
MANAGING YOUR TIMING SYSTEM AS A STANDARD ETHERNET

NETWORK

A. A. Wujek∗, G. Daniluk, M. M. Lipinski, CERN, Geneva, Switzerland

A. Rubini, GNUDD, Pavia, Italy

Abstract

White Rabbit (WR) is an extension of Ethernet which

allows deterministic data delivery and remote synchroniza-

tion of nodes with accuracies below 1 nanosecond and jitter

better than 10 ps. Because WR is Ethernet, a WR-based

timing system can benefit from all standard network pro-

tocols and tools available in the Ethernet ecosystem. This

paper describes the configuration, monitoring and diagnos-

tics of a WR network using standard tools. Using the Simple

Network Management Protocol (SNMP), clients can easily

monitor with standard monitoring tools like Nagios, Icinga

and Grafana e.g. the quality of the data link and synchro-

nization. The former involves e.g. the number of dropped

frames; The latter concerns parameters such as the latency

of frame distribution and fibre delay compensation. The

Link Layer Discovery Protocol (LLDP) allows discovery

of the actual topology of a network. Wireshark and PTP

Track Hound can intercept and help with analysis of the

content of WR frames of live traffic. In order to benefit

from time-proven, scalable, standard monitoring solutions,

some development was needed in the WR switch and nodes.

The paper describes these developments and shows many

examples of the benefits brought about by this strategy.

INTRODUCTION

Timing networks are custom networks, with limited band-

width and use of custom technologies. This limits possibili-

ties of using many standard network tools and protocols.

For example, the General Machine Timing (GMT) used at

CERN is based on uni-directional 500 kb/s RS422 links, and

allows operators and users to synchronize different processes

in CERN’s accelerator network. The system has a number of

shortcomings though, among which the most important are

the limited bandwidth and the impossibility of dynamically

evaluating the delay induced by the data links. White Rabbit

is foreseen as a successor technology for GMT.

THE WHITE RABBIT NETWORK

The White Rabbit network [1] [2] achieves sub-

nanosecond timing accuracy by implementing both layer 1

syntonization and an extension of The IEEE 1588-2008 (Pre-

cise Time Protocol, PTP) standard [3]. Layer 1 syntonization

enables reference frequency distribution among devices in

a WR network. On the other hand, IEEE 1588-2008 is a

packet-based-protocol that performs the time synchroniza-

tion among the WR nodes. The fact that data transmission

∗ adam.wujek@cern.ch

is independent of clock transmission can reduce the cost of

infrastructure needed for monitoring of end-nodes.

WR Network Architecture

Figure 1 shows the layout of a typical WR network. Data-

wise it is a standard Ethernet switched network, i.e. there

is no hierarchy. Any node can talk to any other node. Re-

garding synchronization, there is a hierarchy established by

the fact that switches have downlink and uplink ports. A

switch uses its downlink ports to connect to uplink ports

of other switches and discipline their time. The uppermost

switch (Grand Master) in the hierarchy receives its notion of

time through external TTL Pulse Per Second (PPS) and 10

MHz inputs, along with a time code to initialize its internal

International Atomic Time (TAI) counter.

Figure 1: Layout of a typical WR network.

The WR Switch [4] is the main component of WR net-

works. It is in the form of a standard 19” chassis with 18

GbE ports and one management port in the front panel.

A typical WR Node [5] is a device with one GbE link,

two voltage controlled oscillators and an FPGA that contains

the WR PTP Core (WRPC) [6] together with application

specific IP cores.

CONFIGURATION OF A WR NETWORK

For small networks it is convenient to configure and mon-

itor switches and nodes manually, by using ssh or the web

interface for switches and a direct console connection for

nodes. However, such an approach does not scale well for

bigger networks.

White Rabbit Switch Configuration

A White Rabbit Switch applies the configuration at boot

time. The configuration file is in the format of Kconfig, the

same format used by the Linux kernel for configuration at

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUSH303

Timing and Synchronization
TUSH303

1007

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



build time [7]. The configuration file in the Kconfig format

can be stored locally on a switch or downloaded at boot time.

The remote location can be pre-configured or can be sent to

a switch in the DHCP response together with an assigned IP

address. The switch tries to download a configuration file

from a given location (via e.g. TFTP) and applies it (Fig. 2).

If the downloaded config file contains errors, it is reported

via SNMP and the last, locally stored, configuration file is

used instead.

Figure 2: Simplified flow showing how the White Rabbit

Switch retrieves its configuration.

When a WR switch breaks, it can be replaced on-site

by a unit taken directly from the stock without any pre-

configuration. Only the MAC address of a switch’s manage-

ment port has to be updated in the DHCP database to be able

to get the same IP, hostname and configuration file. Such an

approach can significantly reduce down time and does not

require in-depth WR knowledge to fix the network.

Controls Configuration Data Editor (CCDE)

To simplify the management of configuration files, a new

web-based tool, the Controls Configuration Data Editor

(CCDE), was developed (Fig. 3) at CERN.

Figure 3: White Rabbit Switch configuration in CCDE.

A new switch can be installed following these simple

steps:

• Add a new switch to the CCDE

– Pick the hostname of the switch

– Select Hardware and Software versions

– Optionally change the default configuration

• Click Generate in CCDE to generate a config file

• Power-on or restart the switch to trigger retrieval of the

new configuration file

Now the White Rabbit Switch is configured and ready to

operate.

Node Configuration

Contrary to a WR Switch’s configuration, configuration

on a WR node is done at build time. The main reason for such

design decision is lack of resources (especially memory)

on nodes. Unfortunately, not all parameters are known at

build time. For example SFP1 calibration values are not

known. These parameters are needed to achieve sub-ns

synchronization accuracy and are stored in an external flash

memory on each WR node. They can be written directly to

the flash through JTAG or by logging in via a serial console to

a soft CPU implemented in the FPGA and manually setting

the SFP values. These two possibilities do not scale well

for bigger installations. To address this issue, an SNMP

agent was implemented, which makes possible to configure

SFP calibration values by sending SNMP packets in the WR

network to a given node. Such an architecture also makes

it possible to design a stand-alone node with only one WR

link connected, reducing the cost of cabling and additional

machines to host WR node cards.

MONITORING AND DIAGNOSTICS

PROTOCOLS USED IN WR NETWORKS

Timing networks, due to their specific nature, usually

require new protocols to be defined and implemented. Since

White Rabbit is based on Ethernet, all standard protocols of

the IP family can be used. No new protocols were designed

neither to monitor or to diagnose White Rabbit networks.

Simple Network Management Protocol (SNMP)

The Simple Network Management Protocol (SNMP) [8] is

a standard and widely used protocol for monitoring networks.

It defines two types of roles: SNMP manager, which sends

requests, and SNMP agent, which responds to the manager

with the requested information.

Managers and agents exchange data as objects, which are

organized into a hierarchical tree. The objects are defined in

Management Information Base files (MIBs), and addressed

by object ID (OID) in the form of dot-separated natural

numbers. For example, the OID for the uptime of a system is

1.3.6.1.2.1.1.3, which thanks to MIBs can be translated

into a more readable form SNMPv2-MIB::sysUpTime.

OIDs implemented in the WR Switch are organized in

two groups:

• General status objects – are intended for operators.

They provide a summary about the status of a switch

and several subsystems (like timing, networking, Oper-

ating System). Each piece of information is exported

as a separate object (Fig. 4). These should be used by

control system operators and users without a compre-

hensive knowledge of White Rabbit internals. These

exports provide a general status of the device and high

1 Small Form-factor Pluggable transceiver

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUSH303

TUSH303
1008

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Timing and Synchronization



level errors, which is enough in most cases to perform

a quick repair.

• Expert objects – can be used by White Rabbit experts

for the in-depth diagnosis of switch failures. These

values are verbose and normally should not be used

by operators. This group contains various parameters

including the quality of the data link (like the number of

dropped frames) and synchronization (like the latency

of frame distribution and fibre delay compensation).

The SNMP implementation on the WR PTP core supports

only a subset of expert objects due to size constraints.

Figure 4: The structure of general status objects for operators

exported via SNMP.

The White Rabbit Switch uses Net-SNMP [9], a standard,

widely used implementation of an SNMP agent. The same

solution could not fit into the White Rabbit PTP Core due

to the tight memory constraints. Instead a custom SNMP

agent with a small footprint was implemented.

Syslog

Both the WR Switch and WR nodes support sending sys-

log messages. The switch uses a standard rsyslog [10] imple-

mentation and is capable of sending messages generated by

the kernel and user space applications. Additionally, when

any of the SNMP general statuses is not in the “OK” state, a

syslog message is sent with more details.

WRPC’s custom implementation of a syslog is very lim-

ited and sends messages only on critical events like loss of

synchronization or link going up.

Link Layer Discovery Protocol (LLDP)

The Link Layer Discovery Protocol (LLDP) is a proto-

col defined in standard IEEE 802.1ab [11]. LLDP can be

used to discover neighbors connected directly to a particular

device. LLDP is implemented as a link layer protocol, it is

not propagated via layer 2 network devices (like switches,

bridges). All the data sent in LLDP frames is in the form

of Type Length Value (TLV) fields. LLDP defines a set of

obligatory TLVs (chassis ID, port ID and time to live) and

a set of optional TLVs (including: port description, system

name, system description, system capabilities, management,

VLAN info). Every valid LLDP frame has to contain all

obligatory and any number of optional TLVs.

An LLDP-capable device can work in two modes: receive

and transmit. These two modes can be enabled or disabled

independently. Because there is neither a request-response

mechanism nor an acknowledgement embedded into the pro-

tocol, all transmit capable devices have to send LLDP frames

periodically.

The WR Switch supports both receiving and transmitting

of LLDP frames in a WR network. Due to memory con-

straints, the WR node’s implementation of LLDP is limited

only to transmit mode.

All data gathered by LLDP can be exported by a standard

SNMP daemon. Thanks to this it is possible to discover the

full topology of a WR network. This graph (Fig. 5) was

generated by LLDP-SNMP software [12].

Figure 5: Network layout based on information gathered

via LLDP. WR Switches are represented as orange ellipses,

WR nodes as yellow ellipses. Labels next to nodes represent

network interfaces used by particular links.

To generate such a graph, the root node of a graph/network

has to be identified; the natural choice of root node in a

WR network is the Grand Master switch. Starting from the

root switch LLDP-SNMP software recursively queries all

switches via SNMP for their neighbors discovered via LLDP.

If a neighbor is a switch it is also queried. All queries go

through the management port of the WR Switch. Since the

traffic on the management port is separate from the WR

network, no traffic is generated in the WR network.

After all devices in a WR network are discovered, a rep-

resentation of the network is stored in JSON format. Then

LLDP-SNMP translates the JSON representation into a DOT

language [13] file and using graphviz [14] generates a net-

work topology graph.

For networks that are intended to be static (like CERN’s)

LLDP can be used to compare the configured network topol-

ogy with the actual state. All differences can be easily

tracked and reported to a network administrator.

MONITORING AND DIAGNOSTICS

TOOLS FOR WR NETWORKS

Sniffing Traffic in a WR Network

Since a WR network transmits frames like a regular Eth-

ernet network, it is possible to use already existing tools to

intercept and analyze traffic in a WR timing network. How-

ever, due to the way the PTP protocol, WR switch and user

application itself work, there are several possible scenarios

of sniffer usage:

• An obvious scenario is to run a sniffer on a WR node

connected to a network. It could help to analyze the

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUSH303

Timing and Synchronization
TUSH303

1009

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



incoming traffic. Unfortunately, current implementa-

tion of a WR node have little support to forward traffic

from the WR network to the host system. The WR-NIC

project [15] allows that with the exception of WR-PTP

traffic itself.

• The simplest scenario is to connect a sniffing machine

to a free port in a WR switch. This is useful for inter-

cepting broadcast traffic. In this scenario it is impos-

sible to analyze WR-PTP traffic, since by design it is

point-to-point. In the future, WR switches will support

a port mirroring functionality, so even unicast traffic

will be intercepted using this method.

• Another possibility is a “men in the middle” kind of

approach. Inserting a host with two network interfaces

between two devices allows to intercept all the traf-

fic running between them. However, due to the way

WR-PTP is designed, the synchronization cannot be

preserved.

• The best way to intercept WR-PTP traffic is to run a

sniffer on a WR switch, then forward its output (live

or captured in a file) to a tool capable of analyzing

WR traffic (see the Wireshark and PTP Track Hound

sections for concrete examples). This method is also

not ideal. It allows only to intercept WR-PTP traffic.

Any other kind of traffic is not forwarded from the WR

Switch ports to the management CPU (ARM), running

Linux in the switch.

Unfortunately, none of the methods presented above allows

to intercept data and synchronization (WR-PTP) traffic at

the same time, but using them separately or in combination

can greatly improve debugging abilities.

Wireshark and PTP Track Hound are good examples of

tools that can be used for sniffing and analyzing WR-PTP

network traffic.

Wireshark

“Wireshark is the world’s foremost and widely-used net-

work protocol analyzer.” [16] In the first three scenarios

described above Wireshark can be run on a host system and

be used at the same time as a sniffer and an analyzer. In the

latter scenario we recommend running tcpdump [17] on a

switch (it is available there already), then redirect tcpdump’s

output over an ssh tunel to Wireshark for further analysis2.

Alternatively, tcpdump’s output can be stored locally on

a switch first, then transferred to a host machine for post

analysis.

There is an ongoing development by an author of this

paper of a dissector to extend Wireshark’s abilities to be able

to understand the WR-PTP protocol. Wireshark’s dissection

of an announce message is presented in Fig. 6.

2 To start tcpdump on a WR Switch and redirect its output to local a Wire-

shark instance, run the following command on a host with a connection

to the management port of the WR switch (not WR network):

$ ssh root@<switch_IP> /usr/sbin/tcpdump -U -s0 -i

<sw_port> -w - | wireshark -k -i -

Where <switch_IP> is the IP address of the WR switch management

port; <sw_port> is the port whose traffic is to be analyzed.

Figure 6: Dissected WR announce frame in Wireshark.

Recent versions of Wireshark are able to visualize flow

between hosts with a Flow Graph. An example of message

exchange between two WR switches to get synchronization

is presented in Fig. 7. Please note that the WR PTP imple-

mentation does not use unicast addresses for communication,

but a multicast address (00:1B:19:00:00:00) as destination.

Figure 7: Flow of WR frames in Wireshark.

A similar dissector to the one mentioned above can be

written for any application-specific protocol used in a WR

network.

PTP Track Hound

PTP Track Hound is another tool [18] that can be used

to sniff and analyze WR traffic [19] (Fig. 8). Similar to

Wireshark, this tool can sniff and analyze local traffic or use

tcpdump’s output from a remote machine to analyze it on a

local host live or as post analysis.

Figure 8: Dissected WR announce frame in PTP Track

Hound.

Nagios/Icinga

Nagios [20] and its fork Icinga [21] are applications that

monitor systems, networks and infrastructure. A sample

screen-shot of Nagios with the General status objects of a

WR switch is presented in Fig. 9. When an error occurs,

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUSH303

TUSH303
1010

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Timing and Synchronization



the corresponding status box changes color and notification

like sending e-mail or SMS can be issued. Nagios also has

different views showing an overview of multiple devices and

their state.

Figure 9: General status objects of a WR switch presented

in Nagios.

Grafana

Grafana [22] is a web based general purpose dashboard

and graph composer (Fig. 10). It can display data gathered

from WR switches and WR nodes via e.g. SNMP.

Figure 10: An example grafana’s dashboard.

Fluctuations of the round-trip time (RTT) between two

WR switches installed at CERN and visualized in Grafana

(Fig. 11) prove that changes between day and night have

to be compensated to achieve sub-nanosecond synchroniza-

tion. The data of the right part of the graph was gathered

during lower temperature periods and with less fluctuations

compared to the left part.

Figure 11: Time series of round-trip time between two WR

switches in Grafana

CONCLUSION

Since timing networks based on WR provide data and

synchronization distribution at the same time using Ethernet

technology, timing networks can benefit from many already

existing tools for management, monitoring and debugging.

Using standard protocols like SNMP and LLDP can reduce

the amount of required new development and reduce the risk

of vendor lock-in for monitoring and management software.

Introducing new users to WR network technology is much

easier compared to custom networks as it is based on already

existing and well known tools.

As these tools become more and more powerful, WR users

benefit from even more advanced monitoring and diagnostics

capabilities without any additional investment.

REFERENCES

[1] J. Serrano, P. Alvarez, M. Cattin, E. G. Cota et al., “The

White Rabbit Project,” in ICALEPCS, Kobe, Japan, 2009.

[2] White Rabbit project website, http://cern.ch/

white-rabbit

[3] 1588-2008 - IEEE Standard for a Precision Clock Synchro-

nization Protocol for Networked Measurement and Control

Systems

[4] The White Rabbit Switch, https://www.ohwr.org/

projects/wr-switch-hw

[5] The White Rabbit Node, https://www.ohwr.org/

projects/white-rabbit/wiki/node

[6] White Rabbit PTP Core, https://www.ohwr.org/

projects/wr-cores/wiki/wrpc-core

[7] Kconfig language specification https://www.kernel.

org/doc/Documentation/kbuild/kconfig-language.

txt

[8] Introduction to version 2 of the Internet-standard Network

Management Framework, RFC 1441 and others https://

tools.ietf.org/html/rfc1441

[9] Net-SNMP project homepage, http://www.net-snmp.

org

[10] rsyslog project, http://www.rsyslog.com

[11] IEEE Standard Local and Metropolitan Area Networks. Sta-

tion and Media Access Control Connectivity Discovery, in

IEEE Std 802.1AB-2005

[12] SNMP LLDP project, https://github.com/

stanislavb/snmp-lldp

[13] Specification of a DOT Language, http://www.graphviz.

org/content/dot-language

[14] Graphviz - Graph Visualization Software, http://www.

graphviz.org

[15] WR-NIC project’s homepage, https://www.ohwr.org/

projects/wr-nic

[16] Wireshark project homepage, https://www.wireshark.

org

[17] tcpdump’s homepage, http://www.tcpdump.org

[18] PTP Track Hound’s homepage, https://www.

ptptrackhound.com

[19] PTP Track Hound 1.0.1 release notes, https://www.

ptptrackhound.com/release-notes.html

[20] Nagios’s homepage, https://nagios.org

[21] Icinga’s homepage, https://www.icinga.com

[22] Grafana’s homepage, https://grafana.com

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUSH303

Timing and Synchronization
TUSH303

1011

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


