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Abstract It is possible that measurements of vector boson
scattering (VBS) processes at the LHC will reveal disagree-
ment with Standard Model predictions, but no new particles
will be observed directly. The task is then to learn as much as
possible about the new physics from a VBS analysis carried
within the framework of the Effective Field Theory (EFT).
In this paper we discuss issues related to the correct usage of
the EFT when the WW invariant mass is not directly acces-
sible experimentally, as in purely leptonic W decay chan-
nels. Strategies for future data analyses in case such scenario
indeed occurs are proposed.

1 Introduction and strategy

Searches for deviations from Standard Model (SM) pre-
dictions in processes involving interactions between known
particles are a well established technique to study possi-
ble contributions from Beyond the Standard Model (BSM)
physics. In this paper we address the question how much
we can learn about the scale of new physics and its strength
using the Effective Field Theory (EFT) approach to W+W+
scattering if a statistically significant deviation from the
SM predictions is observed in the expected LHC data for
the process pp → 2 jets + W+W+. Our specific focus
is on the proper use of the EFT in its range of valid-
ity. With this in mind, we discuss the practical usefulness
of the EFT language to describe vector boson scattering
(VBS) data and whether or not this can indeed be the right
framework to observe the first hints of new physics at the
LHC.

The EFT is in principle a model independent tool to
describe BSM physics below the thresholds for new states.
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One supplements the SM Lagrangian by higher dimension
operators

L = LSM + �i
C (6)
i

�2
i

O(6)
i + �i

C (8)
i

�4
i

O(8)
i + · · · , (1.1)

where the C’s are some “coupling constants” and �’s are the
decoupled new mass scales. The mass scale is a feature of
the UV completion of the full theory and thus is assumed
common to all the coefficients

f (6)
i = C (6)

i

�2 , f (8)
i = C (8)

i

�4 , · · · , (1.2)

which are free parameters because the full theory is unknown.
One should stress that the usefulness of any EFT analysis of
a given process relies on the assumption that only few terms
in the expansion of Eq. (1.1) give for that process an adequate
approximation to the underlying UV theory. The necessary
condition obviously is that the energy scale of the consid-
ered process, E < �. However, the effective parameters in
the expansion Eq. (1.1) are the f ’s and not the scale � itself.
Neither � nor theC’s are known without referring to specific
UV complete models. Even for E << � a simple counting
of powers of E/� can be misleading as far as the contri-
bution of various operators to a given process is concerned.
The latter depends also on the relative magnitude of the cou-
plings C , e.g., C (6)

i versus C (8)
i and/or within each of those

sets of operators, separately, [1–4], as well as on the inter-
ference patterns in various amplitudes calculated from the
Lagrangian Eq. (1.1) [5].

For instance, the contribution of dimension-6 (D = 6)
operators to a given process can be suppressed compared to
dimension-8 (D = 8) operators contrary to a naive (E/�)

power counting [3–6] or, vice versa, the [SM × D = 8]
interference contribution can be subleading with respect to
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the [D = 6]2 one [2,4,7]. Clearly, the assumption about
the choice of operators in the truncation in Eq. (1.1) used to
analyze a process of our interest introduces a strong model
dependent aspect of that analysis: one is implicitly assuming
that there exist a class of UV complete models such that the
chosen truncation is a good approximation. It is convenient
to introduce the concept of EFT “models” defined by the
choice of operators Oi and the values of fi . The question of
this paper is then about the discovery potential at the LHC
for BSM physics described by various EFT “models”.

The crucial question is what the range of validity can
be of a given EFT “model”. There is no precise answer to
this question unless one starts with a specific theory and
derives Eq. (1.1) by decoupling the new degrees of free-
dom. However, in addition to the obvious constraint that the
EFT approach can be valid only for the energy scale E < �

(unfortunately with unknown value of �), for theoretical con-
sistency the partial wave amplitudes should satisfy the pertur-
bative unitarity condition. The latter requirement translates
into the condition E2 < �2 ≤ sU , where sU ≡ sU ( fi ) is
the perturbative partial wave unitarity bound as a function of
the chosen operators and the values of the coefficients fi ’s.
Thus, the value of �2

max = sU gives the upper bound on the
validity of the EFT based “model”. Since the magnitude of
the expected (or observed) experimental effects also depends
on the same fi , one has a frame for a consistent use of the
EFT “model” to describe the data once they are available.
For a BSM discovery in the EFT framework, proper usage
of the “model” is a vital issue. It makes no physical sense
to extend the EFT “model” beyond its range of applicability,
set by the condition E < �. We shall illustrate this logic in
more detail in the following.

A common practice in the LHC data analyses in the EFT
framework is to derive uncorrelated limits on one operator
at a time while setting all the remaining Wilson coefficients
to zero. This in fact means choosing different EFT “mod-
els”: such limits are valid only under the assumption that just
one chosen operator dominates BSM effects in the studied
process in the available energy range. In this paper we will
consider only variations of single dimension-8 operators.1

However, the strategy we present can be extended to the case
of many operators at a time, including dimension-6 (keeping
in mind that varying more than one operator substantially
complicates the analysis). For a given EFT “model”

σ ∝ |A f ull |2 = |ASM |2 + (ASM × A∗
BSM +hc)+|ABSM |2.

(1.3)

We focus on the process

pp → 2 jets + W+W+ → 2 jets + l+ν + l ′+ν′, (1.4)

1 For a physical justification of omitting dimension-6 operators see
Sect. 2.

where l and l ′ stand for any combination of electrons and
muons. The process depends on theW+W+ scattering ampli-
tude (the gauge bosons can of course be virtual). The EFT
“models” can be maximally valid up to certain invariant mass
M = √

s of the W+W+ system

M < � ≤ MU ( fi ), (1.5)

where MU ( fi ) is fixed by the partial wave perturbative uni-
tarity constraint, (MU ( fi ))2 = sU ( fi ).

The differential cross section dσ
dM reads (actual calcula-

tions must include also all non-VBS diagrams leading to the
same final states):

dσ

dM
∼ �i jkl

∫
dx1dx2qi (x1)q j (x2)|M(i j

→ klW+W+)|2d� δ(M −
√

(pW+ + pW+)2), (1.6)

where qi (x) is the PDF for parton i , the sum runs over partons
in the initial (i j) and final (kl) states and over helicities, the
amplitude M is for the parton level process i j → klW+W+
and d� denotes the final state phase space integration. The
special role of the distribution dσ

dM follows from the fact that it
is straightforward to impose the cutoff M ≤ �, Eq. (1.5), for
the WW scattering amplitude. The differential cross section,
dσ
dM , is therefore a very sensitive and straightforward test of
new physics defined by a given EFT “model”. Unfortunately,
the W+W+ invariant mass in the purely leptonic W decay
channel is not directly accessible experimentally and one
has to investigate various experimental distributions of the
charged particles. The problem here is that the kinematic
range of those distributions is not related to the EFT “model”
validity cutoff M < � and if � < Mmax , where Mmax is the
kinematic limit accessible at the LHC for the WW system,
there is necessarily also a contribution to those distributions
from the region � < M < Mmax . The question is then:
in case a deviation from SM predictions is indeed observed,
how to verify a “model” defined by a single higher-dimension
operator O(k)

i and a given value of fi by fitting it to a set of
experimental distributions Di and in what range of fi such a
fit is really meaningful [7]. Before we address this question,
it is in order to comment on the perturbative partial wave
unitarity constraint.

It is worthwhile to stress several interesting points.

1. For a given EFT “model”, the unitarity bound is very
different for the J = 0 partial wave of different helicity
amplitudes and depends on their individual energy depen-
dence (some of them remain even constant and never
violate unitarity, see Appendix). Our MU has to be taken
as the lowest unitarity bound, universally for all helicity
amplitudes, because it is the lowest bound that determines
the scale �max . More precisely, one should take the value
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obtained from diagonalization of the matrix of the J = 0
partial waves in the helicity space.

2. Correct assessment of the EFT “model” validity range
in the W+W+ scattering process requires also consid-
eration of the W+W− scattering amplitudes which by
construction probe the same couplings and are sensitive
to exactly the same operators. For most higher dimension
operators, this actually significantly reduces their range
of validity in W+W+ analyses. Conversely, the WZ and
Z Z processes can be assumed to contain uknown contri-
butions from additional operators which adjust the value
of � consistently.

3. It is interesting to note that for the fi values of practi-
cal interest the deviations from SM predictions in the
total cross sections become sizable only in a narrow
range of energies just below the value of MU , where the
|ABSM |2 term in Eq. (1.3) takes over. However, for most
dimension-8 operators the contribution of the interfer-
ence term is not completely negligible (see Appendix for
details). Even if deviations from the SM are dominated by
the helicity combinations that reach the unitarity bound
first, the total unpolarized cross sections up to M = MU

get important contributions also from amplitudes which
are still far from their own unitarity limits.

In the Appendix we illustrate various aspects of those bounds
by presenting the results of analytical calculations for two
dimension-8 operators, one contributing mainly to the scat-
tering of longitudinally polarized gauge bosons and one to
transversely polarized.

We now come back to the problem of testing the EFT
“models” when the W+W+ invariant mass is not accesible
experimentally. Let us define the BSM signal as the deviation
from the SM prediction in the distribution of some observable
Di .

S = Dmodel
i − DSM

i . (1.7)

The first quantitative estimate of the signal can be written as

Dmodel
i =

∫ �

2MW

dσ

dM
|modeldM+

∫ Mmax

�

dσ

dM
|SMdM. (1.8)

It defines signal coming uniquely from the operator that
defines the “model” in its range of validity and assumes only
the SM contribution in the region M > �. Realistically one
expects some BSM contribution also from the region above
�. While this additional contribution may enhance the signal
and thus our sensitivity to new physics, it may also preclude
proper description of the data in the EFT language. Such
description in terms of a particular EFT “model” makes sense
if and only if this contribution is small enough when com-
pared to the contribution from the region controlled by the

EFT “model”. The latter depends on the value of � and fi ,
and the former on the unknown physics for M > �, which
regularizes the scattering amplitudes and makes them consis-
tent with partial wave unitarity. Ideally, one would conclude
that the EFT “model” is tested for values of (� ≤ MU , fi )
such that the signals computed from Eq. (1.8) are statistically
consistent (say, within 2 standard deviations) with the signals
computed when the tail � > MU is modeled in any way that
preserves unitarity of the amplitudes, i.e., the contribution
from this region is sufficiently suppressed kinematically by
parton distributions. This requirement is of course impossi-
ble to impose in practice, but for a rough quantitative estimate
of the magnitude of this contribution, one can assume that
all the helicity amplitudes above � remain constant at their
respective values they reach at �, and that � is common to
all the helicity amplitudes. For � = �max , this prescrip-
tion regularizes the helicity amplitudes that violate unitarity
at MU and also properly accounts for the contributions of
the helicity amplitudes that remain constant with energy. It
gives a reasonable approximation to the total unpolarized
cross sections for M > MU , at least after some averaging
over M . More elaborated regularization techniques can also
be checked here. The full contribution to a given distribution
Di is then taken as

Dmodel
i =

∫ �

2MW

dσ

dM
|modeldM +

∫ Mmax

�

dσ

dM
|A=const dM.

(1.9)

BSM observability imposes some minimum value of f
to obtain the required signal statistical significance. It can
be derived based on Eq. (1.9) [or Eq. (1.8)]. On the other
hand, description in the EFT language imposes some max-
imum value of f such that signal estimates computed from
Eqs. (1.8) and (1.9) remain statistically consistent. Large dif-
ference between the two computations implies significant
sensitivity to the region above �. It impedes a meaningful
data description in the EFT language and also suggests we
are more likely to observe the new physics directly.

Assuming � = MU , we get a finite interval of possible f
values, bounded from two sides, for which BSM discovery
and correct EFT description are both plausible. In the more
general case when � < MU , i.e., new physics states may
appear before our EFT “model” reaches its unitarity limit,
respective limits on f depend on the actual value of �. We
thus obtain a 2-dimensional region in the plane (�, fi ), which
is shown in the cartoon plot in . 1. This region is bounded
from above by the unitarity bound MU ( fi ) (solid blue curve),
from the left by the signal significance criterion (dashed black
curve) and from the right by the EFT consistency criterion
(dotted black curve). The EFT could be the right framework
to search for BSM physics as long as these three criteria do not
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Fig. 1 Cartoon plot which shows the regions in fi and � (for an arbi-
trary higher-dimension operator Oi ) in terms of BSM signal observ-
ability and applicability of EFT “models” based on the choice of a
higher-dimension operator in an analysis of the same-sign VBS pro-
cess with purely leptonic decays. The central white triangle is the most
interesting region where the underlying BSM physics can be studied
within the EFT framework

mutually exclude each other, i.e., graphically, the “triangle”
shown in our cartoon plot is not empty. In Sect. 3 we will
verify whether such “triangles” indeed exist for the individual
dimension-8 operators.

Thus, our preferred strategy for data analysis is as follows:

1. From collected data measure a distribution Di (possibly
in more than one dimension) that offers the highest sen-
sitivity to the studied operator(s).

2. If deviations from the SM are indeed observed,2 fit par-
ticular values of (� ≤ MU , fi ) based on EFT simu-
lated templates in which the contribution from the region
M > � is taken into account according to Eq. (1.9) or
using some more elaborated regularization methods.

3. Fixing fi and � to the fit values, recalculate the Di tem-
plate so that the region M > � is populated only by the
SM contribution Eq. (1.8).

4. Check statistical consistency between the original simu-
lated Di template and the one based on Eq. (1.8).

5. Physics conclusions from the obtained (�, fi ) values
can only be drawn if such consistency is found. In addi-
tion, stability of the result against different regularization
methods provides a measure of uncertainty of the proce-
dure – too much sensitivity to the region above � means

2 We do not discuss in this paper the bounds on the Wilson coeffi-
cients obtained from the data analysis when no statistically significant
signal on new physics is observed. Such an analysis requires a sepa-
rate discussion, although it will be also influenced by the results of this
paper.

the procedure is destined to fail and so the physical con-
clusion is that data cannot be described with the studied
operator.

2 Preliminary technicalities

The same-sign pp → W+W+ j j process probes a number
of higher dimension operators. Among them are dimension-6
operators which modify only the Higgs-to-gauge coupling:

O�d = ∂μ(�†�)∂μ(�†�),

O�W = (�†�)Tr[WμνWμν],
OW̃W = �†W̃μνW

μν�,

(2.1)

(the last one being CP-violating), dimension-6 operators
which induce anomalous triple gauge couplings (aTGC):

OWWW = Tr[WμνW
νρWμ

ρ ],
OW = (Dμ�)†Wμν(Dν�),

OB = (Dμ�)†Bμν(Dν�),

OW̃WW = Tr[W̃μνW
νρWμ

ρ ],
OW̃ = (Dμ�)†W̃μν(Dν�),

(2.2)

(the last two of which are CP-violating), as well as dimension-
8 operators which induce only anomalous quartic couplings
(aQGC). In the above, � is the Higgs doublet field, the covari-
ant derivative is defined as

Dμ ≡ ∂μ + i
g′

2
Bμ + igWi

μ

τ i

2
, (2.3)

and the field strength tensors are

Wμν = i

2
gτ i

(
∂μW

i
ν − ∂νW

i
μ + gεi jkW

j
μW

k
ν

)
,

Bμν = i

2
g′ (∂μBν − ∂νBμ

)
,

(2.4)

for gauge fields Wi
μ and Bμ of SU (2)I and U (1)Y , respec-

tively.
Higgs and triple gauge couplings can be accessed experi-

mentally via other processes, namely Higgs physics and dibo-
son production which is most sensitive to aTGC. They are
presently known to agree with the SM within a few per cent
(For a combined analysis of LEP and Run I LHC data, see e.g.
[14]), which translates into stringent limits on the dimension-
6 operators.

On the other hand, VBS processes are more suitable to
constrain aQGC. The following dimension-8 operators con-
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tribute to the WWWW vertex:

OS0 =
[(
Dμ�

)†
Dν�

]
×

[(
Dμ�

)†
Dν�

]
,

OS1 =
[(
Dμ�

)†
Dμ�

]
×

[
(Dν�)† Dν�

]
,

OM0 = Tr
[
ŴμνŴ

μν
]

×
[(
Dβ�

)†
Dβ�

]
,

OM1 = Tr
[
ŴμνŴ

νβ
]

×
[(
Dβ�

)†
Dμ�

]
,

OM6 =
[(
Dμ�

)†
ŴβνŴ

βνDμ�
]
,

OM7 =
[(
Dμ�

)†
ŴβνŴ

βμDν�
]
,

OT 0 = Tr
[
ŴμνŴ

μν
]

× Tr
[
Ŵαβ Ŵ

αβ
]
,

OT 1 = Tr
[
ŴανŴ

μβ
]

× Tr
[
Ŵμβ Ŵ

αν
]
,

OT 2 = Tr
[
ŴαμŴ

μβ
]

× Tr
[
ŴβνŴ

να
]
.

(2.5)

In the above, we have defined Ŵμν = 1
ig Wμν . Throughout

this paper we follow the convention used in MadGraph [17]
with dimension-8 operators included via public UFO files as
far as the actual definitions of the field strength tensors and
Wilson coefficients are concerned. Whenever results from the
VBFNLO program [18,19] are used in this work, appropriate
conversion factors are applied. For more details on the subject
see Ref. [12].

The same-sign pp → W+W+ j j production has been
already observed during Run I of the LHC [8–10] and con-
firmed by a recent measurement of the CMS Collaboration
at 13 TeV Run II [11]. Also, pioneering measurements of the
ZW± j j [15] and Z Z j j [11] processes exist. They all place
experimental limits on the relevant dimension-8 operators.
However, most presently obtained limits involve unitarity
violation within the measured kinematic range, leading to
problems in physical interpretation and even comparison of
the different analyses.

Our goal is to investigate the discovery potential at the
High Luminosity LHC (HL-LHC) of the BSM physics effec-
tively described by EFT “models” with single dimension-8
operators at a time, with proper attention paid to the regions
of validity of such models, as described in Sect. 1.

3 Results of simulations

For the following analysis dedicated event samples of the
process pp → j jμ+μ+νν at 14 TeV were generated at LO
using the MadGraph5_aMC@NLO v5.2.2.3 generator [17],
with the appropriate UFO files containing additional ver-
tices involving the desired dimension-8 operators. For each
dimension-8 operator a sample of at least 500,000 events
within a phase space consistent with a VBS-like topology

(defined below) was generated. A preselected arbitrary value
of the relevant f coefficient (from now on, f ≡ fi with
i = S0, S1, T 0, T 1, T 2, M0, M1, M6, M7) was assumed
at each generation; different f values were obtained by
applying weights to generated events, using the reweight
command in MadGraph. The value f =0 represents the Stan-
dard Model predictions for each study. The Pythia package
v6.4.1.9 [20] was used for hadronization as well as initial and
final state radiation processes. No detector was simulated.
Cross sections at the output of MadGraph were multiplied
by a factor 4 to account for all the lepton (electron and/or
muon) combinations in the final state.

In this analysis, the Standard Model process pp →
j jl+l+νν is treated as the irreducible background, while sig-
nal is defined as the enhancement (which may be positive or
negative in particular cases) of the event yield in the pres-
ence of a given dimension-8 operator relative to the Standard
Model prediction. No reducible backgrounds were simulated,
as they are known to be strongly detector dependent. For this
reason, results presented here should be treated mainly as a
demonstration of our strategy rather than as a precise deter-
mination of numerical values. For more realistic results this
analysis should be repeated with full detector simulation for
each of the LHC experiments separately.

The final analysis is performed by applying standard
VBS-like event selection criteria, similar to those applied
in data analyses carried by ATLAS and CMS. These were:
Mj j > 500 GeV, �η j j > 2.5, p j

T > 30 GeV, |η j | < 5,
p l
T > 25 GeV, |ηl | < 2.5. As anticipated in Sect. 1, signal is

calculated in two ways. First, using Eq. (1.8), where � can
vary in principle between 2MW and the appropriate unitar-
ity limit for each chosen value of f . The MWW > � tail
of the distribution is then assumed identical as in the Stan-
dard Model case. Second, using Eq. (1.9) which accounts
for an additional BSM contribution coming from the region
MWW > �. The latter is estimated under the assumption
that helicity amplitudes remain constant above this limit, as
discussed in Sect. 1. For the case when � is equal to the
unitarity limit, this corresponds to unitarity saturation.

For each f value of every dimension-8 operator, signal
significance is assessed by studying the distributions of a
large number of kinematic variables. We only considered
one-dimensional distributions of single variables. Each dis-
tribution was divided into 10 bins, arranged so that the Stan-
dard Model prediction in each bin is never lower than 2
events. Overflows were always included in the respective
highest bins. Ultimately, each distribution had the form of 10
numbers, that represent the expected event yields normalized
to a total integrated luminosity of 3 ab−1, each calculated in
three different versions: NSM

i for the Standard Model case,
NEFT
i from applying Eq. (1.8), and N BSM

i from applying
Eq. (1.9) (here subscript i runs over the bins). In this analysis,
Eq. (1.9) was implemented by applying additional weights
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Fig. 2 Typical examples of kinematic distributions used for the assess-
ment of BSM signal significances. Shown are the distributions of Mll ,
Mo1 and RpT (in log scale): in the Standard Model (solid lines), with
fT 1 = 0.1/TeV−4 and the high-MWW tail treatment according to

Eq. (1.9) (dashed lines), and with fT 1 = 0.1/TeV−4 and the high-
MWW tail treatment according to Eq. (1.8) (dotted lines). Assumed is√
s = 14 TeV and an integrated luminosity of 3 ab−1

to events above MWW = � in the original non-regularized
samples generated by MadGraph. For the dimension-8 oper-
ators, this weight was equal to (�/MWW )4. The choice of
the power in the exponent takes into account that the non-
regularized total cross section for WW scattering grows less
steeply around MWW = � than its asymptotic behavior∼ s3,
which is valid in the limit MWW → ∞. This follows from
the observation that unitarity is first violated much before the
cross section gets dominated by its ∼ s3 term, as shown in
the Appendix. The applied procedure is supposed to ensure
that the total WW scattering cross section after regulariza-
tion behaves like 1/s for MWW > �, and so it approximates
the principle of constant amplitude (Sect. 1), at least after
some averaging over the individual helicity combinations.
Examples of simulated distributions are shown in Fig. 2.

Signal significance expressed in standard deviations (σ ) is
defined as the square root of a χ2 resulting from comparing
the bin-by-bin event yields:

χ2 =
∑
i

(N BSM
i − NSM

i )2/NSM
i . (3.1)

Lower observation limits on each operator are defined by
the requirement of signal significance being above the 5σ

level. Small differences between the respective signal pre-
dictions obtained using Eqs. (1.8) and (1.9), as well as using
other regularization techniques, will be manifest as slightly
different observation limits and should be understood as the
uncertainty margin arising from the unknown physics above
�, no longer described in terms of the EFT. Examples of sig-
nal significances as a function of f are shown in Fig. 3 with
dashed curves. Consistency of the EFT description is deter-
mined by requiring a small difference between the respective
predictions from Eqs. (1.8) and (1.9). An additional χ2

add is
computed based on the comparison of the respective distri-
butions of NEFT

i and N BSM
i :

χ2
add =

∑
i

(NEFT
i − N BSM

i )2/N BSM
i . (3.2)

In this analysis we allowed differences amounting to up to
2σ in the most sensitive kinematic distribution. This differ-
ence as a function of f is shown in Fig. 3 as dotted curves.
These considerations consequently translate into effective
upper limits on the value of f for each operator.

For each dimension-8 operator we took the distribution
that produced the highest χ2 among the considered vari-
ables. The most sensitive variables we found to be RpT ≡
p l1
T p l2

T /(p j1
T p j2

T ) [21] for OS0 and OS1, and Mo1 ≡√
(|p l1

T | + |p l2
T | + |p miss

T |)2 − (p l1
T + p l2

T + p miss
T )2 [22]

for the remaining operators (for some of them, Mll would
give almost identical results as Mo1, but usually this was not
the case).

Unitarity limits were computed using the VBFNLO [18,
19] calculator v1.3.0, after applying appropriate conversion
factors to the input values of the Wilson coeeficients, so to
make it suitable to the MadGraph 5 convention. We used the
respective values from T-matrix diagonalization, considering
both W+W+ and W+W− channels, and taking always the
lower value of the two. For the operators we consider here,
unitarity limits are lower for W+W− than for W+W+ except
for fS0 (both positive and negative) and negative fT 1.

Assuming � is equal to the respective unitarity bounds, the
lower and upper limits for the values of f for each dimension-
8 operator, for positive and negative f values, estimated for
the HL-LHC with an integrated luminosity of 3 ab−1, are read
out directly from graphs such as Fig. 3 and listed below in
Table 1. These limits define the (continous) sets of testable
EFT “models” based on the choice of single dimension-8
operators.

The fact that the obtained lower limits are more optimistic
than those from several earlier studies (see, e.g., Ref. [23])
reflects our lack of detector simulation and reducible back-
ground treatment, but may be partly due to the use of the most
sensitive kinematic variables. It must be stressed, nonethe-
less, that both these factors affect all lower and upper limits
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Fig. 3 Typical examples of BSM signal significances computed as a
function of fS0 (upper row) and fT 1 (lower row) based on different kine-
matic distributions. Here the � cutoff is assumed equal to the unitarity
limit. Shown are predictions obtained by using Eq. (1.8) (solid lines)

and Eq. (1.9) (dashed lines). The dotted lines show the difference in
standard deviations between the two respective calculations. Assumed
is

√
s = 14 TeV and an integrated luminosity of 3 ab−1

Table 1 Estimated lower limits
for BSM signal significance and
upper limits for EFT consistency
for each dimension-8 operator
(positive and negative f values),
for the case when � is equal to
the unitarity bound, in the
W+W+ scattering process at the
LHC with 3 ab−1

Coeff. Lower limit Upper limit Coeff. Lower limit Upper limit
(TeV−4) (TeV−4) (TeV−4) (TeV−4)

fS0 1.3 2.0 − fS0 1.2 2.0

fS1 8.0 6.5 − fS1 5.5 6.0

fT 0 0.08 0.13 − fT 0 0.05 0.12

fT 1 0.03 0.06 − fT 1 0.03 0.06

fT 2 0.20 0.25 − fT 2 0.10 0.20

fM0 1.0 1.2 − fM0 1.0 1.2

fM1 1.0 1.9 − fM1 0.9 1.8

fM6 2.0 2.4 − fM6 2.0 2.4

fM7 1.1 2.8 − fM7 1.3 2.8

likewise, so their relative positions with respect to each other
are unlikely to change much.

As can be seen, the ranges are rather narrow, but in most
cases non-empty. Rather wide regions where BSM signal
significance does not preclude consistent EFT description
can be identified for fT 1 and fM7 regardless of sign, as well
as somewhat smaller regions for fT 0, fT 2 and fM1. Prospects
for fM0, fM6 and fS0 may depend on the accuracy of the
high-MWW tail modeling and a narrow window is also likely
to open up unless measured signal turns out very close to

its most conservative prediction. Only for positive values of
fS1, the resulting upper limit for consistent EFT description
remains entirely below the lower limit for signal significance.

Allowing that the scale of new physics � may be lower
than the actual unitarity bound results in 2-dimensional lim-
its in the ( f,�) plane. Usually this means further reduction
of the allowed f ranges for lower � values and the result-
ing regions take the form of an irregular triangle. Respec-
tive results for all the dimension-8 operators are depicted in
Figs. 4 and 5. It is interesting to note that in many cases
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Fig. 4 Regions in the � vs f (positive f values) space for dimension-
8 operators in which a 5σ BSM signal can be observed and the EFT
is applicable. The unitarity limit is shown in blue. Also shown are the

lower limits for a 5σ signal significance from Eq. (1.9) (dashed lines)
and the upper limit on 2σ EFT consistency (dotted lines). Assumed is√
s = 14 TeV and an integrated luminosity of 3 ab−1

this puts an effective lower limit on � itself, in addition to
the upper limit derived from the unitarity condition. In par-
ticular, the adopted criteria bound the value of � to being
above ∼ 2 TeV for the OM operators as well as for OS0.
The OT operators still allow a wider range of �. Unfortu-
nately, there is little we can learn from fitting fS1, since signal
observability requires very low � values, for which the new
physics could probably be detected directly.

It is interesting to plot the values of the couplings
√
C

in Eq. (1.1) as a function of fi assuming �max = MU i.e.,
Cmax = f × (MU )k−4, where k is the dimensionality of the
operator that defines the EFT “model”. In models with one
BSM scale and one BSM coupling constant

√
C has the inter-

pretation of the coupling constant [1]. The values ofCmax are
to a good approximation independent of f (see Fig. 6) and,
being generally in the range (

√
4π, 4π ), reflect the approach

to a strongly interacting regime in an underlying (unknown)
UV complete theory. The EFT discovery regions depicted in
Figs. 4 and 5 have further interesting implications for the cou-
plings C . For a fixed f , the unitarity bound �2 < sU implies
that C < Cmax = f (MU )4, whereas the lower bound on �

that comes from the combination of the signal significance
and EFT consistency criteria gives us C > �4

min f . Thus,
a given range (�min,�max ) corresponds to a range of val-
ues of the couplings C , so that we could not only discover an
indirect sign of BSM physics, but also learn something about
the nature of the complete theory, whether it is strongly or
weakly interacting. In particular, for the following operators:
OS0, OM0, OM1, OM6 and OM7, only models with C being
close to the strong interaction limit will be experimentally
testable, while a wider range of C may be testable for OT 0,
OT 1 and OT 2.
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Fig. 5 Regions in the � vs f (negative f values) space for dimension-8 operators in which a 5σ BSM signal can be observed and the EFT is
applicable. For the meaning of curves see caption of Fig. 4. Assumed is

√
s = 14 TeV and an integrated luminosity of 3 ab−1

Fig. 6 Maximum value
√
Cmax of the coupling constants related to

individual dimension-8 operators, calculated at the energy where the
unitarity limit is reached, as a function of the relevant f value

4 Conclusions and outlook

In this paper we have analyzed the prospects for discov-
ering physics beyond the SM at the HL-LHC in the EFT
framework applied to the VBS amplitudes, in the process
pp → W+W+ j j . We have introduced the concept of EFT
“models” defined by the choice of higher dimension opera-
tors and values of the Wilson coefficients and analyzed “mod-
els” based on single dimension-8 operators at a time. We
emphasize the role of the invariant mass MWW whose distri-
bution directly relates to the intrinsic range of validity of the
EFT approach, MWW < � ≤ MU , and the importance to
tackle this issue correctly in data analysis in order to study the
underlying BSM physics. While this is relatively simple (in
principle) for final states where MWW can be determined on
an event-by-event basis, the value of MWW is unfortunately
not available in leptonic W decays. We argue that usage of
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EFT “models” in the analysis of purely leptonic W decay
channels requires bounding the possible contribution from
the region MWW > �, no longer described by the “model”,
and ensuring it does not significantly distort the measured
distributions compared to what they would have looked from
the region of EFT validity alone.

We propose a data analysis strategy to satisfy the above
requirements and verify in what ranges of the relevant Wilson
coefficients such strategy can be successfully applied in a
future analysis of the HL-LHC data. We find that, with a
possible exception of OS1, all dimension-8 operators which
affect the WWWW quartic coupling have regions where a
5σ BSM signal can be observed at HL-LHC with 3 ab−1 of
data, while data could be satisfactorily described using the
EFT approach.

From such analysis it may be possible to learn something
about the underlying UV completion of the full theory. Suc-
cessful determination of a given f value, using a procedure
that respects the EFT restricted range of applicability, will put
non-trivial bounds on the value of � and consequently, the
BSM coupling C . These bounds are rather weak for OT 0,
OT 1 and OT 2 operators, but potentially stronger for OM0,
OM1, OM6 and OM7. In particular, applicability of the EFT
in terms of these operators already requires � ≥ 2 TeV,
while stringent upper limits arise from the unitarity condition.
Because of relatively low sensitivity to fS0 and fS1, it will
unfortunately be hard to learn much about WLWL physics
using the EFT approach with dimension-8 operators.

It must be stressed that in this analysis we have only con-
sidered single dimension-8 operators at a time. Allowing non-
zero values of more than one f at a time provides much more
felixibility as far as the value of � is concerned, especially for
those operators whose individual unitarity limits are driven
by helicity combinations which contribute little to the total
cross section. Consequently, regions of BSM observability
and EFT consistency can only be larger than what we found
here. Study of VBS processes in the EFT language can be
the right way to look for new physics and should gain special
attention in case the LHC fails to observe new physics states
directly.

Consideration of other VBS processes and W decay chan-
nels may significantly improve the situation. In particular, the
semileptonic decays, where one W+ decays leptonically and
the other W+ into hadrons, have never been studied in VBS
analyses because of their more complicated jet combina-
torics and consequently much higher background. Progress
in the implementation of W -jet tagging techniques based on
jet substructure algorithms may render these channels inter-
esting again. However, they are presently faced with two
other experimental challenges. One is the precision of the
MWW determination which relies on the missing-ET mea-
surement resolution. The other one is poor control over the
sign over the hadronic W . The advantages would be substan-

tial. If MWW can be reconstructed with reasonable accuracy,
it is straightforward to fit f and � to the measured distribu-
tion in an EFT-consistent way even for arbitrarily large f .
Existence of a high-MWW tail above � is then not a prob-
lem, but a bonus, as it may give us additional hints about the
BSM physics. Finally, because of the invariant mass issue,
the Z Z scattering channel, despite its lowest cross section,
may ultimately prove to be the process from which we can
learn the most about BSM in case the LHC fails to discover
new physics directly.
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Appendix A: Unitarity bounds

The purpose of this section is to give an overview of the
behavior of individual helicity amplitudes as a function of
energy and their contributions to the total unpolarized cross
section, with special attention paid to the partial wave uni-
tarity constraints, in the SM and in its extensions to the EFT
“models” discussed in this paper. We shall illustrate the main
points using the operators OS0 and OT 1. The choice is deter-
mined by the requirement that the sU bounds for W+W+
which we present below are stronger than for W+W− (often
used in our analyses). The qualitative picture remains the
same for the other operators as well. Analytical computa-
tions have been partially performed using a Mathematica
code. All cross sections are computed with a 10◦ cut in the
forward and backward scattering regions. Similarly, a 1◦ cut
is applied for partial amplitudes, hence for sU determina-
tion.

We begin by choosing a set of independent helicity ampli-
tudes for W+W+ scattering. Altogether, there are 81 helicity
amplitudes for this process but P and T discrete symmetries
and the fact that the state has a symmetric wave function
(Bose statistics) impose many relations between them and
leave only 13 amplitudes as an independent set. We choose
them as follows:
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Table 2 The leading energy behavior in the limit s >> (EW scale)2 of
the scattering amplitude iM for all the 13 independent helicities in the
SM case. In the third column shown are numerical values (in pb) of the

contributions from the helicities to the total unpolarized cross section
at 1 TeV; cW is the cosine of the Weinberg mixing angle, v is the SM
Higgs vev, θ is the scattering angle

Fig. 7 Illustration of the
contributions of different
helicities (multiplicity taken into
account) to the total unpolarized
cross section as a function of the
center-of-mass collision energy
(ECM ≡ √

s, in TeV) in the SM.
The total cross section is shown
in blue

1 2 5 10
ΕCM

0.1

1

10

100

σ (pb)
iM ~ SM, cut: 10°

σ tot,unpol
SM

σ −−−−

σ −0−0

σ −+−+

σ 0000
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− − −− − − −0 − − −+ − − 00 − − 0+ − − ++ −0 − 0
−0 − + −000 −00+ − + −+ − + 00 0000

(4.1)

Here +, − and 0 denote the right-handed, left-handed and
longitudinal polarizations, respectively; the first two symbols
define the initial state and the last two symbols define the final
state. These amplitudes contribute to the total cross section
with multiplicities

2 8 8 4 8 2 8
16 8 8 4 4 1

respectively, due to symmetry relations between all the 81
amplitudes. In the SM their energy dependence is at most flat
but their magnitude can differ by orders of magnitude (see
Table 2 for their energy dependence and the contribution of
the corresponding polarized cross sections to the total unpo-
larized cross section at 1 TeV). The unpolarized cross section
(decreasing like 1/s) is saturated by just four of them, taking
into account the corresponding multiplicities (see Fig. 7).

The next thing of interest for us is the scattering energy√
sU at which partial wave unitarity is violated by different

helicity amplitudes for the two operators considered in this
section, according to the tree level criterion |Re{aJ=0}| <

1/2. This is shown in Table 3 for the OS0 operator (posi-
tive f ) and in Table 4 for OT 1 (negative f ), as a function
of the values of f . We see that partial wave unitarity is first
violated in the 0000 amplitude for the first operator and in
− − −− for the second one. Unitarity is violated at vastly
different energies for different helicity amplitudes, depend-
ing on the operator considered. Some of them remain con-

Table 3 Values of
√
sU (in TeV) for all the helicity amplitudes from

the partial wave unitarity criterion for a chosen set of fS0 values (first
row, in TeV−4); “x” denotes no unitarity violation

Table 4 Values of
√
sU (in TeV) for all the helicity amplitudes from

the partial wave unitarity criterion for a chosen set of fT 1 values (first
row, in TeV−4); “x” denotes no unitarity violation

stant with energy, in particular some of those that saturate
the SM total cross section. The leading energy dependences
of the amplitudes and the contributions of polarized cross
sections to the total unpolarized cross section at the lowest
sU where the first helicity amplitude violates partial wave
unitarity are shown in Tables 5 and 6, respectively. One sees
that for OS0, the 0000 cross section (related to the amplitude
which violates unitarity first) gives about 65% of the total
cross sections, independently of the value of f , for the cor-
responding values of minimal sU . For OT 1, it is the −−−−
cross section, closely followed by − − ++, with an about
80% combined contribution to the total unpolarized cross
section, independently of the value of f , for the correspond-
ing values of minimal sU . The rest of the unpolarized cross
sections at the minimal sU come (for both operators) from the
helicity amplitudes that saturate the cross section in the SM,
which either remain constant with energy (although weakly
dependent on the value of f ) or violate perturbative partial
unitarity at a higher energy.

Unitarity bounds calculated from T-matrix diagonaliza-
tion are virtually identical to those for the amplitude that
determines the minimal sU for OS0, while for OT 1 they are
about 15% lower.

Some examples of the energy dependence of the cross sec-
tions for both operators are shown in the following figures:
for the total unpolarized cross sections withOS0 in Fig. 8, for
polarized cross sections with OS0 in Fig. 10, for unpolarized
withOT 1 in Fig. 9, and for polarized withOT 1 in Fig. 11. We
observe that both operators show several similar interesting
features. Below the partial wave unitarity minimal bounds
sU , sizable deviations from the SM predictions occur only
for small energy intervals close to those bounds. This is the
region where the quadratic term in Eq. (1.3) begins to domi-
nate BSM effects (see Figs. 8 and 9). The contribution of the
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Table 5 The leading energy dependence of the amplitudes (conventions as in Fig. 2) and the contribution of the polarized cross sections (in pb) to
the total unpolarized cross sections at the minimal sU for a chosen set of fS0 values (first row, in TeV−4)

Table 6 The leading energy dependence of the amplitudes (conventions as in Fig. 2) and the contribution of the polarized cross sections (in pb) to
the total unpolarized cross sections at the minimal sU for a chosen set of fT 1 values (first row, in TeV−4)
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Fig. 8 Energy dependence of
the total unpolarized W+W+
cross sections (ECM ≡ √

s, in
TeV) for a chosen set of fS0
values. Vertical lines denote the
lowest

√
sU for each value of f

(color correspondence). There is
no color distinction between the
signs, upper lines (and hence
stronger

√
sU limits) correspond

to negative values of f

1 2 5 10
ΕCM

50

100

500

1000

(pb)
iM ~ fS0 + SM, cut: 10°, f in TeV 4

±0.01
±0.1
±1.
±10.
0.

Fig. 9 Energy dependence of
the total unpolarized W+W+
cross sections (ECM ≡ √

s, in
TeV) for a chosen set of fT 1
values. Vertical lines denote the
lowest

√
sU for each value of f

(color correspondence). There is
no color distinction between the
signs, upper lines (and hence
stronger

√
sU limits) correspond

to negative values of f

Fig. 10 Contributions of the
polarized cross sections
(multiplicity taken into account)
to the total unpolarized cross
section as a function of the
center-of-mass collision energy
(ECM ≡ √

s, in TeV) for
fS0 = 1. TeV−4. The total cross
section is shown in blue, the
total cross section in the SM is
shown in orange. The remaining
polarized cross sections are
negligibly small
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Fig. 11 Contributions of the
polarized cross sections
(multiplicity taken into account)
to the total unpolarized cross
section as a function of the
center-of-mass collision energy
(ECM ≡ √

s, in TeV) for
fT 1 = −0.1 TeV−4. The total
cross section in shown in blue,
the total cross section in the SM
is shown in orange. The
remaining polarized cross
sections are negligibly small

interference term at this point generally depends on which
helicity combinations get affected by a given operator and
how much they contribute to the total cross section in the
SM. Interference is visible for OS0, OS1, OT 0, OT 1, OT 2,
OM1, OM7, and negligible for OM0 and OM6. The energy
dependence of the unpolarized cross sections around the val-
ues of the minimal sU is moreover somewhat weakened by
the contribution from the helicity amplitudes that have not
reached the unitarity limit.
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