables ρ and ρ̄ are defined by

ρ ¼ −
4m2

ðmþ ffiffiffiffiffiffi
−S

p Þ2 and ρ̄ ¼ −
4m2

ðm −
ffiffiffiffiffiffi
−S

p Þ2 : ð3:8Þ

For real values of
ffiffiffiffiffiffi
−S

p
and m they are complex conjugates

of each other. The four roots ai of the quartic polynomial are
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clearly distinct for distinct and nonvanishing values of
ffiffiffiffiffiffi
−S

p
and m, and therefore the quartic polynomial is irreducible.
In absence of the logarithm in the numerator in Eq. (3.4),

the integral would evaluate to an incomplete elliptic
integral of the first kind:

Fðxjw2Þ ¼
Z

x

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − t2Þð1 − w2t2Þ

p : ð3:9Þ

While elliptic integrals of this type are well studied in 19th
century mathematics, integrals of the type in Eq. (3.4), with
a logarithm in the numerator, are not part of the classical
literature on elliptic integrals; only recently a subclass of
these integrals has been studied in detail in Ref. [31]. One
of the main goals of this paper is to show how such integrals
can be performed in complete generality in terms of a well-
defined class of iterated integrals.
We start by analyzing the logarithmic term in Eq. (3.4)

separately. Differentiating with respect to x and integrating
back, we find the following integral representation for the
logarithm,

logχ ¼
Z

x

0

dx0

yx0

�
2x0 − 1−

m2

ðm2 þ SÞð1− x0Þ þ
m2

ðm2 þ SÞx0
�
:

ð3:10Þ
Perhaps surprisingly, the logarithm itself can be written as
an integral of elliptic type, as indicated by yx0 in the
denominator (which denotes y evaluated at x0). Concretely,
Eq. (3.10) contains three integrals of elliptic type:Z

dx
y
;

Z
dx
y
x;

Z
dx
y

1

x − c
: ð3:11Þ

The first integral in Eq. (3.11) bears some similarities with
the elliptic integral of the first kind K in Eq. (3.9). One is
tempted to try to integrate the remaining two integrals
by parts in order to reduce them to those of the first kind.
That attempt is futile, however, and one can show that indeed
the three integrals in Eq. (3.11) are independent with respect
to IBP identities. This, in turn, is a well-known result in
mathematics: the second and third integral in Eq. (3.11) are
related to the incomplete elliptic integrals of third kind:

Πðn2; xjw2Þ ¼
Z

x

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − t2Þð1 − w2t2Þ

p 1

1 − n2t2
: ð3:12Þ

As a conclusion, all the integrations in Eq. (3.10) can be
performed in terms of elliptic integrals of the first and third
kind, leading to an intriguing relation between a logarithm
and a sum of elliptic integrals.
When we rewrite the logarithm in Eq. (3.4) as a

combination of elliptic integrals, the classical theory of
elliptic integrals of the 19th century is no longer sufficient
to perform the integral. Very loosely speaking, our goal is to
extend the theory of elliptic integrals to include those
iterated integrations. This is achieved by defining an elliptic

generalization of multiple polylogarithms, elliptic multiple
polylogarithms (eMPLs), which are defined as iterated
integrals over suitable integration kernels ψ i,

E4ðn1…nk
c1…ck

;xÞ¼R
x
0 dt ψn1ðc1;tÞE4ðn2…nk

c2…ck
;tÞ; ð3:13Þ

where ni ∈ Z, ci ∈ C ∪ f∞g and the recursion starts with
E4ð; xÞ ¼ 1. Note that the definition in Eq. (3.13) is in
complete analogy with the ordinary multiple polylogar-
ithms, which are defined recursively by

Gða1;…; an; xÞ ¼
Z

x

0

dx0

x0 − a1
Gða2;…; an; x0Þ; ð3:14Þ

starting with Gð; xÞ ¼ 1.
Let us briefly discuss some of the properties of the

integration kernels ψ i in Eq. (3.13). The kernels should
satisfy three basic requirements. First, they should not be
total derivatives, because otherwise the integrationwould be
trivial. Second, to form a good basis, they should be
independent with respect to IBP identities. Finally, since
our eMPLs should have atmost logarithmic singularities, the
integration kernels should have at most simple poles. From
the previous discussion, it follows that we have natural
candidates in Eq. (3.11) that satisfy all of the requirements.
We therefore define the following integration kernels,

ψ0ð0; xÞ ¼
c4
y
; ψ−1ð∞; xÞ ¼ x

y
;

ψ−1ðc; xÞ ¼
yc

ðx − cÞy −
δc0
x

; ð3:15Þ

where the kernel ψ0ð0; xÞ includes the normalization factor
c4 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a13a24

p
, with aij ¼ ai − aj. Since our iterated inte-

grals shall be a generalization of ordinaryMPLs, we include
their integration kernel from Eq. (3.14), and we define

ψ1ðc; xÞ ¼
1

x − c
: ð3:16Þ

Note that the previous equation implies that ordinary MPLs
are just a subset of eMPLs. While these definitions may
seem ad hoc at this point, we will argue in more detail in
Sec. IV that these kernels indeed define genuine eMPLs. In
particular, we will see that we need to extend the set of
kernels in Eq. (3.15) in order to obtain a complete and
independent set of eMPLs. The kernels in Eq. (3.15),
however, are sufficient for the computation of the first
master integral of the equal-mass sunrise topology, and so
we defer a more detailed discussion of the complete set of
integration kernels to a subsequent section.
Let us also comment on the singularity structure of the

integration kernels ψ i. Different types of kernels are
indexed by an integer subscript, and the first argument
of ψ iðc; xÞ indicates that this kernel has a simple pole at
x ¼ c. In particular, c may be infinite, indicating that there
is a pole at x ¼ ∞. Indeed, letting x ¼ 1=u, we see that
ψ−1ð∞; xÞ has a pole at x ¼ ∞ (that shows up as a pole at
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u ¼ 0). The only kernel deviating from this nomenclature is
ψ0ð0; xÞ, which does not have any pole. Further clarifica-
tion is required for the kernel ψ−1ð0; xÞ: it is straightfor-
ward to check that 1=ðxyÞ has a pole x ¼ 0 (assuming
ai ≠ 0), leading to an end-point singularity in Eq. (3.13)
whenever ck ¼ 0. Correspondingly, the pole at x ¼ 0 is
removed by the Kronecker δ term, making the convergence
of the integral manifest. Note that also ψ1ð0; xÞ ¼ 1=x is
singular at x ¼ 0. In this case, however, we do not subtract
the singularity, but we use the following special definition,
well-known from the case of ordinary MPLs,

E4ð 1…1
0…0|{z}

n times

; xÞ ¼ Gð0…0|ffl{zffl}
n times

; xÞ ¼ 1

n!
lognx;

log x ¼
Z

x

1

dx0

x
: ð3:17Þ

Finally, by using y in Eq. (3.15), we are implicitly
using information about the geometry of the under-
lying elliptic curve we are working on. Thus it would
be accurate to attach the root vector a⃗ ¼ ða1; a2; a3; a4Þ
as an additional parameter to each of the kernels and E4.
However, in order to avoid cluttering the notation, we
always suppress the dependence on the root vector, as in
this paper all our equations will involve objects defined
on the same elliptic curve only (we assume the external
kinematics fixed).
Armed with these definitions, we can now return to

Eq. (3.10) and write it in terms of the integration kernels,

log χ ¼
Z

x

0

dx0
�
1

c4
ψ0ð0; x0Þ − 2ψ−1ð∞; x0Þ

þ ψ−1ð0; x0Þ þ ψ1ð0; x0Þ þ ψ−1ð1; x0Þ
�
: ð3:18Þ

Using the iterated definition of the eMPLs in Eq. (3.13), all
integrations can be performed with ease and yield

log χ ¼ 1

c4
E4ð00 ; xÞ − 2E4ð−1∞ ; xÞ þ E4ð−10 ; xÞ

þ E4ð10 ; xÞ þ E4ð−11 ; xÞ: ð3:19Þ

The previous equation is a remarkable identity that allows
us to write a logarithm with a complicated algebraic
argument in terms of elliptic polylogarithms with simple
arguments. Inserting Eq. (3.19) into Eq. (3.4),
we obtain

S111ðS;m2Þjϵ0 ¼
1

ðm2 þ SÞc4

Z
1

0

dxψ0ð0; xÞ
�
1

c4
E4ð00 ; xÞ

− 2E4ð−1∞ ; xÞ þ E4ð−10 ; xÞ

þ E4ð10 ; xÞ þ E4ð−11 ; xÞ
�
; ð3:20Þ

where we have replaced 1=y with the integral kernel
ψ0ð0; xÞ=c4. The remaining integrations can easily be
performed using Eq. (3.13), which leads to the result

S111ðS;m2Þjϵ0 ¼
1

ðm2 þ SÞc4

�
1

c4
E4ð00 00 ; 1Þ − 2E4ð00 −1∞ ; 1Þ

þ E4ð00 −10 ; 1Þ þ E4ð00 −11 ; 1Þ − E4ð10 00 ; 1Þ
�
:

ð3:21Þ

Equation (3.21) is the final result for the first master
integral of the sunrise topology in d ¼ 2 dimensions. As
promised, we see that the result can be cast entirely in the
form of a linear combination of eMPLs defined in
Eq. (3.13). Before we continue and discuss how to extend
our framework to higher orders in ϵ and the second master
integral, let us summarize our main steps: we were able to
write a simple function, the logarithm appearing in
Eq. (3.4), with complicated arguments involving a square
root of a quartic polynomial, in terms of more compli-
cated functions, the elliptic multiple polylogarithms, with
a simple argument. This strategy is reminiscent of the
strategy employed successfully in the computation of
polylogarithmic integrals. A key ingredient in establishing
our method was the identification of the integration
kernels ψ i. The integral considered so far was simple
enough to appear directly in terms of these kernels.
However, as will be discussed below, it is possible to
tackle more complicated integrals using IBP identities.

B. The first master integral
in dimensional regularization

So far we have only discussed the master integral S111 in
strictly two dimensions. In the remainder of this section, we
extend our analysis to higher orders in the ϵ expansion, and
we show that S111 can be expressed in terms of eMPLs at
every order in dimensional regularization. We only discuss
the linear term in ϵ explicitly. The extension to higher
orders is straightforward.
Expanding the Feynman parameter integral in Eq. (3.1)

to linear order in ϵ, we find,

S111ðS;m2Þjϵ1 ¼
Z

∞

0

dx1dx2dx3

×
δð1− x3Þ½2 logðF Þ− 3 logðUÞ�

F
: ð3:22Þ

The denominator in Eq. (3.22) is identical to the denom-
inator in Eq. (3.2), and so we can expect that the integration
can be done using a similar algorithm as for ϵ ¼ 0. Hence,
we let x1 ¼ x=ð1 − xÞ, and the result of the integral
over x2 can be written in terms of ordinary multiple
polylogarithms as
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S111ðS;m2Þjϵ1 ¼
1

m2 þ S

Z
1

0

dx
y

�
Gð0;χÞ

�
Gð0;χ0Þ þGð1;xÞ þ 4Gð1;χÞ þ 2Gð0;m2Þ− 3G

�
χ0

χ
;x

		

− 3Gð0;0;χÞ þ 3Gð0; χ0ÞG
�
χ0

χ
;x

	
− 3G

�
χ0

χ
;0;x

	
− 4Gð0;1;χÞ−Gð0;χ0ÞGðχ0;xÞ þ 3Gðχ0;0;xÞ− 4ζ2

�
;

ð3:23Þ

where χ has been defined in Eq. (3.5), and we have
introduced the quantity

χ0 ¼ ðm2 þ SÞyþm2ðx2 − x − 1Þ þ Sðx − 1Þx
2m2ðx − 1Þ : ð3:24Þ

The remaining integration over x can be done following the
same steps as for ϵ ¼ 0: we write every ordinary MPL with

a complicated argument in the integrand as a linear
combination of eMPLs such that the integration can
immediately be performed using the definition of the E4

functions in Eq. (3.13). This rewriting can be done
recursively in the weight of the MPLs. For example, let
us consider how to rewrite Gð1; χÞ in terms of eMPLs. We
can differentiate with respect to x and integrate back, and
we find,

Gð1; χÞ ¼ −iπ þ
Z

x

0

dx0

yx0
ð1 − 2x0Þðm2ð1 − ð1 − x0Þx0Þ − Sð1 − x0Þx0Þ

2ð1 − x0Þx0ðm2 þ SÞ −
Z

x

0

dx0
1 − 2x0

2x0ð1 − x0Þ

þ
X4
i¼1

Z
x

0

dx0

x0 − ai

ð1 − 2aiÞðð1 − ð1 − aiÞaiÞm4 − ð2ð1 − aiÞai þ 1Þm2S − ð1 − aiÞaiS2Þ
ðm2 þ SÞ2 Q4

j¼1;j≠k aij

¼ −iπ þ 1

2
½2E4ð−1∞ ; xÞ − 1

c4
E4ð00 ; xÞ − E4ð−10 ; xÞ − E4ð−11 ; xÞ − 2E4ð10 ; xÞ − E4ð11 ; xÞ þ

P
4
i¼1 E4ð 1ai ; xÞ�: ð3:25Þ

We apply this procedure to every MPL of weight one. Next,
we differentiate MPLs of weight two. The derivative
contains MPLs of weight one, which we know how to
express in terms of eMPLs. For example, we find,

Gð0; 1; χÞ ¼ −2ζ2 þ
Z

x

0

dx0
dχx0

dx0
Gð1; χx0 Þ

χx0
: ð3:26Þ

Inserting Eq. (3.25) into the integrand, we find

Gð0; 1; χÞ ¼ 1

2c24
E4ð00 00 ; xÞ þ 1

c4
½1
2
E4ð−10 0

0
; xÞ þ 1

2
E4ð−11 0

0
; xÞ − E4ð−1∞ 0

0
; xÞ þ 1

2
E4ð00 −10 ; xÞ

þ 1

2
E4ð00 −11 ; xÞ − E4ð00 −1∞ ; xÞ þ 1

2
E4ð00 11 ; xÞ − 1

2
E4ð00 1

a1
; xÞ − 1

2
E4ð00 1

a2
; xÞ

−
1

2
E4ð00 1

a3
; xÞ − 1

2
E4ð00 1

a4
; xÞ − 1

2
E4ð10 00 ; xÞ þ ðlog x − iπÞE4ð00 ; xÞ� þ 1

2
E4ð−10 −1

0
; xÞ

þ 1

2
E4ð−10 −1

1
; xÞ − E4ð−10 −1

∞ ; xÞ þ 1
2
E4ð−10 1

1
; xÞ − 1

2
E4ð−10 1

a1
; xÞ − 1

2
E4ð−10 1

a2
; xÞ

−
1

2
E4ð−10 1

a3
; xÞ − 1

2
E4ð−10 1

a4
; xÞ þ 1

2
E4ð−11 1

0
; xÞ þ 1

2
E4ð−11 −1

1
; xÞ − E4ð−11 −1

∞ ; xÞ

þ 1

2
E4ð−11 1

1
; xÞ − 1

2
E4ð−11 1

a1
; xÞ − 1

2
E4ð−11 1

a2
; xÞ − 1

2
E4ð−11 −1

a3
; xÞ − 1

2
E4ð−11 1

a4
; xÞ

− E4ð−1∞ −1
0
; xÞ − E4ð−1∞ −1

1
; xÞ þ 2E4ð−1∞ −1

∞ ; xÞ − E4ð−1∞ 1
1
; xÞ þ E4ð−1∞ 1

a1
; xÞ

þ E4ð−1∞ 1
a2
; xÞ þ E4ð−1∞ 1

a3
; xÞ þ E4ð−1∞ 1

a4
; xÞ − 1

2
E4ð10 −10 ; xÞ − 1

2
E4ð10 −11 ; xÞ

þ E4ð10 −1∞ ; xÞ þ 1
2
E4ð10 11 ; xÞ − 1

2
E4ð10 1

a1
; xÞ − 1

2
E4ð10 1

a2
; xÞ − 1

2
E4ð10 1

a3
; xÞ

−
1

2
E4ð10 1

a4
; xÞ − 2ðlog x − iπÞE4ð−1∞ ; xÞ − iπ log xþ log2x

2
þ ðlog x − iπÞE4ð−10 ; xÞ

þ ðlog x − iπÞE4ð−11 ; xÞ − 2ζ2: ð3:27Þ
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The same idea can be applied to every MPL in Eq. (3.23). After this is done, we can easily perform the integral over x using
the definition of eMPLs in Eq. (3.13). The final result reads

S111ðS;m2Þjϵ1 ¼
1

ðm2 þ SÞc4
h
1
2
logm2ð4E4ð10 00 ; 1Þ− 4E4ð00−10 ; 1Þ− 4E4ð00−11 ; 1Þ þ 8E4ð00−1∞ ; 1Þ

−
4

c4
E4ð00 00 ; 1ÞÞ þ E4ð10 10 00 ; 1Þ− 2E4ð00−10 1

1
; 1Þ− 2E4ð00−11 1

1
; 1Þ

− 2E4ð00−1∞ 1
1
; 1Þ þ 5E4ð00 10−10 ; 1Þ þ 5E4ð00 10−11 ; 1Þ− 4E4ð00 10−1∞ ; 1Þ

− 5E4ð00 10 11 ; 1Þ þ 2E4ð00 10 1
a1
; 1Þ þ 2E4ð00 10 1

a2
; 1Þ þ 2E4ð00 10 1

a3
; 1Þ

þ 2E4ð00 10 1
a4
; 1Þ þ 3E4ð00 11−10 ; 1Þ þ 3E4ð00 11−11 ; 1Þ− 6E4ð00 11−1∞ ; 1Þ

− 2E4ð00 1
a1

−1
0
; 1Þ− 2E4ð00 1

a1
−1
1
; 1Þ þ 4E4ð00 1

a1
−1
∞ ; 1Þ− 2E4ð00 1

a2
−1
0
; 1Þ

− 2E4ð00 1
a2

−1
1
; 1Þ þ 4E4ð00 1

a2
−1
∞ ; 1Þ− 2E4ð00 1

a3
−1
0
; 1Þ− 2E4ð00 1

a3
−1
1
; 1Þ

þ 4E4ð00 1
a3

−1
∞ ; 1Þ− 2E4ð00 1

a4
−1
0
; 1Þ− 2E4ð00 1

a4
−1
1
; 1Þ þ 4E4ð00 1

a4
−1
∞ ; 1Þ

þ 2E4ð10 00−10 ; 1Þ þ 2E4ð10 00−11 ; 1Þ þ 2E4ð10 00−1∞ ; 1Þ− 3E4ð10 00 11 ; 1Þ
þ 2E4ð10 00 1

a1
; 1Þ þ 2E4ð10 00 1

a2
; 1Þ þ 2E4ð10 00 1

a3
; 1Þ þ 2E4ð10 00 1

a4
; 1Þ þ ζ2E4ð00 ; 1Þ

þ 1

c4
ðE4ð00 00 11 ; 1Þ þ 2E4ð00 10 00 ; 1Þ þ 3E4ð00 11 00 ; 1Þ− 2E4ð00 1

a1
0
0
; 1Þ

− 2E4ð00 1
a2

0
0
; 1Þ− 2E4ð00 1

a3
0
0
; 1Þ− 2E4ð00 1

a4
0
0
; 1Þ− E4ð10 00 00 ; 1ÞÞ

i
: ð3:28Þ

We see that, just like for the leading term in the
expansion, we can cast the result in the form of a linear
combination of eMPLs. It is easy to extend the procedure
used to perform the integration at higher orders in ϵ,
which proves that the S111 in d ¼ 2 − 2ϵ dimensions can
be expressed in terms of E4 functions at every order in
dimensional regularization.

IV. THE SECOND MASTER INTEGRAL
OF THE EQUAL-MASS SUNRISE

In this section, we discuss the second master integral S211
of the equal-mass sunrise topology. We will follow the
same strategy as for the first master integral, i.e., we start
from the Feynman parameter representation of S211 and
perform all the integrations sequentially in terms of eMPLs.
In the process, we will discover that the integration kernels
introduced in Eq. (3.15) are insufficient to perform all the
integrals, and we will be forced to extend our set of
integration kernels.
Let us start from the expression of the second master

integral in terms of Feynman parameters:

S211ðS;m2Þ ¼ Γð2þ 2ϵÞe2γEϵ

×
Z

∞

0

dx1dx2dx3δð1− x3Þ
x1U1þ3ϵ

F 2þ2ϵ ; ð4:1Þ

where the Symanzik-polynomials F and U have been
defined in Eq. (2.4). The integral is finite in two dimen-
sions, and the leading term in ϵ is

S211ðS;m2Þjϵ0 ¼
Z

∞

0

dx1dx2dx3
δð1−x3Þx1s2

½m2ðx1þx2þx3Þs2þSs3�2
:

ð4:2Þ
The previous integral is very similar in structure to the
Feynman parameter integral representation of the first
master integral in Eq. (3.2). The main difference is that
we have an additional power of the polynomial F in the
denominator and pick up numerator terms from the poly-
nomial U. These will lead to the appearance of rational
prefactors in the integrand that need to be dealt with using
integration-by-parts identities.
To start, we proceed in exactly the same way as for S111

in the previous section. We eliminate the integration over x3
using the δ function, and we map x1 to the unit interval
by changing variables according to x1 ¼ x=ð1 − xÞ.
Afterwards, we can factorize the quadratic polynomial in
x2 in the denominator and perform partial fractioning. The
integral over x2 can then be done using standard tech-
niques. We find the following representation of S211:

S211ðS;m2Þjϵ0 ¼
Z

1

0

dxðI1 þ I2Þ; ð4:3Þ

where
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I1 ¼
xðm2ð1 − xþ x2Þ − Sð1 − xÞxÞ

m2ðm2 þ SÞ2ðx − a1Þðx − a2Þðx − a3Þðx − a4Þ
;

I2 ¼
xðm2ð1 − xþ x2Þ þ Sð1 − xÞxÞ

ðm2 þ SÞ3ðx − a1Þðx − a2Þðx − a3Þðx − a4Þy
log χ;

ð4:4Þ
where χ and y are defined in Eqs. (3.5) and (3.6). We will
evaluate the integral in Eq. (4.3) by first computing a
primitive of I i, and then we evaluate the primitives at the
integration boundaries.
Let us begin by computing a primitive of I1. I1 does not

contain any dependence on the square root y, and so we can
simply compute the primitive in terms of ordinary MPLs
after partial fractioning of the denominator. Since we want
to combine the result with the elliptic contributions from
I2, we find it convenient to write all ordinary MPLs from
the beginning in terms of eMPLs. We find,

Z
dx I1 ¼

X4
k¼1

akðð1 − ð1 − akÞakÞm2 − ð1 − akÞakSÞ
m2ðm2 þ SÞ2 Q4

i¼1;i≠k aki

× E4ð 1ak ; xÞ: ð4:5Þ
Next we turn to the second term in Eq. (4.3). In contrast

to I1, this term is of elliptic type due to the presence of y in
the denominator. Let us recall that log χ can be cast in the
form of a linear combination of eMPLs in Eq. (3.19).
Partial fractioning in x leads to integrals of the formZ

dx
XðxÞ

yðx − aiÞ
; ð4:6Þ

whereXðxÞ is some eMPL.At first glance, this integral looks
very similar to Eq. (3.15) with c ¼ ai. There is however a
crucial difference: the integral in Eq. (3.15) has a simple pole
atx ¼ c forc ≠ ai. Sincex ¼ ai is a zero of the square root y,
the integrand inEq. (4.6) behaves like ðx − aiÞ−3=2 for x ∼ ai.
Hence, the point x ¼ ai is not a pole in Eq. (4.6), but rather a
branch point of the square root. In the next subsection, we
discuss how to evaluate such integrals.

A. Intermezzo: Integration of eMPLs
with rational coefficients

Let us begin by considering the simplest instance of the
types of integrals encountered in Eq. (4.6), corresponding
to XðxÞ≡ 1. Without loss of generality, we restrict the
discussion to the case i ¼ 1. We find that we can write the
integral in Eq. (4.6) as

Z
dx

yðx−a1Þ
¼ 1

a12a13a14

�
−

2y
x−a1

þð3a1− s̄1Þ
Z

dx
y
ðx−a1Þ

þ2

Z
dx
y
ðx−a1Þ2

�
; ð4:7Þ

with s̄n ¼ snða2; a3; a4Þ and sn are the symmetric poly-
nomials of degree n. We can immediately recognize our
integration kernels ψ0ð0; xÞ and ψ−1ð∞; xÞ in the formula
above. However, we also find the integralZ

dx
y
x2; ð4:8Þ

which does not immediately translate into one of our
kernels in Eq. (3.15), nor can it be reduced to them using
IBP identities. We are therefore forced to introduce a new
kernel, which we define by

Φ̃4ðxÞ ¼
1

c4y

�
x2 −

s1
2
xþ s2

6

	
: ð4:9Þ

This kernel contains not only the necessary x2=y term, but
also terms proportional to ψ−1ð∞; xÞ and ψ0ð0; xÞ. These
terms are purely conventional at this point.
The object in Eq. (4.9) seems rather random at first sight;

in particular, we do not seem to be consistent in our
notation for the integration kernels. There is a reason for not
associating the name ψ i to this kernel: we demand of our
kernels ψ i that they have at most simple poles. The above
kernel Φ̃4ðxÞ, however, has a double pole at x ¼ ∞: indeed,
letting x ¼ 1=u, we can see that

dx
x2

y
¼ −

du
u2

−
s1du
2u

þOðu0Þ; ð4:10Þ

and consequently,

dx Φ̃4ðxÞ ¼ −
du
u2

þOðu0Þ: ð4:11Þ

Note that the term proportional to x=y removes the simple
pole at u ¼ 0, so that Φ̃4ðxÞ has a double pole at infinity
with vanishing residue.
As a consequence, Φ̃4ðxÞ does not meet the fundamental

criterion that our integration kernels should have at most
simple poles. However, a function with a double pole gives
rise to a primitive with a simple pole. We define a primitive
of Φ̃4 by

Z4ðxÞ ¼
Z

x

a1

dx0
�
Φ̃4ðxÞ þ 4c4

η1
ω1

1

y

	
; ð4:12Þ

where ω1 is the first of the two periods of the elliptic curve,
defined as

ω1 ¼ 2c4

Z
a3

a2

dx
y

¼ 2KðλÞ and

ω2 ¼ 2c4

Z
a2

a1

dx
y

¼ 2iKð1 − λÞ; ð4:13Þ

with

λ ¼ a14a23
a13a24

: ð4:14Þ
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In the previous equation, KðλÞ≡ Fð1jλÞ denotes the com-
plete elliptic integral of the first kind. Similarly, one defines
the quasiperiods of the elliptic curve by

η1 ¼ −
1

2

Z
a3

a2

dx Φ̃4ðxÞ ¼ EðλÞ − 2 − λ

3
KðλÞ;

η2 ¼ −
1

2

Z
a2

a1

dx Φ̃4ðxÞ ¼ −i
�
Eð1 − λÞ − 1þ λ

3
Kð1 − λÞ

�
;

ð4:15Þ
where EðλÞ≡ Eð1jλÞ denotes the elliptic integral of the
second kind,

Eðxjw2Þ ¼
Z

x

0

dt
1 − w2t2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − t2Þð1 − w2t2Þ
p : ð4:16Þ

Since Z4ðxÞ is a primitive of a function with a double
pole at infinity, Z4ðxÞ itself only has a single pole at x ¼ ∞.
Consequently, we can use it to define new integration
kernels for our elliptic multiple polylogarithms,

ψ1ð∞; xÞ ¼ c4
y
Z4ðxÞ: ð4:17Þ

Let us make an important comment about this kernel.
Unlike the kernels considered in Eq. (3.15), the function
ψ1ð∞; xÞ is not rational or algebraic, but it is itself an
integral that defines a transcendental function. We see here
one of the main differences between ordinary and elliptic
polylogarithms: while ordinary MPLs only require inte-
gration kernels that are rational, this is no longer the case
for elliptic polylogarithms. Indeed, the kernel in Eq. (4.17)

cannot be reduced to any of the kernels we defined so far. In
particular, it is independent of ψ−1ð∞; xÞ, even though both
kernels have a single pole at infinity.
The fact that ψ1ð∞; xÞ is transcendental has far-reaching

implications. In particular, we will not be able to simplify
powers of kernels or products with other kernels using
partial fractioning. Instead, powers or product of kernels
that involve Z4 will define new independent kernels. For
example, we can consider,

ψ−2ðc; xÞ ¼
yc

ðx − cÞy Z4ðxÞ: ð4:18Þ

Higher powers of Z4ðxÞ will lead to further kernels ψ�n
with n > 2. We obtain in this way an infinite tower of
independent integration kernels, which can be constructed
in the above fashion by taking combinations of powers of
Z4ðxÞ with elementary rational kernels. This may sound
disconcerting at first sight: we set out to perform integrals
over functions involving elliptic square roots in a closed
form only to find that an infinite set of basis kernels is
required. While there is no way around this fact in general,
it turns out that for a given problem—concretely, a given
number of integrations—only a finite number of kernels
will ever contribute. In fact, for the problems discussed in
this note the elementary kernels in Eq. (3.15), together with
the kernels defined in Eqs. (4.17) and (4.18), are sufficient
to perform all the integrals.
Finally, after this very long digression, we can return to

the integral in Eq. (4.7), and we can rewrite the term x2=y in
terms of Φ̃4ðxÞ. We obtain

Z
dx

yðx − a1Þ
¼ 2

a12a13a14

�
y

x − a1
þ E4ð00 ; xÞ

�
3a21 − 2a1s̄1 þ s̄2

6c4
þ 4

c4η1
ω1

	
þ c4Z4ðxÞ

�
: ð4:19Þ

B. Back to the second master integral

After this intermezzo on the integration on elliptic curves,
let us now return to the computation of the second master
integral of the sunrise topology with equal masses. We had
arrived at a pointwherewe needed to perform integrals of the
type in Eq. (4.6). For XðxÞ≡ 1, we can simply follow the

reasoning of the previous section. In general, however,XðxÞ
will be an elliptic polylogarithm. Fortunately, we can use
IBP to reduce all appearing integrals to our extended set of
integral kernels. We refer the reader to Appendix A for a
more detailed discussion. Integrating theI2 term in Eq. (4.3)
comes down to finding primitives like the following:

Z
dx

yðx − a1Þ
E4ð00 ; xÞ ¼

1

a12a13a14

�
2y E4ð00 ; xÞ
a1 − x

þ 2

Z
dx

x − a1
y
h
∂xE4ð00 ; xÞ

i
þ ð3a1 − s̄1Þ

Z
dx
y
ðx − a1ÞE4ð00 ; xÞ

þ 2

Z
dx
y
ðx − a1Þ2E4ð00 ; xÞ

�
: ð4:20Þ

The integrals appearing on the right-hand-side can be expressed in terms of our kernels to yield
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Z
dx

x−a1
y

�
∂xE4ð00;xÞ

�
¼c4E4ð 1a1 ;xÞ;Z

dx
y
ðx−a1ÞE4ð00;xÞ¼E4ð−1∞ 0

0
;xÞ−a1

c4
E4ð0000;xÞ;Z

dx
y
ðx−a1Þ2E4ð00;xÞ¼c4E4ð 1∞;xÞþc4Z4ðxÞE4ð00;xÞ−1

2
ð3a1− s̄1ÞE4ð−1∞ 0

0
;xÞþ

�
6a21−a1s̄1− s̄2

6c4
−
4c4η1
ω1

�
E4ð0000;xÞ: ð4:21Þ

In a similar fashion we can perform the remaining integrals contributing to the primitive of I2 that are listed in Appendix B.
Combining them together with the primitive of I1 in Eq. (4.5), we obtain the primitive of Eq. (4.3):

C0

Z
dxðI1 þ I2Þ ¼ −c4E4ð−20 ; xÞ − c4E4ð−21 ; xÞ þ 2c4E4ð−2∞ ; xÞ − 2m2

m2þSE4ð11 ; xÞ

− E4ð 1∞ ; xÞ þ C1
h
c4E4ð00 −10 ; xÞ þ c4E4ð00 −11 ; xÞ − 2c4E4ð00 −1∞ ; xÞ þ E4ð00 00 ; xÞx − c4E4ð10 00 ; xÞ

i
þ c4½C2yþ Z4ðxÞ�E4ð−10 ; xÞ þ c4½C2yþ Z4ðxÞ�E4ð−11 ; xÞ − 2c4½C2yþ Z4ðxÞ�E4ð−1∞ ; xÞ
þ ½C2yþ Z4ðxÞ þ C1c4 logðxÞ�E4ð00 ; xÞ: ð4:22Þ

In the above expression we have used the coefficients Ci defined by

C0 ¼ m2ðSþ 9m2Þ;

C1 ¼ −4
η1
ω1

−
15m4 þ 12m2Sþ S2

6ðm2 þ SÞ2c24
;

C2 ¼ −
x3ðm2 þ SÞ2 þ x2ð3m2 − SÞðm2 þ SÞ − 4m2Sx − 2m4

c4½x4ðm2 þ SÞ2 − 2x3ðm2 þ SÞ2 þ x2ð3m4 þ S2Þ − 2m2xðm2 − SÞ þm4� : ð4:23Þ

Some comments about the structure of this result are in
order. First of all, note that the terms proportional to
E4ð 1ai ; xÞ from the primitive of I1 in Eq. (4.5) exactly
cancel against corresponding terms in the primitive of I2,
so that the result has no logarithmic singularities at roots of
the elliptic curve. Second, let us note that the term
proportional to log xE4ð00 ; xÞ arises from the shuffle identity

E4ð00 10 ;xÞ ¼ logxE4ð00 ;xÞ−E4ð10 00 ;xÞ: ð4:24Þ

In order to obtain the final result for the second master of
the sunrise, we need to evaluate the primitive at the upper
boundary of the integration region at x ¼ 1. When we try to
evaluate the primitive at x ¼ 1, we realize that some of the
eMPLs in the result have logarithmic singularities at x ¼ 1,
namely the eMPLs where the pole of the last integration is
at x ¼ 1, these are

E4ð11 ; xÞ E4ð−11 ; xÞ and E4ð−21 ; xÞ: ð4:25Þ

The first of these eMPLs is already manifestly logarithmi-
cally divergent at x ¼ 1, because E4ð11 ; xÞ ¼ logð1 − xÞ.
The remaining two, however, do not have the divergent
logarithms manifest. In order to be able to explicitly cancel
the divergent logarithms and to obtain a manifestly finite
result, we need to extract the divergence from the remaining

two eMPLs. The strategy for that is very simple: we start
from the integral representation and subtract the pole at
x ¼ 1. Let us illustrate this procedure onE4ð−11 ; xÞ.We have,

E4ð−11 ; xÞ ¼
Z

x

0

dx0
y1

ðx − 1Þyx0
: ð4:26Þ

The integrand has a pole at x ¼ 1 with unit residue. We
subtract the pole, and then add it back,

E4ð−11 ; xÞ ¼ E4ð11 ; xÞ þ
Z

x

0

dx0
�

y1
ðx − 1Þyx0

−
1

x − 1

�
:

ð4:27Þ

The singularity is now manifest in the E4ð11 ; xÞ term, while
the remaining term is finite. We define

ε4ð−11 Þ≡
Z

1

0

dx0
�

y1
ðx − 1Þyx0

−
1

x − 1

�
; ð4:28Þ

such that

lim
x→1

�
E4ð−11 ; xÞ − E4ð11 ; xÞ

	
¼ ε4ð−11 Þ: ð4:29Þ

Similarly we can regulate E4ð−21 ; xÞ using
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E4ð−21 ; xÞ ¼ E4ð11 ; xÞZ4ð1Þ þ
Z

x

0

dx0
�
y1Z4ðxÞ
ðx − 1Þyx0

−
Z4ð1Þ
x − 1

�
;

ð4:30Þ

and we obtain a finite limit

lim
x→1

�
E4ð−21 ;xÞ−E4ð11;xÞZ4ð1Þ

�
¼ ε4ð−21 Þ: ð4:31Þ

Inserting the expressions for the regulated limits from
Eqs. (4.29) and (4.31) into the primitive in Eq. (4.22), we
see that the logarithmic divergences cancel. The final result
for the second master integral reads

S211ðS;m2Þjϵ0 ¼
1

C0

h
−c4E4ð−20 ; 1Þ − c4ε4ð−21 Þ þ 2c4E4ð−2∞ ; 1Þ − E4ð 1∞ ; 1Þ

þ C1
�
c4E4ð00 −10 ; 1Þ þ c4E4ð00 −11 ; 1Þ − 2c4E4ð00 −1∞ ; 1Þ þ E4ð00 00 ; 1Þ − c4E4ð10 00 ; 1Þ

�

þ
�
Z4ð1Þ − 2

y1
c4

��
c4E4ð−10 ; 1Þ þ c4ε4ð−11 Þ − 2c4E4ð−1∞ ; 1Þ þ E4ð00 ; 1Þ

�i
: ð4:32Þ

While we only present the explicit result for the leading
order in the ϵ expansion, it is easy to repeat the steps
outlined in this section to obtain analytic results at every
order in ϵ in terms of eMPLs and Z4.

V. A LIGHTNING SUMMARY OF ELLIPTIC
POLYLOGARITHMS

In the previous sections, we have shown that all the
members of the sunrise topology can be expressed in terms
of the eMPLs defined in Eqs. (3.13), (3.15) and (3.16). We
discuss how to extend these results to members of the
sunrise topology depending on three different masses in the
next section. The goal of this section is to present a concise
summary of the main concepts introduced in previous
sections, and to shortly discuss some further properties of
eMPLs. For a more detailed discussion of these functions
and their properties, we refer to Ref. [40].

A. Elliptic curves and their invariants

Our main objects of interest are integrals whose inte-
grands depend on a rational function of the integration
variable x as well as of the square root y of a quartic
polynomial in x,

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − a1Þðx − a2Þðx − a3Þðx − a4Þ

p
: ð5:1Þ

The variables x and y define an elliptic curve, and so we
actually look at integrals on an elliptic curve. The quantity
a⃗ ¼ ða1; a2; a3; a4Þ is called the root vector of the elliptic
curve. There are certain ‘invariants’ attached to an elliptic
curve, the periods ωi and the quasiperiods ηi, cf. Eqs. (4.13)
and (4.15). The periods and quasiperiods are functions only
of the root vector, and can be expressed in terms of the
elliptic integrals of the first and second kind K and E,
cf. Eqs. (3.9) and (4.16). Note that a cubic polynomial also
defines an elliptic curve. We do not discuss the case of a
cubic polynomial in this paper, but we refer to [40].

B. IBP identities

An integral on an elliptic curve can be reduced via IBP
identities to a set of basis/master integrals. The relevant IBP
identities are collected in Appendix A. The kernels corre-
sponding to the master integrals read

ψ0ð0; xÞ ¼
c4
y
;

ψ1ðc;xÞ ¼
1

x− c
; ψ−1ðc;xÞ ¼

yc
yðx− cÞ ;

ψ1ð∞; xÞ ¼ c4
y
Z4ðxÞ; ψ−1ð∞; xÞ ¼ x

y
;

ψ−nð∞; xÞ ¼ x
y
Zðn−1Þ
4 ðxÞ− δn2

c4
;

ψnðc;xÞ ¼
1

x− c
Zðn−1Þ
4 ðxÞ− δn2

�
Φ̃4ðxÞþ 4c4

η1
ω1

1

y

	
;

ψnð∞; xÞ ¼ c4
y
ZðnÞ
4 ðxÞ; ψ−nðc;xÞ ¼

yc
yðx− cÞZ

ðn−1Þ
4 ðxÞ:

ð5:2Þ

The quantities Z4 and Φ̃4 are defined in Eqs. (4.12) and
(4.9). The integration kernels are chosen such that they
have at most simple poles, and so their integrated versions

have at most logarithmic singularities. The quantities ZðnÞ
4

are polynomials in Z4 of the form

ZðnÞ
4 ðxÞ ¼ ð−1Þn

2nn!
Z4ðxÞn þ � � � ; ð5:3Þ

with Zð1Þ
4 ðxÞ ¼ Z4ðxÞ, and the dots indicate terms that

involve fewer powers of Z4, such that they cancel the pole
of order n at x ¼ ∞ of Z4ðxÞn. In the context of the sunrise
integrals, only the case n ¼ 1 is relevant. We do therefore
not discuss the case n > 1 here, but we refer to the literature
for a detailed discussion [40].
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C. Elliptic polylogarithms

Integrating multiple times over the elliptic integration
kernels in Eq. (5.2), leads to multiple elliptic polylogar-
ithms (eMPLs)

E4ðn1…nk
c1…ck

;xÞ¼
Z

x

0

dtψn1ðc1; tÞE4ðn2…nk
c2…ck

; tÞ; ð5:4Þ

where ni ∈ Z, ci ∈ C ∪ f∞g and the recursion starts with
E4ð; xÞ ¼ 1. k is called the length and n1 þ � � � þ nk is the
weight. Since the kernels have at most simple poles, eMPLs
have at most logarithmic singularities.

D. Shuffle algebra

eMPLs form a shuffle algebra graded by the length. In
other words, a product of two eMPLs can be recast in the
form of a linear combination of eMPLs,

E4ðd⃗1; xÞE4ðd⃗2; xÞ
X

d⃗∈d⃗1⧢d⃗2

E4ðd⃗; xÞ; ð5:5Þ

with d⃗1 ¼ ðn1…nk
c1…ck

Þ and similarly for d⃗2, and the sum runs

over all shuffles of d⃗1 and d⃗2, i.e., all possible permutations
of d⃗1 ∪ d⃗2 that preserve the relative orderings within d⃗1
and d⃗2.

E. Completeness and independence
of the integration kernels

The integration kernels in Eq. (5.2) define a complete
and independent set. In particular, eMPLs are linearly
independent (for generic values of x). The set of kernels
is infinite, which is a feature of the elliptic curve. In general,
for every c ∈ C ∪ f∞g with c ≠ ai, there are two infinite
towers of integration kernels ψ�nðc; xÞ, n ≥ 1. If c ¼ ai,
then we can always reduce the tower with negative index
via IBP identities [cf. Sec. IVA for an illustration of this
reduction in the case of ψ−1ðai; xÞ, in particular Eq. (4.19)].
For the solution of a particular integral, however, only a
finite number of kernels is required. Finally, every integral
involving eMPLs and rational functions involving x and y
can be performed in terms of the same class of functions.
For an explicit algorithm how to perform such integrals, we
refer to Appendix A and Ref. [40].

F. Relationship to ordinary MPLs
and elliptic integrals

eMPLs contain various classes of special functions that
are well-known in the mathematics and physics literature.
In particular, Eq. (3.16) implies that ordinary MPLs are a
special case of eMPLs,

E4ð 1…1
c1…ck

; xÞ ¼ Gðc1;…; ck; xÞ; ci ≠ ∞: ð5:6Þ
In addition, the incomplete elliptic integrals of the first,
second and third kinds are special cases of eMPLs. For

example, if the root vector is a⃗ ¼ ð−1=w;−1; 1; 1=wÞ,
0 < w < 1, we have

Fðxjw2Þ ¼
Z

x

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− t2Þð1−w2t2Þ

p ¼ 2

1þw
E4ð00 ;xÞ;

Eðxjw2Þ ¼
Z

x

0

dt
1−w2t2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1− t2Þð1−w2t2Þ
p

¼
�
2ð1þwÞ η1

ω1

þ 5−w2

3ð1þwÞ
�
E4ð00 ;xÞ

−
1

2
ð1þwÞðZ4ðxÞ−Z4ð0ÞÞ;

Πðn2; xjw2Þ ¼
Z

x

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− t2Þð1−w2t2Þ

p 1

1−n2t2

¼ 1

2nw

�E4ð −1
−1=n ;xÞ
y−1=n

−
E4ð−11=n ;xÞ

y1=n

	
: ð5:7Þ

G. Relationship to the eMPLs by Brown & Levin

Finally, our eMPLs are closely related to multiple elliptic
polylogarithms that appear in pure mathematics and string
theory [36,37,43]. In particular, in Ref. [40], we show that
everyE4 function can bewritten as a linear combination of the
elliptic polylogarithms of Refs. [36,37,43], and vice-versa
(Up to a technical distinctionwhich is irrelevant in the context
of this paper; see Ref. [40] for details). In other words, the
functions defined in Eq. (3.13) are simply an alternative basis
for the eMPLs in Refs. [36,37,43]. As such, our functions
deserve indeed to be called elliptic polylogarithms.

VI. SEVERAL APPLICATIONS

In this section, we present additional applications of our
elliptic polylogarithms to integrals from the sunrise top-
ology. While in previous sections we have focused on the
equal-mass case, from now on we consider the generic case
with three different nonzero masses. Using IBP identities,
one finds four master integrals with three propagators for
the sunrise topology, which we may choose as

S111; S211; S121 and S112: ð6:1Þ
The three master integrals with an additional power on
one of the propagators are obviously related by a simple
permutation of the masses mi. It will therefore be sufficient
to discuss the integrals S111 and S211, and the remaining
integrals can be obtained by symmetry. For this reason, we
will again refer to S111 and S211 as the first and second
master integrals of the sunrise topology.
Analytic results for the first master integral S111 with three

different masses can be found in Refs. [26,27], while one of
the main results of this paper is to present an analytic
expression for S211 with different masses for the first time.
In order to calculate this result, we take an approach that
is complementary to the Feynman parameters used in the
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equal-mass case: we compute analytic expressions for
S111 and S211 from dispersion relations. In this way, we
demonstrate the flexibility of our language of elliptic poly-
logarithms, and at the same time we obtain more compact
representations for the sunrise integrals in the case of three
different masses [44].
To compute the sunrise integrals in the dispersive

approach, we begin by first computing the imaginary part
of the master integrals. The imaginary part can be computed
using the optical theorem by replacing all propagators of the
sunrise diagram by on-shell δ functions, and we discuss in
detail the computation of the maximal cut of S111 in terms of
eMPLs. Once the imaginary part is obtained, we can recover
themaster integrals S111 and S211 by performing a dispersion
integral.

A. The maximal cut of the first master integral

In this section, we discuss the computation of the
maximal cut of S111. In Ref. [29], it was shown that the
imaginary part of S111 can be written as follows

Im S111ðs;m2
1;m

2
2;m

2
3Þ

¼ Sϵ

Z ð ffiffi
s

p
−m1Þ2

ðm2þm3Þ2
dx

ðR2ðx;m2
2
;m2

3
ÞR2ðs;x;m2

1
Þ

sx Þðd−2Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðx;m2

2;m
2
3ÞR2ðs; x;m2

1Þ
p ; ð6:2Þ

with s ¼ −S ¼ p2 and where we defined

Sϵ ¼
2dπ3=2

Γð3 − d
2
ÞΓðd−1

2
Þ with lim

d→2
Sϵ → 4π; ð6:3Þ

and the Källen function is

R2ðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz: ð6:4Þ
Since the Källen function is a polynomial of degree two, we
can immediately recognize the square root of a quartic

polynomial in the denominator of Eq. (6.2). The quartic
polynomial is given by

y2 ≡ R2ðx;m2
2; m

2
3ÞR2ðs; x; m2

1Þ
¼ ðx − b1Þðx − b2Þðx − b3Þðx − b4Þ; ð6:5Þ

where the roots are given by

b1 ¼ ðm2 −m3Þ2; b2 ¼ ðm2 þm3Þ2;
b3 ¼ ðm1 −

ffiffiffi
s

p Þ2 and b4 ¼ ðm1 þ
ffiffiffi
s

p Þ2: ð6:6Þ
For s > ðm1 þm2 þm3Þ2, the roots are real and ordered as
b1 < b2 < b3 < b4, which we assume in the following. We
also assume that the three masses mi are distinct and
nonvanishing, so that no two roots coincide.
We can now rewrite Eq. (6.2) manifestly as integral on an

elliptic curve,

ImS111ðs;m2
1;m

2
2;m

2
3Þ

¼Sϵ

Z
b3

b2

dx
y

�
R2ðx;m2

2;m
2
3ÞR2ðs;x;m2

1Þ
sx

	ðd−2Þ=2

¼SϵðCð0Þ
111ðs;m2

1;m
2
2;m

2
3ÞþϵCð1Þ

111ðs;m2
1;m

2
2;m

2
3ÞþOðϵ2ÞÞ:

ð6:7Þ
The leading term in ϵ is given by

Cð0Þ
111ðs;m2

1; m
2
2; m

2
3Þ ¼

Z
b3

b2

dx
y

¼
Z

b3

b2

dx
ψ0ð0; xÞ

c4

¼ 1

c4

�
E4ð00 ; b3Þ − E4ð00 ; b2Þ

�
; ð6:8Þ

where in the second step we have recognized the integra-

tion kernel ψ0ð0; xÞ. The coefficient Cð1Þ
111 can be repre-

sented by the integral

Cð1Þ
111ðs;m2

1;m
2
2;m

2
3Þ¼

Z
b3

b2

dx
y
½logðR2ðx;m2

2;m
2
3ÞR2ðs;x;m2

1ÞÞ− logs− logx�

¼
Z

b3

b2

dx
y

�
−logs− logxþ logðb1b2b3b4Þþ

X4
i¼1

log

�
1−

x
bi

	�

¼ 1

c4

Z
b3

b2

dxψ0ð0;xÞ
�
E4ð 1b1 ;xÞþE4ð 1b2 ;xÞþE4ð 1b3 ;xÞþE4ð 1b4 ;xÞ−E4ð10;xÞþ

1

c4
log

�
b1b2b3b4

s

	�
; ð6:9Þ

where in the last step we have used the fact that ordinary MPLs are a subset of eMPLs, cf. Eq. (5.6). The remaining integral
can now be performed by using the recursive definition of eMPLs in Eq. (3.13), with the result

Cð1Þ
111ðs;m2

1; m
2
2; m

2
3Þ ¼

1

c4

�
E4ð00 1

b1
; b3Þ − E4ð00 1

b1
; b2Þ þ E4ð00 1

b2
; b3Þ − E4ð00 1

b2
; b2Þ þ E4ð00 1

b3
; b3Þ

− E4ð00 1
b3
; b2Þ þ E4ð00 1

b4
; b3Þ − E4ð00 1

b4
; b2Þ

	
þ log

�
b1b2b3b4

s

	�
E4ð00 ; b3Þ − E4ð00 ; b2Þ

	
: ð6:10Þ
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Let us conclude this section by commenting on how the
results of this section generalize to higher orders in ϵ. From
Eq. (6.7), we see that the integrand at any order contains
products of logarithms only. Using the shuffle algebra
properties of MPLs and eMPLs, and the fact that ordinary
MPLs are a subset of eMPLs, we can see that the integrand
can always be written in terms of E4 functions. The
resulting integrals can then always easily be performed
in terms of eMPLs, proving that the maximal cut of the
sunrise integral can be expressed in terms of eMPLs to all
orders in dimensional regularization.

B. The first master integral from
a dispersion relation

In this section, we present the computation of the master
integrals S111 and S211 using a dispersive approach. As we
will see, this allows us to obtain a very compact repre-
sentation for all master integrals, even in the unequal
mass case.
Let us go back to the formula for the imaginary part of

the two-loop massive sunrise with different masses and for
general values of the dimensions d, Eq. (6.2). We can
reconstruct the full sunrise integral through a dispersion
relation as follows

S111ðs;m2
1; m

2
2; m

2
3Þ

¼ 1

π

Z
∞

m2
123

du
u − s

ImS111ðu;m2
1; m

2
2; m

2
3Þ

¼ Sϵ
π

Z
∞

m2
123

du
u − s

Z ð ffiffi
s

p
−m1Þ2

ðm2þm3Þ2
dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2ðt; m2
2; m

2
3ÞR2ðu; t; m2

1Þ
p

×

�
R2ðt; m2

2; m
2
3ÞR2ðu; t; m2

1Þ
ut

	ðd−2Þ=2
ð6:11Þ

where Sϵ was defined in Eq. (6.3), m2
123¼ðm1þm2þm3Þ2

and we omitted the small imaginary part associated to s,
s → sþ i0þ. As a first step, we exchange the integrals and
write

S111ðs;m2
1;m

2
2;m

2
3Þ

¼ Sϵ
π

Z
∞

ðm2þm3Þ2
dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2ðt;m2
2;m

2
3Þ

p
�
R2ðt;m2

2;m
2
3Þ

t

	ðd−2Þ=2

×
Z

∞

ð ffiffi
t

p þm1Þ2
du
u− s

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðu; t;m2

1Þ
p

�
R2ðu; t;m2

1Þ
u

	ðd−2Þ=2
:

ð6:12Þ

Upon inspecting Eq. (6.12), since the integral over u
contains only one quadratic square root, it is obvious that
this integral can easily be performed in terms of multiple
polylogarithms at every order in ϵ. The result can then be
integrated over t in terms of our E4 functions. For
simplicity, we limit ourselves to the leading order in ϵ,
though we stress that there is no conceptual obstacle to

extend the result to higher orders. Furthermore, we assume
without loss of generality that the masses are ordered
according tom3 < m2 < m1, and we work below threshold
to deal with real quantities only, i.e., 0 < s < m2

123. We find

S111ðs;m2
1; m

2
2; m

2
3Þ

¼ 4

Z
∞

ðm2þm3Þ2
dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2ðt; m2
2; m

2
3Þ

p
×
Z

∞

ð ffiffi
t

p þm1Þ2
du

u − s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2ðu; t; m2
1Þ

p : ð6:13Þ

We can now perform explicitly the integral over u and we
find

S111ðs;m2
1;m

2
2;m

2
3Þ¼2

Z
∞

ðm2þm3Þ2
dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2ðt;m2
2;m

2
3ÞR2ðs;t;m2

1Þ
p

×ln

�
tþm2

1−sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðs;t;m2

1Þ
p

tþm2
1−s−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðs;t;m2

1Þ
p

	
:

ð6:14Þ

Finally, we change of variables according to

t ¼ b3 þ
ðb4 − b3Þ

4

ð1þ xÞ2
x

; ð6:15Þ

where the four roots b1, b2, b3, b4 are defined in Eq. (6.6),
and we are left with

S111ðs;m2
1;m

2
2;m

2
3Þ

¼ 2ffiffiffi
s

p
m1

Z
Q2

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx−Q1Þðx− 1=Q1Þðx−Q2Þðx− 1=Q2Þ
p

× ln

�
qþ x

xð1þ xqÞ
	
; ð6:16Þ

where we defined

q ¼
ffiffiffi
s

p
m1

; Q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 − a3

p − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 − a4

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 − a3

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 − a4

p ;

Q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − a3

p − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − a4

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − a3

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − a4

p : ð6:17Þ

It is now entirely straightforward to integrate Eq. (6.16) in
terms of our E4 functions. We recast the logarithms in the
form of eMPLs functions, and we obtain

ln

�
qþ x

xð1þ xqÞ
	

¼ ln qþ ln ð1þ x=qÞ − ln x − ln ð1þ xqÞ

¼ ln qþ E4ð 1
−q ; xÞ − E4ð10 ; xÞ

− E4ð 1
−1=q ; xÞ; ð6:18Þ
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which immediately yields

S111ðs;m2
1; m

2
2; m

2
3Þ ¼

4
ffiffiffi
2

p
ffiffiffiffiffiffi
P0

p Fð1Þ
1 ðs;m2

1; m
2
2; m

2
3Þ ð6:19Þ

with the definitions

P0 ¼ 2m2
1m

2
2 þ 2m2

1m
2
3 þ 2m2

2m
2
3 þ 2ðm2

1 þm2
2 þm2

3Þs
− ðm4

1 þm4
2 þm4

3Þ − s2

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 − a3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 − a4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − a3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − a4

p
; ð6:20Þ

and

Fð1Þ
1 ðs;m2

1;m
2
2;m

2
3Þ¼E4ð0010;Q2ÞþE4ð00 1

−1=q ;Q2Þ
−E4ð00 1

−q;Q2Þ− lnqE4ð00;Q2Þ: ð6:21Þ

C. The second master integral
from a dispersion relation

In this section, we extend the results of the previous
section to the second master integral of the sunrise integrals
with different masses. Without loss of generality, we
discuss S121, and the other cases are obtained by symmetry.
In addition, the second master integral is related to the first
master integral by differentiation,

S121ðs;m2
1; m

2
2; m

2
3Þ ¼

∂
∂m2

2

S111ðs;m2
1; m

2
2; m

2
3Þ: ð6:22Þ

Hence, we can obtain an integral representation of S121
by simply differentiating with respect to the mass in the
dispersive representation of S111 in Eq. (6.16). However,
upon differentiating under the integral sign, we generate a
potential end-point singularity in the upper integration limit
x → Q2, which we need to regularize. We write

S121ðs;m2
1; m

2
2; m

2
3Þ ¼

∂
∂m2

2

S111ðs;m2
1; m

2
2; m

2
3Þ

¼ 2ffiffiffi
s

p
m1

Z
Q2−δ

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx −Q1Þðx − 1=Q1Þðx −Q2Þðx − 1=Q2Þ
p ln

�
qþ x

xð1þ xqÞ
	

×
xðm1

ffiffiffi
s

p þ ðm2
1 −m2

2 þm2
3 þ sÞxþm1

ffiffiffi
s

p
x2Þ

m2
1sðx −Q1Þðx − 1=Q1Þðx −Q2Þðx − 1=Q2Þ

þ 2ffiffiffi
s

p
m1

1ffiffiffiffiffiffi
−δ

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðQ2 −Q1ÞðQ2 − 1=Q1ÞðQ2 − 1=Q2Þ
p ln

�
qþQ2

Q2ð1þQ2qÞ
	
; ð6:23Þ

where we introduced a small regularization parameter δ. If we perform partial fractioning in x and use the expression of the
logarithms in terms of E4 functions, we immediately see that we are left with the following types of integrals to doZ

Q2−δ

0

dx
y

1

x −Q
E4ðnc ; xÞ; Q ∈ f1=Q1; Q1; Q2; 1=Q2g; ð6:24Þ

for different values of ðn; cÞ. The integrals above can be performed in a straightforward way in terms of E4 functions using
the techniques introduced in previous sections. In the final result, all poles in δ cancel, and we can safely take the limit
δ → 0. We find that S121ðs;m2

1; m
2
2; m

2
3Þ can be written in a very compact form as follows

S121ðs;m2
1; m

2
2; m

2
3Þ ¼

1

D
ffiffiffiffiffiffiffiffi
2P0

p
�
Fð−1Þ
2 ðs;m2

1; m
2
2; m

2
3Þ −

4

3
P3F

ð1Þ
1 ðs;m2

1; m
2
2; m

2
3Þ
�

þ
ffiffiffiffiffiffiffiffi
2P0

p
D

�
Fð1Þ
2 ðs;m2

1; m
2
2; m

2
3Þ − 2

η1
ω1

P1Sðs;m2
1; m

2
2; m

2
3Þ
�
þ 1

D
Fð0Þ
2 ðs;m2

1; m
2
2; m

2
3Þ ð6:25Þ

where we introduced the further abbreviations

μ1 ¼ −m1 þm2 þm3; μ2 ¼ m1 −m2 þm3; μ3 ¼ m1 þm2 −m3;

D ¼ m2
2ðs −m2

123Þðs − μ21Þðs − μ22Þðs − μ23Þ; ð6:26Þ
and

Fð−1Þ
2 ðs;m2

1; m
2
2; m

2
3Þ ¼ −

4

3
P2E4ð00 ;Q2Þ ð6:27Þ
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Fð0Þ
2 ðs;m2

1; m
2
2; m

2
3Þ ¼ −P4E4ð−1∞ ;Q2Þ þ P5E4ð −1

−1=q ;Q2Þ − P6E4ð−1−q ;Q2Þ þ P7E4ð−10 ;Q2Þ − ln
q
Q2

ð6:28Þ

Fð1Þ
2 ðs;m2

1; m
2
2; m

2
3Þ ¼ P1

�
−
1

2
E4ð20 ;Q2Þ − 1

2
E4ð 2

−1=q ;Q2Þ þ 1
2
E4ð 2
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E4ð00 ;Q2Þ

−
iπ
ω1

ln

� ðqþQ2Þ
Q2ð1þ qQ2Þ

	
þ 1

2
ln

�
q
Q2

	
Zð1Þ
4 ð0Þ

�
ð6:29Þ

The polynomials Pi appearing in the previous expressions are given by

P1 ¼ m4
1 þ 2m2

1m
2
2 − 2m2

1m
2
3 − 3m4

2 þ 2m2
2m

2
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2
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3Þ;
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Finally, we have checked all our results, both from
the Feynman Parameters representation and from the
dispersion relation numerically against SecDec 3 [45]
and pySecDec [46] and found perfect agreement for
different values of the kinematical invariants.

VII. CONCLUSION

In this paper, we have presented an algorithm for
computing Feynman integrals which involve square roots
of quartic polynomials in terms of iterated integrals on the
corresponding elliptic curves. We showed how these
iterated integrals can be reduced to a basis of elliptic
integral kernels using integration-by-parts identities.
Since our kernels have only simple poles, they define
a class of functions on the elliptic curve which deserve to
be called elliptic multiple polylogarithms. The mathemati-
cal details behind the construction of these functions are
spelled out in a companion paper [40]. Here, instead, we

have focussed on demonstrating their use to solve an
important problem in high energy physics which has
received a lot of attention in the last decade, namely the
computation of the master integrals of the massive two-
loop sunrise graph. To demonstrate the flexibility of our
approach, we studied the complete set of master integrals
of the two-loop sunrise graph in the equal and different
mass case, both by direct integration over the Feynman
parameters and using a dispersion relation. To the best
of our knowledge, this is the first time that the complete
set of master integrals of the unequal mass two-loop
sunrise graph are computed explicitly in terms of elliptic
polylogarithms.
Let us make a comment how some of the results of this

paper are connected to other results in the literature. Very
recently, a paper came out [12], which has addressed the
calculation of similar integrals to the ones considered here
in terms of ad-hoc elliptic generalizations of Goncharov
polylogarithms. In contrast to Ref. [12], we believe that our
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approach is more general as it is based on a mathematically
well-defined class of functions, closed under taking prim-
itives, which can be proved to be substantially equivalent to
the multiple elliptic polylogarithms defined in the math-
ematical literature [34–36]. We recall here that a central
result of Ref. [36] consisted in proving that this class of
functions is sufficient to integrate any rational function on a
given elliptic curve.
The mathematical details of the construction of our set of

functions, together with the proof of their equivalence to
the functions defined in Ref. [36], are provided in a
companion paper, Ref. [40], where also many other non-
trivial examples are worked out in detail. Given the
generality of our approach, we expect that our definition
of elliptic polylogarithms will be applicable to a wide range
of problems: from phenomenological calculations of mas-
sive Feynman integrals in the Standard Model, to calcu-
lations of amplitudes inN ¼ 4 super Yang-Mills and string
theory. In particular, it will be interesting to examine the
recent representation [17] of the famous ten-point double
box in N ¼ 4 to see if it can be integrated in terms of our
functions.
As a last remark, one very important aspect that we

plan to study in the near future is the use of our functions in
the context of the differential equations method [47–50],
which has proven to be extremely powerful to compute
complicated multiloop Feynman integrals in terms of
multiple polylogarithms. In general, we expect the differ-
ential equations with respect to the kinematic invariants to
translate in our formalism into derivatives of our functions
with respect to the branch points that define the elliptic
curve. A first example of this has been worked out for a
special subclass of these functions appearing in the com-
putation of the imaginary part of the equal mass two-loop
sunrise graph in Ref. [31]. A proper understanding of these
derivatives in the general case will be essential not only to
extend the use of our functions to more complicated
problems, but also to properly define a symbol calculus
for elliptic polylogarithms in a similar way as it was done
for Goncharov polylogarithms [6,7].
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APPENDIX A: INTEGRATION-BY-PARTS
IDENTITIES FOR eMPLs

In this appendix, we will discuss the IBP identities
allowing to express a general integral on the elliptic curve
in terms of integrals over the integration kernels provided in
Eq. (5.2). The most general integral on the elliptic curve has
an integrand of the form

Iðx; yÞ ¼ Rðx; yÞXðxÞ; ðA1Þ

where Rðx; yÞ is a rational function, and XðxÞ ¼
Z4ðxÞαE4ðn⃗c⃗ ; xÞ with α a positive integer. The integer
αþ jn⃗j is called the total length of X .
The strategy is as follows: in a first step we can perform

partial fractioning in x to write the rational function Rðx; yÞ
in terms of members of four families of integrals. While
those families are independent with respect to partial
fractioning, their members are related through IBP iden-
tities. Correspondingly, in a second step, a set of master
integrals must be identified within each family.
The four families suitable for the integrand in Eq. (A1)

read

Ak½X � ¼
Z

dx xkXðxÞ; Bc;k½X � ¼
Z

dx
ðx − cÞk XðxÞ;

Ck½X � ¼
Z

dx
y
xkXðxÞ; Dc;k½X � ¼

Z
dx

yðx − cÞk XðxÞ;

ðA2Þ
where k is an integer.
The identification of the set of master integrals is done by

recognizing identities recursive in the variable k whose
recursion terminates for a certain value of the recursion
parameter. Let us show this on the example of the family
Ak½X �: they satisfy the following relation

Ak½X � ¼ xkþ1

kþ 1
XðxÞ − 1

kþ 1
Akþ1½∂xX �: ðA3Þ

Each time this relation is used, the value of k is increased,
while the total length l of the integrand X in the second
term is lowered through the derivative. Reaching l ¼ 0, the
integral is elementary. However, before getting there the
recursion could reach the value k ¼ −1: this integral cannot
be reduced further and is thus the master integral for the
family Ak½X �.
For the other families, similar but algebraically more

involved recursion relations exist. Here we only summarize
some of the features of these recursions, and we refer to
Ref. [40] for a detailed treatment. First, the recursion for the
C-family has depth four, leading to more than one master
integral. Second, one will have to pay attention to the case
where a shift c in the integration kernels of family D is a
zero of the quartic polynomial. Finally, one can identify the
following set of master integrals:
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A−1½X � ¼
Z

dx
x
XðxÞ; Bc;1½X � ¼

Z
dx

x − c
XðxÞ;

C−1½X � ¼
Z

dx
yx

XðxÞ; C0½X � ¼
Z

dx
y
XðxÞ;

C1½X � ¼
Z

xdx
y

XðxÞ; C2½X � ¼
Z

x2dx
y

XðxÞ;

Dc;1½X � ¼
Z

dx
yðx − cÞXðxÞ: ðA4Þ

These integrals are in one-to-one-correspondence with the
integration kernels defined in Eq. (5.2): the associated
integrals can then be easily done employing Eq. (3.13).
Finally, we mention that there is one potentially prob-

lematic case:C2½Z4ðxÞnE4�. This integral requires the use of

special identities to rewrite powers of the function Z4.
Higher powers of Z4 are, however, not important for the
examples discussed in this paper. We therefore refer the
reader to Ref. [40] for a detailed discussion of this case.

APPENDIX B: INTEGRALS APPEARING
IN THE SECOND MASTER

Here we list the integrals contributing to the primitive of
I2 defined in Eq. (4.4). These integrals are all of the type of
Eq. (4.6), where XðxÞ is one of the eMPLs appearing in
Eq. (3.19). Without loss of generality, we list here the
integrals for ai ¼ a1, while they will appear summed over
all four roots ai in the primitive of I2.

Z
dxa12a13a14
yðx−a1Þ

E4ð−10 ;xÞ¼ 2c4Z4ðxÞE4ð−10 ;xÞþA0E4ð00−10 ;xÞþA1E4ð00 ;xÞ− ða1− s̄1ÞE4ð−1∞ ;xÞ

−2c4
�
E4ð−20 ;xÞ−E4ð20 ;xÞ

�
−2

�
y

x−a1
−
s̄3
y0

	
E4ð−10 ;xÞ−2

�
y0
a1

−
s̄3
y0

	
E4ð10 ;xÞþ

2y0
a1

E4ð 1a1 ;xÞ;

ðB1Þ
Z

dx a12a13a14
yðx − a1Þ

E4ð−11 ; xÞ ¼ 2c4Z4ðxÞE4ð−11 ; xÞ þA0E4ð00 −11 ; xÞ − 2c4E4ð−21 ; xÞ − 2
y

x − a1
E4ð−11 ; xÞ

− 2
y1

1 − a1

�
E4ð 1a1 ; xÞ − E4ð11 ; xÞ

�
; ðB2Þ

Z
dxa12a13a14
yðx−a1Þ

E4ð−1∞ ;xÞ¼ 2c4Z4ðxÞE4ð−1∞ ;xÞþA0E4ð00−1∞ ;xÞ−2c4E4ð−2∞ ;xÞ−2
y

x−a1
E4ð−1∞ ;xÞþ2a1E4ð 1a1 ;xÞ; ðB3Þ

Z
dx a12a13a14
yðx − a1Þ

E4ð10 ; xÞ ¼ 2c4½Z4ðxÞ − Z4ð0Þ�E4ð10 ; xÞ þA0E4ð00 10 ; xÞ −A1E4ð00 ; xÞ − 2
s̄3
y0

E4ð−10 ; xÞ

− 2c4E4ð20 ; xÞ þ ða1 − s̄1ÞE4ð−1∞ ; xÞ − 2

�
y

x − a1
þ s̄3
y0

�
E4ð10 ; xÞ: ðB4Þ

Here, we have defined the following abbreviations:

A0 ¼ −
3a21 − 2a1s̄1 þ s̄2

3c4
− 8c24

η1
ω1

and A1 ¼
a1s̄1 − 5s̄2

3c4
þ 8c4η1

ω1

: ðB5Þ
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