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Abstract

The development of process control systems for the cryo-

genic infrastructure at CERN is based on an automatic soft-

ware generation approach. The overall complexity of the

systems, their frequent evolution as well as the extensive use

of databases, repositories, commercial engineering software

and CERN frameworks have led to further efforts towards im-

proving the existing automation based software production

methodology.

A large number of process control system upgrades have

been successfully performed for the Cryogenics in the LHC

accelerator, applying the Continuous Integration practice

integrating all software production tasks, tools and tech-

nologies. The production and maintenance of the control

software for multiple cryogenic applications have become

more reliable while significantly reducing the required time

and effort. This concept has become a guideline for develop-

ment of process control software for new cryogenic systems

at CERN.

This publication presents the software production method-

ology, as well as the summary of several years of experience

with the enhanced automated control software production,

already implemented for the Cryogenics of the LHC acceler-

ator and the CERN cryogenic test facilities.

INTRODUCTION

Cryogenic systems, an integral part of the infrastructure

of the most important accelerators and experimental facil-

ities at CERN, require complex industrial process control

systems for operation. Their large scale and evolving re-

quirements, functional (change requests) and environmental

(updated control software components), are big challenges

for developers, who have to produce error-free, robust and

safe control system software.

From the very beginning the large scale of the control sys-

tem for the Cryogenics of the LHC accelerator forced the use

of automatic code production in the development process.

The existing CERN code generation tools were adapted to

cover the requirements of the control system for the Cryo-

genics of the LHC, which became fully operational for the

first time in 2008. Experience after months of operation led

to a review and optimization of the process functional analy-

sis [1]. As a result the second major release was successfully

deployed in 2010, ensuring the operability of the cryogenic

infrastructure during the first run of the LHC accelerator.

The amount of changes to implement during the LHC’s

Long Shutdown 1 (LS1), a 2-year consolidation and mainte-

nance work period (2013 - 2015), using the UNIfied COntrol
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System (UNICOS)-based complex and time-consuming soft-

ware development process triggered work towards further

improvements and more complete automation of some parts

of the process, i.e. the software building and testing [2].

Introducing the Continuous Integration (CI) methodology

to the development of the software for the LHC accelera-

tor allowed to enter the second run of the LHC with a very

reliable control system software, and with significantly im-

proved and more efficient development process, allowing to

address any modifications much safer and faster than before.

Both have contributed to improving of the overall reliability

and availability of the Cryogenics [3], what was especially

important while facing new challenges with the beams of

higher luminosity in the LHC accelerator [4].

The experiences in development and the use of the first

version of the CI system along with new requirements and

new projects led to further evolution of the CI system for

control system software of the Cryogenics. These new de-

velopments and their applications are discussed below.

THE CONTINUOUS INTEGRATION

SERVICE FOR THE CONTROL SYSTEM

SOFTWARE FOR THE CRYOGENICS OF

THE LHC TUNNEL

Building software for large-scale control system applica-

tions would be very difficult, if not impossible, without spe-

cialized tools facilitating the process. Automated code gener-

ation have been used in development of control system appli-

cations at CERN since many years [5]. The UNICOS frame-

work with its Continuous Process Control package (UNI-

COS CPC, UCPC) is a standard for building programmable

logic controller (PLC) based applications at CERN and other

laboratories [6]. The framework, by providing a library of

generic device types, a methodology and a toolset to design

and implement industrial control applications [7], simplifies

and unifies the way control system software is implemented.

The architecture, the communication layer, the main data

structures, the execution flow of the control applications and

also development workflow is the same for all the projects

and varies only in very project-specific areas.

Still, even using the framework, for very large scale con-

trol systems producing control system software is a complex

and long process, requiring many time-consuming steps to

be performed manually by the developer. During the LS1

it became clear that in the case of the control system for

the Cryogenics of the LHC accelerator, the largest cryo-

genic system at CERN (and in the world), it would be very

difficult to rebuild reliably the software implementing all

required modifications without further automation of the pro-
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cess. Small, seemingly transparent modifications of the hard-

ware database, changes in evolving framework or changes

in the logic could have devastating impact on the software

produced if not tested incrementally, in iterations and in

isolation. Introducing too many changes to a single build

complicates debugging, makes difficult to find causes of the

problems, and in result it consumes time of the developers.

Software engineering is addressing these issues with the

Continuous Integration practice coming from Agile develop-

ment methods (originally - eXtreme Programming, XP). At

the time (LS1) the use of the CI was very limited in the field

of industrial automation (at least in case of PLC-based sys-

tems). Partially it was a consequence of closed/proprietary

character of the development environments for PLCs, not

providing ready to use, flexible and scriptable ways to au-

tomate software builds. Another cause that might have pre-

vented adoption of the CI by PLC-based industrial controls

could be difficulties in implementing testing environments,

that, for a more complete testbed, require sophisticated and

expensive hardware simulation devices replacing inputs and

outputs of the original (unique!) hardware from production

systems.

In case of such large-scale system the potential gains

from finding a way to overcome the difficulties and optimize

the development process were sufficient to use some time

and resources to investigate possible solutions. Availability

of libraries with programming interfaces (APIs) providing

means to use the Siemens SIMATIC® environment without

human interaction allowed to develop custom automation

tools, i.e. the SIMATIC Step7® command-line interface

(s7cli) [2]. The hardware simulation box for SIMATIC

(SIMBA Profibus®) and developed UNICOS testing frame-

work allowed to exhaustively test the most critical function-

alities (i.e. alarms and interlocks, communication) in an

automated way.

The possibility to execute the project build tasks auto-

matically (i.e. those most time-consuming and the most

frequent) opened a way to integrate all the software frame-

works, developed tools, and automated tasks, and thus led to

construction of an (almost) complete Continuous Integration

solution for UNICOS CPC control applications for Siemens

Step7 PLCs [2]. The CI service was built using Jenkins [8],

chosen for its flexibility concerning various types of jobs on

multiple platforms and wide possibilities to integrate with

miscellaneous services - in general for its flexible, extend-

able architecture and functionality (using variety of plugins).

The service made use of a number of standard IT services

(i.e. Git service - repositories, Atlassian JIRA® - issue track-

ing, CERN Virtualization Infrastructure - virtual machines

with the CI service and for build jobs execution). At the time

(LS1) dedicated virtualized build infrastructure consisted 16

virtual machines with Microsoft Windows® (Server 2008®)

and Linux (SLC6) systems with all the required software

(i.e. Siemens SIMATIC Step7, Oracle Java® 1.7, Apache

Maven, UNICOS Application Builder (UAB), Oracle Instant

Client® 11, Python 2.x).

The service, configured in a way that it reflected project’s

and team’s workflow, had significant impact on the software

development process and the result - which in short was

very high quality and very robust application software for

18 critically important control systems for the Cryogenics of

the LHC accelerator. It also meant entering the Run 2 of the

LHC with a development environment allowing to address

any change requests in more efficient and secure way.

Review and Improvements

After the first three years of software development using

the existing CI system one of the drawbacks of the Jenkins

system became visible - a configured, heavily customized by

using many plugins system became difficult to upgrade. The

configurations of Jenkins itself and of many of its important

plugins (like, for instance, those responsible for security cre-

dentials and authentication) were incompatible with newer

versions. In consequence such upgrade could break config-

ured complex build jobs, making the system unusable and

not easy to repair. Therefore, it was worth considering set-

ting up a new, clean instance of the service. Having gathered

many experiences during years of exploitation of the system

it was also an opportunity to apply additional improvements.

Functionality The work on modernisation of the sys-

tem had several stages. First, the Jenkins itself and under-

lying plugins had to be updated to the latest stable version

(Jenkins-CI 2.10). The available plugins were assessed in

order to provide new and expand existing functionalities.

After the review of the plugins, it was decided to take

a more generic approach creating build jobs structure and

configuration. To achieve this some carefully selected plug-

ins were used, for instance the Matrix Project plugin. The

plugin allows the developer to execute multiple similar build

jobs within a single one by defining a set of parameters

with predefined, valid values. Each parameter is treated as

an axis of a matrix containing all possible combinations

and the job using the plugin is executed against each of the

combinations.

Building control applications comprise a number of steps

(configured as build jobs in the CI) to execute [2]. Another

selected plugin, the MultiJob Plugin, allowed to create build

jobs, which execution flow is defined by consecutive phases.

Each phase may contain one or more steps (build jobs), exe-

cuted sequentially or in parallel. Also, the jobs in the phases

inherit the environment variables (parameters) defined in

the corresponding MultiJob.

Incorporating this functionality allows to create a single

job to execute the whole build chain - and to parametrize it.

For the discussed CI system, it brought means to aggregate

the jobs building control applications for the eight LHC sec-

tors into a single, parametrized job. Its phases and subjobs

correspond to the jobs in the old CI system (like “Code gen-

eration”, “Compilation”, “Testing/Validation”), but simple

parametrization permitted to significantly decrease the num-

ber of jobs (what implies reduced maintenance efforts). The

jobs using the plugin can be themselves executed by another
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Figure 1: The updated architecture of the CI system.

MultiJob - currently all 16 applications for the LHC Tunnel

can be built using a single job.

The possibility to easily parametrize the whole build chain

and, in particular, let selecting a repository branch (Fig. 2),

opened a simple way to build the applications using different

versions of the UCPC framework. To achieve this the jobs

were also reconfigured in a way that the logical content

(build commands) was extracted to be used with a standard

software build automation program, GNU Make, and placed

in a configuration file stored in the repository. This facilitates

and makes more secure addressing any changes in the build

process - which since then can differ depending on the branch

in Git repository.

Concerning the repository management system itself -

the existing CERN’s Git repository management system,

Gitolite, became deprecated due to creation of a new service

based on GitLab®. All repositories had to be moved to the

new system and according changes were applied in the CI

system. GitLab also replaced Atlassian FishEye®, software

allowing to visualize and analyze changes in the source code

(Fig. 1).

Optimizations The activities to review and upgrade

the existing system were triggered directly by the neces-

sity to migrate the service to the new CERN’s Cloud in-

frastructure, which was in the period of transition from a

custom virtualization system based on Microsoft’s Hyper-

V® to OpenStack®. However, initial tests performed on

migrated worker nodes revealed a potential issue - due to

the way the SIMATIC is using the disk input/output (I/O),

performing many small writes with very frequent file buffer

flushes, build times for jobs operating on a PLC project1

would become unacceptable (2-3 times longer than before,

1 It concerns operations like SCL source code importation or compilation.

with previous hypervisors offering very fast I/O). Requesting

the use of better performing (and more expensive) hyper-

visors could be an (expensive) solution but in this case -

using a typical temporary storage for building PLC projects

requiring not more than 200MB - it did not seem an optimal

solution. The best way to optimize performance of a vir-

tual machine (VM), sharing I/O bus and disks with others,

is using system’s memory as much as possible. In case of

the file storage (and software not using system file buffers

effectively) this means creating a disk in the VM’s memory

(RAM). Microsoft Windows systems do not provide such

possibility natively and it is necessary to use additional 3rd

party software. At the time (2015) two free products were

available: SoftPerfect RAM Disk and ImDisk. The first one

was chosen for (slightly) better performance2.

Using RAMdisk for building SIMATIC PLC projects

improved performance of the CI system (even comparing

to the previous system with faster I/O). The average time

to compile two applications for a single sector of the LHC

(ARC and LSS) was 3h, with RAM-disks - around 1h.

Optimizations were made also in organization and con-

figuration of the build tasks. For instance, the most time-

consuming task, exportation of the source code files from a

SIMATIC PLC project, was optimised by introducing more

parallelisation in comparison to the previous Jenkins setup.

Gains All the improvements described above proved to

be very useful in further development of the control applica-

tions for the LHC Tunnel. It allowed to work efficiently on

required modifications and have updates ready to deploy in

a very short time. For instance, during 2016/17 Extended

Year-End Technical Stop of the LHC accelerator all the 18

2 Nowadays, newer versions of SoftPerfect RAMDisk comes with a com-

mercial license and are not free any more.
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LHC accelerator control applications had to be upgraded

(and therefore - rebuild and redeploy) to the newer version

of the UNICOS framework. The possibility to use more

branches without the necessity to alter Jenkins’ configura-

tion allowed to generate and to validate multiple sets of

control applications and to develop scheduled logic modifi-

cations simultaneously for the production (released) and the

development (testing) version of the UNICOS CPC.

Another example of a complex update of the control appli-

cations was the implementation of the feed-forward control

in order to compensate the beam effects on the beam screen

temperature. It was needed to maintain stable cryogenic con-

ditions with beams of higher luminosity in the LHC accelera-

tor [4]. The update required applying many modifications in

the UNICOS database (containing information about control

system objects), what implied changes in many source code

files. The modification itself and also improvements coming

on the fly were deployed without any problems.

For a large scale control system, like the one for the Cryo-

genics of the LHC accelerator, some modifications have to

be deployed and validated in the production environment just

in one part of the system (one application or a sector) prior to

applying them everywhere. The possibility to use multiple

branches made feasible building and deploying control ap-

plications independently (e.g. with different modifications),

what was difficult to achieve in the former configuration.

Validated modifications are propagated to all applications

and deployed in all sectors of the LHC. Particular modifi-

cations can be selected (“cherry-picked” in Git), then built

and deployed in short time.

The use of improved CI system allowed to build up an

efficient workflow for developing large scale control appli-

cations and thus to reduce time and efforts - and therefore

human resources required. In a way, they were replaced by

a larger pool of worker nodes of the build system (Fig. 3).

Figure 2: The workflow with the updated CI system.

CONTINOUS INTEGRATION FOR

NON-LHC CRYOGENIC CONTROLS

PROJECTS

The first use of CI systems for a non-LHC Siemens appli-

cation was in 2015 and concerned migration to UNICOS of

the 10 horizontal magnet test benches (cryogenic feedboxes

- CFBs) in the CERN’s magnet test facilities (SM18). Those

10 applications share the same hardware design and process

logic, thus building them consists of a large number of repet-

itive tasks that can be automatized using a CI system and

automation tools, in addition to UNICOS python templates.

The CI system was set up with the same base as the existing

one for the LHC tunnel (dedicated Jenkins instance, use of

Git branches for CFB specific generation files, with tools

like s7cli etc.). This strategy allowed to successfully deploy

the 10 applications in a short period of time avoiding manual

execution of many time-consuming tasks. It eases also the

deployment of logic updates that have to be propagated to

the 10 CFBs.

In 2017, the CI system was updated in order to follow con-

solidation initiated for the LHC tunnel and to standardize

the use of CI tools. For this, the dedicated Jenkins instances

were migrated to the one used for the LHC and Makefiles

stored in the Git repository were introduced. This common

structure allows to have one pool of OpenStack machines

shared between all CI systems, and results in an easier main-

tenance of the machines and applications.

Following the successful use of CI for the SM18 CFBs

and experience gained during work on the LHC Tunnel, it

was decided to develop a system for the generic use of CI

tools in order to facilitate the production of new applications.

The system was named Cryo-apps and is composed of two

parts: a Python library and an automatic build solution based

on Git and Jenkins. The key feature of the Python library is

that it separates the complete logic generated automatically

by the UNICOS Application Builder and the logic which has

to be completed by the developer. This step allows the devel-

oper to create an application without the necessity of writing

Python templates for Siemens code generation and intro-

duces simple procedure to regenerate the sources without

losing the already written code, i.e. to reuse the code ex-

ported from an older version of the application. In addition,

the system provides a set of predefined Python functions

to generate commonly used Siemens chunks of code, like

automatic generation of Cernox® curves and interpolation

functions. Some other tools have also been developed in

order to ease the automatic built of the code, for instance to

assign symbols dynamically (UAB / Step7) and to generate

compilation files.

For the automatic build part, a common Git structure

is defined. It natively contains all the necessary tools for

the automatic generation of a Siemens project: s7cli, the

mentioned Python library and a generic Makefile. Then

any application just inherit from the common Git and only

project specific files have to be added. The Jenkins build job
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does not need any specific configuration since the process is

based on the generic Makefile.

Cryo-apps has been successfully used for several projects

of different size and importance since its first version in

2016. The first projects using cryo-apps were the High Field

Magnet (HFM) and ClusterD - the new magnet test stations

for SM18 test hall. They are built as twin systems and there-

fore they share the same Python code templates. The HFM

was the first one deployed and was used as a beta test for

the newly developed cryo-apps system. Following the suc-

cessful deployment of the HFM, it was decided to continue

with ClusterD, and then to use cryo-apps for other Siemens

application such as NA62 and HIE-ISOLDE cryomodules.

This application is a great example of how one can fully

benefit from the use of the CI tools to generate and build

applications. Indeed, the application is composed of up to 6

cryomodules that share the same logic and equipments, mak-

ing it one of the largest non-LHC cryogenic control system

applications in CERN. It needs frequent updates since the

number of cryomodules increase every year - currently 3 cry-

omodules are in place and the test phase is still in progress.

Therefore, the CI system makes the development process

more efficient.

The first successful experiences using cryo-apps and its

genericity led to consider it as a standard to build every future

Siemens application (such as ClusterG Infra and B180 new

magnet test area).

FUTURE PLANS

Future developments will most likely be focused on inte-

grating more use cases, in particular those using different

hardware and software components. For the moment, a pro-

totype CI was created for the first Schneider Unity®-based

projects. While already helpful, further developments on

automating some stages of the process and supporting tools

are necessary for better coverage of the workflow. With up-

coming multiple upgrades scheduled over the next two years

- these will most likely have a high priority in the near future.

Figure 3: Applications, people, computing resources and CI

usage over time.

CONCLUSIONS

The automation of the software production process in

CERN Cryogenics has become an essential part of the cre-

ation of the necessary software for the control applications.

The results and expectative of the update have shown that

the time and resources needed to implement it were more

than worthy to obtain a system which is better configurable,

faster and more reliable than the previous one. The necessity

of the maintenance and updates of the different components

of the Continuous Integrations service is overshadowed by

the benefits the system provides.

Thanks to its modularity, it can be configured to be

adapted to different types of applications and even cope with

different versions simultaneously. That way it is possible

to modify and test an application while generating a work-

ing version of the installed software. The rise of the speed

gained increasing the number of machines and optimizing

them allow a faster error detection within the programming

code reducing the time to get a working application. It

also improved quality assurance of the control applications

produced. Human error is minimized while launching the

different jobs of the Continuous Integration service as all

of them are already predefined. All the benefits combined

permitted to evolve from maintaining 18 applications to 49

with possibility to be increased in the near future.
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