
ARES: AUTOMATIC RELEASE SERVICE
I. Prieto Barreiro, F. Varela. CERN, Geneva, Switzerland.

Abstract
This paper presents the Automatic RElease Service

(ARES) developed by the Industrial Controls and Safety

systems group at CERN. ARES provides tools and tech-

niques to fully automate the software release procedure. The

service replaces release mechanisms, which in some cases

were cumbersome and error prone, by an automated proce-

dure where the software release and publication is completed

with a few mouse clicks. ARES allows optimizing the time

and the work to be performed by developers in order to

carry out a new release. Consequently, this enables more

frequent releases and therefore a quicker reaction to user

requests. The service uses standard technologies (Jenkins,

Nexus, Maven, Drupal, MongoDB) to checkout, build, pack-

age and deploy software components to different repositories

(Nexus, EDMS), as well as the final publication to Drupal

web sites.

INTRODUCTION
At CERN, the Industrial Controls and Safety group of

the Beams Department (BE-ICS) provides solutions and

support for industrial control systems and develops, installs

and maintains safety systems. The software implemented

by the group covers all layers of the control systems, i.e.

ranging from front-end devices like PLCs (Programmable
Logic Controllers), Front-End Computers executing real-
time tasks up to the SCADA HMI and web visualization.

Multiple languages and packages are employed to develop

all this software, like:

• The Siemens/ETM WinCC Open Architecture (OA)

SCADA(Supervisory Control And Data Acquisition)
product for the supervisory software.

• Unity Pro and Simatic Step7 for Schneider and Siemens

PLC programming respectively.

• C++ for real-time applications, industrial middleware

like OPC Unified Architecture and extensions to the

commercial WinCC OA package.

• Java and Python for controls applications automatic

generation tools.

• Java, Javascript and Angular JS for web visualizations.

In addition, due to the different operating systems used

for operation in different domains at CERN, most of the

software needs to be built for both MS Windows and Linux.

Although all software is committed to a common reposi-

tory, the build and release processes were traditionally left

up to each developer. This led to a very heterogeneous set

of release mechanisms that included standard automated

tools like Apache Maven [1], custom scripts (Python or Perl)

which were maintained by the developers, or manual pro-

cedures consisting of multiple steps. In some cases, the

release procedure was cumbersome and error prone leading

to various problems:

• Very specific procedures required an expert knowledge

in order to make a release of a software component.

This represented a major problem when an urgent hot-

fix was required in operation but the release expert was

not around.

• Software releases were infrequent since developers

would tend to include multiple bug fixes in a new ver-

sion of the component to avoid releasing multiple times.

This resulted in a long time for users to wait for a bug-

fix.

• Manual steps led to incorrect information during the

distribution of the components, e.g. inconsistency be-

tween version number in the web pages used for dis-

tribution and the component itself, which created con-

fusion among the users as well as it caused some pub-

lished versions to be unnoticed since the version num-

ber in the distribution pages had not been updated.

To avoid these issues, the BE-ICS group decided to de-

velop ARES, which is described in the next sections.

AUTOMATIC RELEASE SERVICE
ARES makes use of standard technologies (Jenkins [2],

Nexus [3], Maven, Drupal [4], MongoDB [5]) to provide a

unified and automated release procedure, thus reducing the

complexity and time required for releasing new software and

keeping in sync the repositories with the software published

for the final users. The following sections will describe the

service architecture and the software release and publication

workflows.

ARCHITECTURE
Figure 1 shows the main architecture and workflow of

the release service. The software responsible persons use

Jenkins as the web interface to trigger and complete the

release. The build and release steps run in the background

and are implemented using Apache Maven. This approach

hides the complexity of the different steps involved in the

release and allows to trigger new releases by non-expert

users.

ARES uses two different repositories:

• Sonatype Nexus is the main software repository. It

contains the software binaries plus additional meta-

data used to qualify the release, like the description of

the target system for the software package.

• EDMS (Electronic Document Management System) [6].
The repository is used to store the software documenta-

tion and additional information like the software release

notes.

Once the software has been released, the publication pro-

cedure uses Nexus, EDMS and Jira [7] as data sources to

obtain the list of released versions, the documentation and

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA049

IT Infrastructure for Control Systems
TUPHA049

503

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 1: Service architecture.

the list of issues fixed in the new version of the compo-

nent. The compiled information is stored in a non-relational

database (MongoDB) where it is queried periodically by the

web content management tool (Drupal).

Apache Maven plays an important role in the release and

publication workflows, its main benefits will be explained

in the next section.

Apache Maven
"Apache Maven is a software project management and

comprehension tool. Based on the concept of a Project Ob-
ject Model (POM), Maven can manage a project’s build,
reporting and documentation from a central piece of infor-
mation."
There are several benefits in using Maven in ARES:

• Definition of a common parent POM file. The software

components having a similar nature, i.e. PLC baselines

or SCADApackages, can share a parent POMfilewhere

all common tasks are defined. Examples of these tasks

are: how to filter and package the source files, definition

of the repository where to deploy the packaged software

or the definition of the different release profiles.

• Release profile definitions. Maven allows to create dif-

ferent profiles to customize how the project is built and

released. For example, ARES defines three different

profiles for public releases, beta releases and snapshot

releases. The main difference in the profiles is the

repository where the artifacts are deployed, being inter-

nal repositories for the beta or snapshot releases. The

public release profile deploys the software to staging

repositories - explained in the following sections. The

different profiles are activated automatically from Jenk-

ins by parsing the version number of the release. For

example, version numbers containing alphabetic char-

acters (like ’1.0-beta-01’) will activate the beta release

profile and version numbers containing only numbers

(like ’1.0’) will activate the public release profile.

• Implement additional functionalities by creating new

Maven plugins. In some cases, it might be necessary

to incorporate additional features to a release build.

Maven allows the implementation of plugins to provide

additional goals that can be attached to a lifecycle phase.

For example, ARES provides a plugin to interact with

EDMS for creating new documents, new document

versions and attaching files to the documents.

RELEASE WORKFLOW
The workflow used to release the software and documen-

tation to the repositories is shown in Fig. 2.

Release Build
The release build is triggered from Jenkins by the re-

sponsible person of the software component. A release is a

paremeterized build where the developer must introduce, at

least, the release version for the software. In some cases it is

also required to include additional meta-data like the target

platform version. For example, the software packages for

WinCC OA must specify the SCADA version the software

is produced for.

Once the release build is triggered, ARES checks out the

source code from the repository (SVN) and executes the

Maven lifecycle phases [8] until the software is packaged

and installed in the local repository. Some of the typical

phases of the release build are the validation of the Maven

project, compilation of the source code, execution of the unit

tests, packaging of the compiled code into its distributable

format, execution of integration tests and installation of the

package into the Maven local repository.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA049

TUPHA049
504

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

IT Infrastructure for Control Systems



Figure 2: ARES release workflow.

Package Deployment
If the release build succeeds, theMaven Release Plugin [9]

tags the source code in SVN and deploys the packaged soft-

ware to a staging repository in Nexus. When the software is

deployed to a staging repository it will not be available for

the end users. Instead, the release will be kept in a private

repository waiting for the validation of the integration tests

or the quality assurance team.

Promotions
At this stage there are two possible outcomes for the soft-

ware package:

• If the integration tests failed or the software did not

meet the expected quality it can be dropped from the

staging repository (drop promotion). In this case the

tagged sources must be removed from the source code

management system.

• Otherwise the staged software can be promoted and

moved to a public repository (release promotion).

Both promotions are triggered from Jenkins and the only

manual action to be performed by the software responsible

is to delete the tagged sources in case of a drop promotion.

If the release promotion is executed there is an additional

step to be performed: the deployment of the software docu-

mentation to EDMS. The deployment of the documentation

is achieved using the EDMSMaven plugin [10] implemented

by the BE-ICS group. The plugin provides goals to interact

with EDMS and allows to create new documents and new

document versions, add files to the document and change

the document status (released, cancelled, obsolete, etc.).

In some cases, the deployment of the software or the

documentation to the repositories might fail. For example,

if the software artifact was promoted manually from Nexus

or if the expected document version already exists in EDMS.

In these situations, ARES uses the Build Failure Analyzer

plugin [11] for Jenkins to analyze the error log and tries

to map the error with a solution described in an internal

knowledge database.

PUBLICATION WORKFLOW
At this stage the software package and documentation are

deployed to a software repository and to a document man-

agement system. The end users can already download them

directly from the repositories. However, it is not possible

to customize the web pages of the repositories to provide a

good user experience when looking for the relevant software.

For this reason, each software framework provides its own

website containing the different components, which includes

the download links, the documentation, the release notes, ad-

ditional information, etc. The JCOP [12] and UNICOS [13]

frameworks use Drupal as a web content management and

ARES ensures that the released software is always up to date

and available for the end users. Figure 3 shows the software

publication workflow.

Figure 3: Software publication workflow.

The following sections explain the workflow details: the

definition of the components relevant to the service, the

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA049

IT Infrastructure for Control Systems
TUPHA049

505

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



retrieval of the released versions from the sources and their

publication in the framework webpages using Drupal.

Software Components Definition
Only a portion of the software deployed to the repositories

is relevant for the publication in the frameworks websites.

The service responsible must define what are the suitable

components to look for new releases. In principle, it would

be possible to store the information about the new versions

in a database whenever the release is completed but this

approach will only work for new releases, thus ignoring the

software already available in the repositories. Instead, the

approach implemented by the service is to define the list of

relevant software components and to query a data source

regularly to get the complete list of released versions.

This is achieved by using the Released Components

Maven plugin [14] implemented by the BE-ICS group. The

plug-in input is a POM file where the list of relevant compo-

nents is defined together with some additional information:

• Data source for the releases. The possible data sources

currently implemented by the plugin are Nexus and

EDMS.

• The list of EDMS files that will be displayed next to

the software download link (optional).

• The project identification in Jira (optional). This data

will be used to obtain the Jira release notes.

• A list of released versions to ignore (optional). Useful

when a released version became obsolete and it should

not be used in any project.

Get the Released Versions
Once the list of components is defined it is possible to cre-

ate Jenkins jobs to fetch the list of released versions regularly.

The get-released-components goal of the Maven plugin will

execute the following actions:

• Get the list of released versions from Nexus and EDMS

for each software component. This is achieved using the

Nexus REST API or the EDMS RSS feeds depending

on the data sources defined for the component.

• Get the release meta-data from a properties file in

Nexus.

• Get the release notes link from Jira.

• Store or update the release data in the MongoDB in-

stance.

Drupal Publications
Finally, it is necessary to import the data from the database

to Drupal making the releases visible for the end users. This

step is achieved by exposing the data through a REST in-

terface in MongoDB and using the Drupal feeds importer

module. The imported data will then be mapped to a Drupal

content type. ARES defines two different content types:

• Component Page. This content type defines the relevant

data to identify a software component, like the compo-

nent name, the person responsible for the software, the

type of software (framework, component, subcompo-

nent), etc.

• Component Release. A component release will always

be linked to a unique component page. In this case,

the content type defines the relevant data to a specific

release, like the version number, the release date, the

target platform, the software download link, the release

notes link or the additional documentation files.

With the content types defined it is now possible to define

the data mapping for the Drupal feeds importer. This config-

uration step consists on linking the fields obtained from the

REST query to the database, in JSON format, to the fields

available in the component release content type.

Before triggering the feeds importer it is also required to

create the component pages for each software component.

Once this step is completed, the feeds importer is able to

import the data of the released software and link each release

to a component page.

The visualization of the software releases in a component

page is implemented using Drupal views. The views module

allows defining the fields and the format for displaying the

data available in the Drupal database (Fig. 4).

CONCLUSION
The BE-ICS group has made an effort in developing

ARES and integrating the JCOP and UNICOS framework

components in the new release service. Currently over a

hundred components are integrated in the service, including

WinCC OA components and PLC baselines. The number

of software versions released by ARES is around a hundred

and twenty for the current year and around three hundred

and forty since the creation of the service in March 2016.

The software responsible persons profit from a simple

release procedure executed from a unique web interface.

The procedure allows to release more frequently and keeps

in sync the list of published versions with the ones available

in the repositories. As a consequence, the end users of the

software components profit from the frequent releases and

the coherence of the versions published in the framework

websites.

In the coming months ARES will be adapted to use GIT

as a version control system and the deletion of the source

code tags in the release workflow will try to be automated.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA049

TUPHA049
506

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

IT Infrastructure for Control Systems



Figure 4: Visualization of a software component releases.

REFERENCES
[1] Apache Maven Project,

http://maven.apache.org/index.html
[2] Jenkins Continuous Integration and Continuous Delivery,

https://jenkins.io
[3] Sonatype Nexus

http://www.sonatype.org/nexus/
[4] Drupal

https://www.drupal.org
[5] MongoDB

https://www.mongodb.com
[6] Electronic Document Management System (EDMS)

https://edms.cern.ch/
[7] Atlassian Jira

https://www.atlassian.com/software/jira
[8] Introduction to Maven lifecycle

https://maven.apache.org/guides/introduction/
introduction-to-the-lifecycle.html

[9] Maven release plugin

http://maven.apache.org/maven-release/maven
-release-plugin/

[10] EDMS Maven plugin

https://edms-maven-plugin.web.cern.ch/
[11] Build Failure Analyzer plugin for Jenkins

https://wiki.jenkins.io/display/JENKINS/Build+
Failure+Analyzer

[12] Joint COntrols Project (JCOP)

http://jcop.web.cern.ch

[13] UNified Industrial Control System (UNICOS)

http://unicos.web.cern.ch

[14] Released Components Maven plugin

https://released-components-maven-
plugin.web.cern.ch

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA049

IT Infrastructure for Control Systems
TUPHA049

507

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


