
INSPECTOR, A ZERO CODE IDE FOR CONTROL SYSTEMS USER
INTERFACE DEVELOPMENT

 V. Costa, B. Lefort
CERN, European Organization for Nuclear Research, Geneva, Switzerland

Abstract
Developing operational User Interfaces (UI) can be

challenging, especially during machine upgrade or
commissioning where many changes can suddenly be
required. An agile Integrated Development Environment
(IDE) with enhanced refactoring capabilities can ease the
development process.

Inspector is an intuitive UI oriented IDE allowing for
development of control interfaces and data processing. It
features a state of the art visual interface composer fitted
with an ample set of graphical components offering rich
customization. It also integrates a scripting environment
for soft real time data processing and UI scripting for
complex interfaces.

Furthermore, Inspector supports many data sources.
Alongside the short application development time, it
means Inspector can be used in early stages of device
engineering or it can be used on top of a full control system
stack to create elaborate high level control UIs.

Inspector is now a mission critical tool at CERN
providing agile features for creating and maintaining
control system interfaces. It is intensively used by experts,
machine operators and performs seamlessly from small test
benches to complex instruments such as LHC or LINAC4.

INTRODUCTION
In a constantly evolving research environment, changes

in software may be indispensable for the control of new
machines. Software can become outdated with the
introduction of new technologies or advancements that
facilitate usage and provide improved features.

Complex systems in accelerators require intricate
software that requires proper maintenance and updates.
Furthermore, software in accelerators are mostly
developed in the scope of a Team or Department for a
specific apparatus using local knowhow. Developing this
kind of software may require users to participate in the
software development in conjunction with the developers.
Users may lack the availability or skills to profoundly help
the development of software, potentially leading to poorly
developed applications or applications that do not fulfil the
needs of stakeholders.

Therefore, and with the increasing number of unique
software applications, the combined time and cost of
maintaining and developing software is becoming too high.
UI software requires large amounts of graphical user
interface (GUI) related code, increasing the development
cost and restricting the skills necessary to create adequate
user control interfaces.

Inspector proposes a separation between the UI and the
software technology, essentially allowing the creation of

zero code applications in order to diminish the cost of
developing and maintaining such applications.

ZERO CODE CONCEPT
Following the What You See Is What You Get

(WYSIWYG) approach, Inspector introduces a visual IDE
for the development of UI control applications. It applies
the concept of abstracting the application from the
underlying technology. It requires no code in the creation
of applications. This approach means that Inspector allows
the creation of UI control applications simply by using
visual tools. As such, users can perform changes to
Inspector-created applications or even create full
applications without the involvement of developers and
without coding skills.

Figure 1: Integration between interface and system.

The creation of Inspector applications allows users to
concentrate their efforts on the data presentation, rather
than on implementation details. Inspector takes
responsibility of making the applications portable, within
the production environment. It also provides graphical
tools for the creation of the user interfaces, along with
accurate UI elements to present many types of data. As
illustrated in Fig. 1, Inspector acts as an abstraction layer
between the visual interfaces of control applications and
the rest of the system, including any frameworks used.

Applications created with Inspector are independent of
the base technology, meaning that any maintenance in
regards to technology or frameworks is not handled by the
user/developer but solely by Inspector. Any changes must

Java

Host system

Inspector

Value

Value

Interlock

On Off

Visual Interface

Visual Editor

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA184

User Interfaces and User eXperience (UX)
TUPHA184

861

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

enforce backwards compatibility to avoid breaking
changes for existing applications.

INSPECTOR ARCHITECTURE AND
IMPLEMENTATION

Inspector is a multi-tiered application developed in Java.
Its architecture comprises a visual IDE client application
and a multi-server backend. The architecture and
implementation are portable and flexible to support the
execution of the application in many different host systems
in the CERN environment, which includes Virtual PCs,
control machines and user workstations, with several
operating systems. Due to unpredictable client application
usage, the server architecture needs to be efficient,
supporting many data and connections while being scalable
for the dynamic loads presented by clients.

Visual Application Environment
The Inspector visual editor is a Java application. It uses

the Swing graphical toolkit [1] for the graphical core with
numerous custom GUI elements built on top of it. The
usage of the Java Virtual Machine (JVM) [2] ensures
portability within the CERN host systems environment,
where the application must execute on SLC6 [3], CentOS
and Windows operating systems. Any system dependent
code is delegated to servers, which execute in a controlled
environment.

The application architecture comprises several
interconnected modules, as shown in Fig. 2.

Figure 2: Inspector application architecture modules and
data exchange routes.

To provide extensible customization capabilities, the
Inspector application supports multiple windows, which
internally can have multiple tabs. Each tab contains one

control application that itself contains visual elements and
logic.

Visual elements, named Monitors, handle user
interaction and data display. These are custom GUI
elements that interact loosely with other application
systems, such as logic parts. In the case of data displays,
they have simple supporting logic, named Attached Logic
in Fig. 2. The attached logic perform simple data
manipulations, such as determining if a value is inside a
certain range or transforming values, e.g. converting a
timestamp value into a date string.

Logic that is more complex can be included in separate
modules executed within the application independently
from the visual elements.

Data exchange inside the application is done via a Data
Layer. Modules can access metadata and data in an abstract
manner using the data layer. The data layer contains
extensions that implement the data access and handle
communication. It also exposes other features such as
metadata discovery, simple data filtering along with data
reading (get), writing (set) and subscriptions.

Load Balancing Backend Design
The main data access for Inspector happens through the

backend servers. The backend design connects the
Inspector client application and the Data Access
frameworks and devices. It comprises a Proxy server, Data
servers, Synthetic Data servers and a Log server, as
illustrated in Fig. 4.

The Proxy server is the backend entry point. It contains
maps of all available data points (also named properties)
and knows all active servers. The proxy server knowing all
other servers performs load balancing. When a client
requests a new property subscription, the proxy will
delegate the subscription to the best available data server.
The determination of the best data server depends on the
number of active subscriptions on each data server, along
with the CPU and memory load factor.

The Data servers are responsible to create and manage
the properties and respective data access. They run on
independent processes, and possibly in different hosts, to
provide redundancy and scalability. The Data servers also
act as a centralized data access, since they serve as a bridge
between the client applications and the device access.

Figure 3: Centralized data access between many clients.

The centralized data access, illustrated in Fig. 3,
guarantees that for each unique property access there is
only one connection to the data source. Given this, the
connection effort and data transmission overhead are
moved from the data source into Inspector Data servers.

Inspector Application

Windows

TabTabs

Control Application

Visual
Elements

Real Time Logic

Shared Data Layer

Data Events

User interaction

Attached logic

Servers Data Source

Client

Applications

N connections
1 connection per
device/property

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA184

TUPHA184
862

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

This centralization reduces the load on the data sources
themselves when many clients are connected.

The server backend contains also a distinct type of Data
servers, named Synthetic Data servers. The Synthetic
server executes in a similar manner to the Data servers but
allows for data transformation. These servers have a
custom equation interpreter that performs simple data
transformation, changing the data before it reaches the
clients. The interpreter can combine multiple data or apply
mathematical functions; for example, it can run an FFT [4]
on a data set. These operations, which may require high
processing power, execute in the server reducing
computational load on user host machines. This server also
applies centralization, i.e. if many users are observing a
certain data transformation then only a single execution is
performed, instead of one per user.

Data logging is also possible in the Inspector Server
backend. The backend contains a specialized Log server
that logs data generated by Data and Synthetic servers. The
data is logged in circular buffers stored in raw files.
Furthermore, the Data and Synthetic servers also perform
automated logging. Every data point generated by the
system remains in a circular buffer up to 1000 single
values. Clients can access the logged data transparently
from Inspector visual elements, for example: for time
based single values, the Chart Monitor automatically gets
these last data points if available.

Figure 4: Inspector Server architecture.

Establishment of connections is done via the Proxy
server, illustrated in Fig. 4. After the discovery and
connection, communication between servers happens
directly. Semi asynchronous RMI [5] is the communication
method used to exchange data between all servers.

General Architecture Structure and Integration
in the Control System

Inspector client applications and servers integrate
through the Data layer extension in the client application
and the Proxy server in the backend structure, illustrated in
Fig. 5. The communication, just like between different
servers, uses RMI. The data exchange happens with direct
RMI communication and an observer pattern [6] for
property subscription. Invocations in RMI interfaces

during data publishing are strictly asynchronous to avoid
blocking if clients are slow to respond.

Figure 5: Integration of Inspector client application and
servers.

Communication from the client to devices (namely sets
or writes) happens directly from the client applications
with no server interaction. The Data layer, in the client
application, performs sets directly through JAPC [7], in the
case of the default data sources. Any other data layer
extension must implement a similar methodology. This
behaviour along with the combination of a Role Based
Access Control (RBAC) [8] ensures that only authorized
users perform property sets.

INSPECTOR AS AN APPLICATION
DEVELOPMENT TOOL

Inspector includes several features to simplify the
development of control applications.

Rich Visual Editor
Inspector’s visual editor application is a pure

WYSIWYG with a simple interface and interactions. The
interface, in Fig. 6, although based on Swing, is entirely
comprised of custom visual components that follow a
custom UI design scheme.

The editor includes a visual browser for data discovery
and a working set creator. Users can build working sets to
group and manage data sources for each project.

Using properties is as simple as dragging them from the
data source list and dropping them inside the editor main
panel. Once a property is dropped inside the editor, a visual
menu appears with all the available monitors in which it is
possible to display the property value. Inspector internally
obtains the property metadata, i.e. its value type and other
information, such as read/write access, and only displays
adequate monitors for each property.

Tailoring a project is as simple as organizing monitors
inside layout elements, such as popups. Monitors can be
moved via drag actions, resized or customized by changing
their attributes. Simple data transformation can also be
done at Monitor level. Attributes of monitors can be altered

Inspector Server Cluster

Proxy
Data ServerData ServerData Server

Synthetic
Data Server

Synthetic
Data Server

Synthetic
Data Server

Log Server

Device Data
Access

Inspector Server Cluster

Inspector
Application

D
at

a
La

ye
r Data

handlers
Data

handlers
Data

handlers

Proxy Data Server

 Synthetic
Data Server

Log Server

Other Data Sources

Se
rv

er
 e

xt
.

O
th

er
 e

xt
.

JAPC

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA184

User Interfaces and User eXperience (UX)
TUPHA184

863

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

based on the property values, using ranges for example, or
the data itself can be transformed by using formatters.

Figure 6: Inspector main application window.

The vast assortment of monitors, including polar plots,
multi-state switches, buttons, dials, etc. can be organized
via automated layout options. Visual elements can be
organized in a grid system and layout constraints can be
applied to multiple elements with single actions.

Soft Real Time Data Processing
Monitors allow for simple data transformation, but many

control applications require logic that is more complex.
Inspector introduces two mechanisms to perform intricate
data transformation and closed loop control.

A visual equation editor is included in the application.
This equation editor facilitates the creation of
mathematical equations that are executed in the Synthetic
servers. Equations may receive inputs from properties and
can perform mathematical operations or apply functions to
values. The output of an equation is always one data value,
single or complex. The computation of a synthetic equation
happens based on a timer or an event.

For more intricate logic and data processing, Inspector
includes a specialized module: Blueprints.

 Blueprint is Inspector’s powerful data processing and
scripting system. It combines visual scripting, for users
with limited programming knowledge, and high-level
integrated language scripting, including Python support.

Blueprints execute in the client Inspector application as
managed sub-applications. They are isolated from the core
Inspector system, but can interface with visual elements
and properties.

Agile Development
Applications developed in Inspector can be easily

changed after the development. In fact, due to the
simplicity of Inspector visual development, applications
are mostly developed iteratively, with the users making
changes as they use the applications. Inspector also
includes support for version control. It integrates with SVN
[9] without use of external tools.

INSPECTOR CREATED APPLICATIONS
Applications created in Inspector run in the Inspector

client application. The Inspector application has two
modes: Edit and View. In Edit, the default mode, Inspector
makes available editing tools and data browser. In View
mode, Inspector starts in an optimized mode without
editing functionalities. Developed applications exhibit the
same behaviour in both modes.

Inspector applications are used throughout CERN by
experts and machine operators. They control operational
equipment in accelerators such as LHC [10], LINAC4 [11]
and SPS [12]. An example of such application is presented
in Fig. 7, showing a control application for the LHC Radio
Frequency (RF) cavities.

Figure 7: LHC RF Cavity control application developed in
Inspector.

Other uses of Inspector include diagnostic of devices, via
rapid application prototypes, and control of laboratory test
devices.

CONCLUSION
Inspector is a valuable application used throughout

CERN. Many users from several teams and engineering
areas depend on Inspector or Inspector developed
applications.

Deployed in CERN’s complex control system, Inspector
has been a steadily growing application that many users are
still discovering. Its main stakeholder is the RF and OP
Groups in the Beams Department at CERN, where
Inspector is one of the main control applications.

The technologies used in Inspector have proved
adequate for the project. Several issues arise occasionally,
due to the vastly diverse host environment conditions and
growing user base. These issues lead to the introduction of
alternative implementation methods, such as the
asynchronous RMI used for server-client communications
or an in-application stability tracking system.

Overall Inspector has been a reliable system with a
steady user base and an important role at CERN.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA184

TUPHA184
864

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

REFERENCES

[1] Getting Started with Swing,
https://docs.oracle.com/javase/tutorial/uisw
ing/start/index.html

[2] The Java Virtual Machine Specification,
http://docs.oracle.com/javase/specs/jvms/se7
/html/index.html

[3] Scientific Linux CERN 6 (SLC6), Linux @ CERN,
http://linux.web.cern.ch/linux/scientific6/

[4] D. N. Rockmore, “The FFT: an algorithm the whole family
can use”, Computing in Science & Engineering, vol 2,
Jan/Feb 2000.

[5] Java Remote Method Invocation, Oracle,
http://www.oracle.com/technetwork/java/javas
e/tech/index-jsp-136424.html

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Observer”,
in Design Patterns: Elements of Reusable Object-Oriented
Software, 1994, pp. 293-303.

[7] V. Baggiolini et al., “JAPC - the Java API for Parameter
Control”, in Proc. ICALEPCS’05, Geneva, Switzerland,
October 2005.

[8] S. Gysin, A.D. Petrov, P. Charrue et al., “Role-Based
Access Control for The Accelerator Control System At
CERN”, in Proc. ICALEPCS’07, Knoxville, Tennessee,
USA, 2007, paper TPPA04, pp.90-92.

[9] Apache Subversion,
https://subversion.apache.org/

[10] The Large Hadron Collider,
https://home.cern/topics/large-hadron-
collider

[11] Linear accelerator 4,
https://home.cern/about/accelerators/linear-
accelerator-4

[12] The Super Proton Synchrotron,
https://home.cern/about/accelerators/super-
proton-synchrotron

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA184

User Interfaces and User eXperience (UX)
TUPHA184

865

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

