

Rare strange decays at LHCb 3 and 4 tracks decays

Francesco Dettori

University of Liverpool

First forum on rare kaon decays - RKF 2018 - Edinburgh

Introduction

- Strange physics at LHCb: why not?
- Two talks: this on 3/4 tracks and Miguel's on 2 tracks, split for convenience
- Concentrate on how and what we can do
- Already some results

LHCb experiment

F. Dettori

Rare strange decays at LHCb

RKF 2018

3/27

LHCb experiment

- 1150 members, from 69 institutes in 16 countries
- Dedicated experiment for precision measurements of CP violation and rare decays
- Beautiful, charming, strange physics program

- pp collisions at $\sqrt{s} = 7,8(13)$ TeV in Run I (Run II)
- $b\bar{b}$ quark pairs produced correlated in the forward region
- Luminosity leveled at $4 \times 10^{32} cm^{-2} s^{-1}$

F. Dettori

Rare strange decays at LHCb

LHCb detector

Excellent vertex and IP resolution

- $\sigma(IP) \simeq 24 \mu m$ at $p_T = 2 \text{ GeV/c}$
- $\sigma_{BV} \simeq 16 \mu m \text{ in } x, y$

Very good momentum resolution

- $\sigma(p)/p = 0.4\% 0.6\%$ for $p \in (0, 100)$ GeV/c
- σ(m) ∼ 24(4) MeV for two body B(K_S) decays

Muon identification

• $\varepsilon_{\mu} = 98\%, \ \varepsilon_{\pi \to \mu} = 0.6\%, \ \varepsilon_{K \to \mu} = 0.3\%,$ $\varepsilon_{p \to \mu} = 0.3\%$

Trigger

ε_µ = 90% for B decays

Introduction: production

- Huge strange hadrons production cross-section at LHCb
- Production of particles in a minimum bias event within the geometric acceptance (400 mrad)
- About 1 strange hadron per event (compared to $\sim 10^{-3} B_s^0$ mesons)
- Reconstruction and trigger however bring this number down

Average particles in LHCb acceptance per minimum bias event at $\sqrt{s} = 13 \text{ TeV}$ 10^{2} Unofficial compilation with Pythia8 π^+ 10^{1} K^+ $K_{L}^{0}K_{S}^{0}$ Λ^0 10^{0} $\Sigma^0 \Sigma^+$ D^0 10^{-1} D^+ 10^{-2} $B^{+}B^{0}$ B^0_{\circ} 10^{-3} J/ψ

Introduction: setting the (long) stage Reconstruction

- Large lifetimes for LHCb... but the peak of an exponential is at zero!
- Different reconstruction methods for the daughters tracks

LHCb Run I data-taking

- LHCb trigger designed for heavy flavours
- Muon (hadron) L0 trigger require $p_{\rm T} > [1-5]GeV$
 - Too hard for primary strange hadrons
- Hlt1 and Hlt2 are software and customizable
- No dedicated triggers in 2011, added a $K_S^0 \rightarrow \mu^+ \mu^-$ dedicated trigger in 2012
- Several generic (topological) triggers allowed good efficiencies
- Typical events contain more than one strange hadron
- \Rightarrow Strange physics Run I analyses mostly based on data triggered by the rest of the event

TIS events and the TISTOS method

- Triggered events can be
 - * Triggered On the Signal (TOS) the signal is sufficient to trigger
 - * Triggered Independently of the Signal (TIS) the signal is not necessary to trigger
 - * Triggered on both (TOB=!TIS&!TOS)

All events

Triggered events	
TIS TIS&TOS TOS TOB	

- Events can be TIS and TOS
- Overlap can be used to measure trigger efficiencies

Tolk, S et al. LHCb-PUB-2014-039

Strange physics at LHCb with Run I

Search for $\Sigma^+ \to p \mu^+ \mu^-$ at LHCb The HyperCP anomaly

- $\Sigma^+ \to p\mu^+\mu^-$ is a very rare FCNC
- Short distance SM branching fraction is O(10⁻¹²)
- Dominated by long distance contributions: $1.6 \cdot 10^{-8} < \mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) < 9.0 \cdot 10^{-8}$ [He et al. - Phys.Rev. D72 (2005) 074003]
- An evidence for this decay was found by the HyperCP experiment with 3 events in absence of background
- Measured branching fraction is: $\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = (8.6^{+6.6}_{-5.4} \pm 5.5) \cdot 10^{-8}$ [Phys.Rev.Lett. 94 (2005) 021801]
- This evidence attracted large attention since all the **3** observed signal events have the same dimuon invariant mass: pointing towards a $\Sigma^+ \rightarrow p X^0 (\rightarrow \mu \mu)$ decay with $m_X^0 = 214.3 \pm 0.5$ MeV $\mathcal{B}(\Sigma^+ \rightarrow p X^0 (\rightarrow \mu \mu)) = (3.1^{+2.4}_{-1.9} \pm 5.5) \cdot 10^{-8}$
- Large theoretical and experimental attention (see backup) but no other direct search for $\Sigma^+ \rightarrow p \mu^+ \mu^-$

LIVERPOOL

General analysis strategy

- UNIVERSITY OF LIVERPOOL
 - HCb-PAPER-2017-049 arXiv:1712.0860

- 1. Soft selection at stripping level
- 2. Cut on BDT and ProbNN to remove most of the background
- 3. Search for $\Sigma^+ \to p \mu^+ \mu^-$ decays:
 - * Search around Σ mass window for SM signal \rightarrow If peak is found, look at $\mu\mu$ invariant mass
 - * Search in Σ mass restricting to $m_{\mu\mu} \sim 214$
- 4. Normalize branching fraction to $\Sigma^+ \to p \pi^0$

Sample and selection:

- Full 2011+2012 statistics, luminosity 3 fb^{-1}
- Decays reconstructed with long tracks (i.e. decays in VELO)
- Prompt decays (no displacement of the dimuon pair)
- Selections for final states: $\Sigma^+ \to p\mu^+\mu^-$, $\Sigma^+ \to \bar{p}\mu^+\mu^+$ (background), $\Sigma^+ \to p\pi^0$ (normalisation), $K^+ \to \pi^+\pi^-\pi^+$ (control)
- Signal channel accepts all events, normalisation TIS only

 $\Sigma^+ \to p \mu^+ \mu^-$ at LHCb General analysis strategy

- Cut on BDT and PID to remove most of the background
- Explicit veto of $\Lambda \to p\pi$ background, no other peaking background contributes

Normalisation

- No fully charged final state available in the Σ^+ to normalize
- Use high branching fraction $\Sigma^+ \to p\pi^0 \ (\mathcal{B} = (51.57 \pm 0.30)\%)$

$$\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = \frac{\varepsilon_{\Sigma^+ \to p\pi^0}}{\varepsilon_{\Sigma^+ \to p\mu^+\mu^-}} \frac{\mathcal{B}(\Sigma^+ \to p\pi^0)}{N_{\Sigma^+ \to p\pi^0}} N_{\Sigma^+ \to p\mu^+\mu^-}$$
$$= \alpha N_{\Sigma^+ \to p\mu^+\mu^-}$$

• Selection for $\Sigma^+ \to p\pi^0$ with $\pi^0 \to \gamma\gamma$ (resolved clusters) from calorimeter For full Run I dataset, single event sensitivity $\alpha_{TIS} = (1.6 \pm 0.9) \times 10^{-9}$ (Correspondent to 31 ± 27 expected events with a SM BR)

Normalisation systematics

- Trigger efficiency estimated with dedicated simulations with all trigger configurations and calibrated on data with $\Sigma^+ \to p\pi^0$ with the TISTOS method Reconstruction of the π^0 calibrated with ratio of ratio of $B^+ \to J/\psi K^{*+}$ and $B^+ \to J/\psi K^+$ decays reconstructed in data. Particle identification calibrated with control channels in data ($\Lambda \to p\pi^-$ and J/ψ) BDT classifier calibrated with $K^+ \to \pi^+\pi^-\pi^+$ channel in data

inatomostio un contoi	in the or	tioo
systematic uncertai	mues	\mathbf{ues}

Selection efficiency	1%
BDT efficiency	6%
PID efficiency	28%
π^0 efficiency	10%
Trigger efficiency ratio	40%
Total	50%

Results

- Excess of events w.r.t. background with a significance of 4.0σ
- Fitted signal yield: 12.9 + 5.1 4.2
- Measured branching fraction $(2.1^{+0.8}_{-0.7}) \times 10^{-8}$

F. Dettori

Results: analysis of the dimuon mass

- Consider candidates within $1.5\,\sigma$ from the Σ mass in the full selection
- Scan dimuon invariant mass for possible peaks: No significant peak found
- Repeated $m_{p\mu^+\mu^-}$ fit restricting to $m_{\mu^+\mu^-} \in [214.3 \pm 0.75 \text{MeV}/c^2]$): No significant peak found

۲. H

LHCb Run II and Upgrade

LHCb Run II data-taking

- Higher bandwidth from improved farm and algorithms allows higher yields
- Real time calibration between Hlt1 and Hlt2
- L0 trigger still limiting factor for strange hadrons
- *Turbo* stream allows high rate channels to be stored: [Aaij et al. JCPC208(2016)35] important for non rare strange physics

Software improvements for strange

- Complement forward tracking for very soft muons implemented
- New Hlt1 inclusive lines developed with focus on strange physics
- Various novel Hlt2 inclusive and exclusive lines written, dedicated to strange

Prospects for strange physics with Run II data

Already 2 fb⁻¹ on tape at $\sqrt{s} = 13$ TeV

- Analysis of $\Sigma^+ \to p \mu^+ \mu^-$ with dedicated triggers
 - * Probable observation
 - * Precise branching fraction measurement
 - \star Possible differential branching fraction and maybe other observables
- $K_S^0 \to \mu^+ \mu^-$ see Miguel's talk
- Different other rare hyperon decay searches possible $(\Sigma^+ \to p e^+ e^-, \Lambda^0 \to p \pi^- e^+ e^-, \text{LFV, etc})$

LHCb Upgrade data-taking

- Upgraded detector for 40 MHz full readout
- $\mathcal{L} = 10^{33} cm^{-2} s^{-1} \Rightarrow \text{about 5 fb}^{-1} \text{ per year}$
- L0 hardware trigger is removed in Upgrade
- Hlt1 run directly on collision data

Fundamental step forward for strange physics!

$K^0 \to \ell^+ \ell^- \ell^+ \ell^-$

- $K^0\to\ell^+\ell^-\ell^+\ell^-$ short distance sensitive to NP , dominated by the long distance contribution uncertainty
- Interference of $\mathcal{A}(K_S^0 \to \ell^+ \ell^- \ell^+ \ell^-)$ and $\mathcal{A}(K_L^0 \to \ell^+ \ell^- \ell^+ \ell^-)$ would give a measurement of the sign of $\mathcal{A}(K_L^0 \to \gamma \gamma)$ which is a stringent test of CKM [D'Ambrosio et al EPJC73(2013)2678]
- $K^0_L \to \ell^+ \ell^- \ell^+ \ell^-$ studied by different experiments but no experimental constraints on K^0_S modes

 $\mathcal{B}(K^0_S \to e^+e^-e^+e^-) \sim 10^{-10} \quad \mathcal{B}(K^0_S \to \mu^+\mu^-e^+e^-) \sim 10^{-11} \quad \mathcal{B}(K^0_S \to \mu^+\mu^-\mu^+\mu^-) \sim 10^{-10} \quad \mathcal{B}(K^0_S \to \mu^+\mu^-\mu^+\mu^-) \sim 10^{-10} \quad \mathcal{B}(K^0_S \to \mu^+\mu^-e^+e^-) \sim 10^{-10} \quad \mathcal{B}$

• Sensitive to NP at same order of SM

- $K_S^0 \to \pi^+ \pi^- e^+ e^-$ is normalisation, control and background channel for $K_S^0 \to \ell^+ \ell^- \ell^+ \ell^-$
- Sensitivity study at LHCb with MC simulations
- Both TIS and TOS trigger strategy devised: $\varepsilon \sim 0.2\%$, limited by L0 trigger
- $\mathcal{B}(K_S^0 \to \pi^+ \pi^- e^+ e^-) = (4.79 \pm 0.15) \times 10^{-5}$ (PDG average)

With Run I conditions expected $N = 120^{+280}_{-100}$ events per fb⁻¹ of 8 TeV data on top of about $3 \cdot 10^3$ background events. No multivariate selection applied.

- Dedicated Hlt2 trigger line deployed in Run II, still limited by Hlt1 and L0
- Upgrade trigger will improve the efficiency on this and related channels sensibly
- In the ideal scenario of $\sim 100\%$ w.r.t. offline selection

$$N_{exp} = 5 \cdot 10^4 \text{ per fb}^{-1}$$

- Similar efficiencies are expected for the $K_S^0 \to \ell^+ \ell^- \ell^+ \ell^-$ rare channels
- Single event sensitivities of order $9.6 \cdot 10^{-10}$ per each fb⁻¹ in Upgrade conditions

UNIVERSITY OF LIVERPOOL

Prospects for charged kaons

- Enormous K^+ production but small acceptance
- Run I has 1 M $K^+ \to \pi^+ \pi^- \pi^+$ fully TIS
- Measurement of the charged kaon mass is under way to solve long standing disagreement
- With full software trigger $O(10^{-10})$ single event sensitivity per fb⁻¹ obtainable
- $K^+ \to \pi^+ \mu^- \mu^+$ and $K^+ \to \pi^+ e^- e^+$ with $\mathcal{B} \sim 10^{-7}$ become accessible

Still possible improvements

- Use of downstream tracks increasing decay length acceptance
- Use of K^+ track in VELO to constrain partially reconstructed decays [†]

[†]A. Contu LHCb-PUB-2014-032

Kaon physics from ϕ decays

- Huge ϕ production at LHC
- Exploit $\phi \to K^+ K^-$ decays in which one of the kaons is fully reconstructed
- Study final state of second kaon, also partially reconstructed thanks to the ϕ constraint
- $O(10^{10})$ tagged $\phi \to KK$ decays per year in the upgrade *
- For example study $K^+ \rightarrow e\nu$ (tag also initial Kaon leg with RICH1)

^{*}See talk by Vava Gligorov, Rare'n'Strange workshop https://indico.cern.ch/event/590880/

Rare'n'Strange workshops

- Bring together LHCb and the theoretical community on these new topics
- Goals:
 - \star boost theoretical interest on measurements in progress
 - * explain LHCb capabilities
 - build up a shopping list
- 1st at CERN, 2nd at Santiago de Compostela with large attendence (https://indico.cern.ch/event/590880/)
- A third workshop will be organized soon

Summary and conclusions

- LHCb expanding its physics reach towards strange physics complementary to the core program
- Encouraging Run I results on $K^0_S \to \mu^+ \mu^-$ and $\Sigma^+ \to p \mu^+ \mu^-$
- Large samples available already on tape fully exploiting existing data
- LHCb major player for K_S^0 and hyperons rare decays
- Complementary to $K^0_{\rm L}$ and K^+ dedicated experiments
- Run II giving new results with improved trigger
- Upgrade trigger will allow unprecedented sensitivities on many channels

Backup

Bibliography

Papers

- Evidence for the rare decay $\Sigma^+ \rightarrow p \mu^+ \mu^-$ [LHCb-PAPER-2017-049] [hep-ex/1712.08606]
- Improved limit on the branching fraction of the rare decay $K_S^0 \rightarrow \mu^+ \mu^-$ [LHCb-PAPER-2017-009] [hep-ex/1706.00758] [Eur. Phys. J. C, 77 10 (2017) 678]
- Search for the CP-violating strong decays $\eta \to \pi^+\pi^-$ and $\eta' \to \pi^+\pi^-$ [LHCb-PAPER-2016-046] [hep-ex/1610.03666] [Physics Letters B 764 (2017) 233-240]
- Search for the rare decay $K_S^0 \to \mu^+ \mu^-$ [LHCb-PAPER-2012-023] [hep-ex/1209.4029] [JHEP 01 (2013) 090]

Public notes

- Low p_T dimuon triggers at LHCb in Run 2 [LHCb-PUB-2017-023]
- Sensitivity of LHCb and its upgrade in the measurement of $\mathcal{B}(K_S^0 \to \pi^0 \mu^+ \mu^-)$ [LHCb-PUB-2016-017]
- Feasibility study of $K^0_S \to \pi^+\pi^- e^+ e^-$ at LHCb [LHCb-PUB-2016-016]

Search for an Hyper-CP like signal

- Hyper-CP signal is consistent with $\Sigma^+ \to pX^0(\to \mu\mu)$, with $m_{X^0} = 214.3 \pm 0.5$ MeV
- Mass resolution in LHCb:
 - * Raises with $m_{\mu^+\mu^-}$ departing from threshold
- Study efficiency versus m_{μ+μ-}: higher efficiency at small mass due to higher minimum p_T

Multivariate selection: BDT

- BDT aiming at rejecting combinatorial background
- Training on signal MC sample and background from data same-sign sidebands $(\Sigma^+\to \bar{p}\mu^+\mu^+)$
- Common geometric and kinematic variables: pointing, IP, $p_{\rm T}$ and isolations, .

۲.

Search for CP violating strong decays $\eta^{(\prime)} \to \pi^+ \pi^-$

- $\theta < 10^{-10}$ from neutron electric dipole moment (strong CP problem)
- $\eta^{(\prime)} \to \pi^+ \pi^-$ would be strong CP violating decays
- nEDM limit constraints SM branching fractions to $< 3 \cdot 10^{-17}$ any evidence higher than this would be NP
- Best limits at 90% CL $\mathcal{B}(\eta \to \pi^+\pi^-) < 1.3 \cdot 10^{-5} (\text{KLOE } \phi \to \eta \gamma \text{ [PLB606 (2005) 276]})$ $\mathcal{B}(\eta' \to \pi^+\pi^-) < 5.5 \cdot 10^{-5} (\text{BESIII } J/\psi \to \gamma \pi^+\pi^- \text{ [PRD84(2011)032006]})$

Search for CP violating strong decays $\eta' \to \pi^+ \pi^-$

- LHCb strategy: look for peaks in $\pi\pi$ mass from $D^+_{(s)} \to \pi^+\pi^-\pi^+$ decays (i.e. $D^+_{(s)} \to \pi^+\eta^{(\prime)}$)
- MVA operator to reduce background
- Normalisation: $\mathcal{B}(\eta^{(\prime)} \to \pi^+\pi^-) = \frac{N_{\eta^{(\prime)}}}{N_{D_{(s)}^+ \to \pi^+\pi^-\pi^+}} \frac{1}{\varepsilon_{\eta^{(\prime)}}} \frac{\mathcal{B}(D_{(s)}^+ \to \pi^+\pi^{-}\pi^+)}{\mathcal{B}(D_{(s)}^+ \to \pi^+\eta^{(\prime)})}$
- Constrained D masses and origin vertex improves resolution significantly
- $\varepsilon_{n^{(\prime)}}$ small correction to efficiency versus $m_{\pi\pi}$
- 3 fb^{-1} of Run I and 0.3 fb^{-1} of Run II data from Turbo stream
- Run II contribution enhanced by larger cross-section and trigger efficiency

Search for CP violating strong decays $\eta' \to \pi^+ \pi^-$

- No excess on top of the background (signal phase space plus combinatorial)
- Upper limit on branching fractions with CLs method at 90% CL:

$$\mathcal{B}(\eta \to \pi^+ \pi^-) < 1.6 \cdot 10^{-5}$$

 $\mathcal{B}(\eta' \to \pi^+ \pi^-) < 1.8 \cdot 10^{-5}$

• η limit compatible with previous results, η' limit improved by factor three

 $\Sigma^+ \to p \mu^+ \mu^-$: theoretical interpretations and experimental status distances with the status of the status of

• Several interpretations were proposed

- * Light Higgs boson [He, Tandean, Valencia, PRL.98.081802 (2007)]
- * Sgoldstino [Gorbunov, Rubakov PRD 73 035002] [Demidov, Gorbunov PRD73(2006)035002]
- * Many others [He et al PLB631 (2005) 100] [Geng, Hsiao PLB632(2006) 215] [Deshpande et al -PLB632 (2006) 212] [Mangano, Nason - Mod. Phys. Lett. A22 (2007)] [Chen et al - PLB663 (2008) 400] [Xiangdong et al - EPJC55 (2008) 317] [Pospelov - PRD80 (2009) 095002]
- In general pseudoscalar favoured over scalar and lifetime of order 10⁻¹⁴s
- Many experimental searches for low mass resonances in dimuons:
 - * CLEO, E391a, D0, BaBar, Belle, KTeV, BESIII
 - * Searched also at LHCb in $B^0 \to \mu^+ \mu^- \mu^+ \mu^-$ and $B^0 \to K^{*0} \mu^+ \mu^-$
 - Not confirmed nor disproved
- No other search in $\Sigma^+ \to p \mu^+ \mu^-$ decays