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A search is presented for photonic signatures, motivated by generalized models of gauge-
mediated supersymmetry breaking. This search makes use of proton–proton collision data at√

s = 13 TeV corresponding to an integrated luminosity of 36.1 fb−1 recorded by the ATLAS
detector at the LHC, and it explores models dominated by both strong and electroweak pro-
duction of supersymmetric partner states. Experimental signatures incorporating an isolated
photon and significant missing transverse momentum are explored. These signatures include
events with an additional photon or additional jet activity not associated with any specific
underlying quark flavor. No significant excess of events is observed above the StandardModel
prediction, and 95% confidence-level upper limits of between 0.083 fb and 0.32 fb are set on
the visible cross section of contributions from physics beyond the Standard Model. These
results are interpreted in terms of lower limits on the masses of gluinos, squarks, and gauginos
in the context of generalized models of gauge-mediated supersymmetry, which reach as high
as 2.3 TeV for strongly produced and 1.3 TeV for weakly produced supersymmetric partner
pairs.
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1 Introduction

This paper reports on a search for two complementary classes of events containing energetic isolated
photons and largemissing transversemomentum (withmagnitude denoted Emiss

T ). The search is performed
with proton–proton (pp) collision data at a center-of-mass energy

√
s = 13 TeV corresponding to an

integrated luminosity of 36.1 fb−1 recorded with the ATLAS detector at the Large Hadron Collider (LHC)
in 2015 and 2016. For the first of the two classes, two isolated energetic photons are required (“diphoton”
events), while for the second class only a single isolated photon is required, in combination with multiple
hadronic jets (“photon+jets” events).

The results of searches for these two classes of events are interpreted in the context of several generalmodels
of gauge-mediated supersymmetry breaking (GGM) [1, 2]. These models include both the production of
supersymmetric partners of strongly coupled StandardModel (SM) particles and the production of partners
of SM particles possessing only electroweak charge. In all models of GGM, the lightest supersymmetric
particle (LSP) is the gravitino G̃ (the partner of the hypothetical quantum of the gravitational field), with a
mass significantly less than 1GeV. In the GGM models considered here, the decay of the supersymmetric
states produced in LHC collisions would proceed through the next-to-lightest supersymmetric particle
(NLSP), which would then decay to the G̃ LSP and one or more SM particles. Each of the two event
classes corresponds to a specific choice of NLSP, each of which in turn has a high probability of decay
into γ + G̃. In all models considered, all supersymmetric states with the exception of the G̃ are short
lived, leading to prompt production of SM particles that are observed in the ATLAS detector. The
result based on the diphoton signature extends and supplants an ATLAS search [3] performed with an
integrated luminosity of 3.2 fb−1 of pp collision data taken at a center-of-mass energy of

√
s = 13 TeV,

and complements searches [4, 5] performed by the CMS Collaboration making use of 35.9 fb−1 of
√

s =
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13 TeV pp collision data. The result based on the photon+jets signature extends and supplants an ATLAS
search [6] performed with an integrated luminosity of 20.3 fb−1 of 8 TeV pp collision data.

The paper is organized as follows. More details of the theoretical background are provided in Section 2.
Section 3 presents the salient features of the ATLAS detector. Section 4 provides details of the Monte
Carlo simulations used in the analysis for background and signal processes. Section 5 discusses the
reconstruction and identification of photons, leptons, jets, and whole-event observables relevant to the
event selection, while Section 6 describes the event selection itself. The estimation of background
contributions and signal efficiency, and the study of systematic uncertainties are discussed in Sections 7
and 8. The results are presented in Section 9 and are interpreted in terms of limits on various GGM
models. Finally, Section 10 is devoted to the conclusions.

2 Gauge-mediated supersymmetry phenomenology

Supersymmetry (SUSY) [7–14] introduces a symmetry between fermions and bosons, resulting in a SUSY
partner (sparticle) for each SM particle with identical quantum numbers except a difference by half a unit
of spin. As none of these sparticles have been observed, SUSY must be a broken symmetry if realized
in nature. Assuming R-parity conservation [15–19], sparticles are produced in pairs. These then decay
through cascades involving other sparticles until the stable, weakly interacting LSP is produced, leading
to a final state with significant Emiss

T .

This paper considers experimental signatures associated with models inspired by gauge-mediated SUSY
breaking [20–25]. These signatures are largely determined by the nature of the NLSP; in GGM models,
the NLSP is often formed from an admixture of any of the SUSY partners of the electroweak gauge and
Higgs bosons. In this study, two cases are considered for the composition of the NLSP, both of which
would produce photonic signatures in the ATLAS detector. In the first case, the NLSP is assumed to be
purely binolike [the SUSY partner of the SM U(1) gauge boson], while in the second case, the NLSP is
assumed to be an admixture of bino and neutral higgsino states. In this paper, the neutral NLSP is denoted
χ̃0

1 irrespective of its composition.

Where not explicitly constrained by the assumptions of the specific GGMmodels under study, the masses
and properties of SUSY partner states are controlled by several underlying parameters. These include the
U(1), SU(2) and SU(3) gauge partner mass parameters (M1, M2 and M3, respectively), the higgsino mass
parameter µ, the gravitino mass, and the ratio tan β of the two SUSY Higgs-doublet vacuum expectation
values. A value of 1.5 is chosen for the latter; for all GGM models considered, the phenomenology
relevant to this search is only weakly dependent on the value of tan β.

If the NLSP is binolike, the final decay in each of the two cascades in a GGMSUSY event is predominantly
χ̃0

1 → γ + G̃, leading to final states with two photons and missing transverse momentum. If the NLSP is a
mixture of the bino and higgsino, the higgsino mass parameter µ is chosen to be positive, leading to final
decays split primarily between the modes χ̃0

1 → γ+ G̃ and χ̃0
1 → Z + G̃, and thus a preponderance of final

states with a single photon accompanied by multiple jets and Emiss
T . To provide a signature advantageous

for the photon+jets analysis, the values of µ and M1 are chosen so that, to within ∼ 1%, the χ̃0
1 branching

fractions are B( χ̃0
1 → γG̃) ∼ 50%, B( χ̃0

1 → ZG̃) ∼ 49% and B( χ̃0
1 → hG̃) ∼ 1%, irrespective of the mass

of the χ̃0
1 neutralino (h represents the scalar state observed at 125GeV, assumed here to be the lightest

CP-even state of the SUSY Higgs spectrum). Although not explored here, the choice µ < 0 would lead to
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decays that prefer the production of the h boson over the Z boson, producing decays rich in b-quark jets
but otherwise similar to the µ > 0 case.

The results of the diphoton and photon+jets analyses are interpreted in the context of four distinct GGM
models. Three of the GGM models are associated with the diphoton analysis, each featuring a purely
binolike NLSP and distinguished by the state directly produced by the proton–proton collision. For the
first of the three GGM models associated with the diphoton analysis, referred to as the “gluino–bino”
model, production proceeds through a degenerate octet of gluinos, collectively denoted by g̃ (Figure 1 left).
For the second of these models (the “wino–bino” model; Figure 1 right), production proceeds through
a degenerate triplet of the SU(2) gauge partner (wino, or W̃) states χ̃0

2 and χ̃±1 , and is dominated by the
production of χ̃+1 χ̃−1 and χ̃0

2 χ̃±1 . For the third of these models (the “squark–bino” model; Figure 2 left),
production proceeds through the squark states.1 All squark states are taken to be degenerate in mass, with
the exception of the partners of the three right-handed up-type quarks, whose masses are decoupled (set to
inaccessibly large values) in order to satisfy GGM sum rules [2]. For a binolike NLSP, the cross section
for direct χ̃0

1 pair production is essentially zero for any value of the χ̃0
1 mass. For the “higgsino–bino”

GGM model associated with the photon+jets analysis (Figure 2 right), for which the NLSP is chosen to
be a mixture of the bino and higgsino, production again proceeds through a degenerate octet of gluino
states. In this last case, however, there is a leading-order coupling between initial-state partons and the
higgsino component of the χ̃0

1 neutralino, leading to a SUSY production process dominated by χ̃0
1 pair

production for low values of the χ̃0
1 neutralino mass. However, the efficiency for detecting such events in

the photon+jets analysis is very small, and so direct χ̃0
1 pair production is expected to play no role in the

analysis.

For all four GGM models, the masses of both the NLSP and the directly produced states are taken to
be free parameters of the model, with all other SUSY partner masses other than those of the gravitino
and h state decoupled. The lifetime τχ̃0

1
of the NLSP is set so that cτχ̃0

1
is never greater than 0.1 mm.

This ensures that all particles arising from the decay of the NLSP are prompt, and in particular that the
relationship between the direction and the point of impact on the face of the calorimeter of photons from
NLSP decay is consistent with that of a prompt photon (a separate analysis [26] searches for GGMmodels
with a longer-lived binolike NLSP, leading to signatures with nonprompt photons).

3 ATLAS detector

The ATLAS detector [27] consists of an inner tracking system surrounded by a superconducting solenoid,
electromagnetic (EM) and hadronic sampling calorimeters, and a muon spectrometer. The inner detector
is immersed in a 2 T axial magnetic field, and consists of pixel and silicon microstrip detectors inside a
transition radiation tracker, providing charged-particle tracking in the region |η | < 2.5.2 For the

√
s =

13 TeV run, a new innermost layer of the pixel detector, the “insertable B-layer” [28], was added at an

1 For the case of left-handed top squark (stop) production when mstop < mχ̃0
1
+mtop, the stop decay proceeds through an effective

neutral current interaction to a charm or up quark accompanied by the binolike χ̃0
1 .

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upwards.
Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle measured relative to the x-axis.
The pseudorapidity is defined in terms of the polar angle θ as η = − ln[tan(θ/2)]. Angular distance is measured in units of
∆R ≡

√
(∆η)2 + (∆φ)2. A related quantity, ∆Ry , makes use of rapidity y rather than pseudorapidity η to define phase-space

separation: ∆Ry ≡
√
(∆y)2 + (∆φ)2.
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Figure 1: Typical production and decay processes for the (left) gluino-production and (right) electroweak-production
instances of the GGM model for which the NLSP is a binolike neutralino. These models are referred to in the text
as the gluino–bino and wino–bino models, respectively.
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Figure 2: Typical production and decay processes for (left) the squark-production instance of the GGM model for
which the NLSP is a binolike neutralino, and (right) the gluino-production instance of the GGM model for which
the NLSP is a higgsino–bino neutralino admixture. These models are referred to in the text as the squark–bino and
higgsino–bino models, respectively.

average radius of 33 mm. The EM calorimeter uses lead as the absorber and liquid argon (LAr) as the
active material. In the central rapidity region |η | / 1.5, the EM calorimeter is divided into three layers
longitudinal in shower depth, one of them segmented into very narrow η strips for optimal γ/π0 separation.
The EM calorimeter is augmented by a presampler layer for |η | < 1.8. Hadron calorimetry is based on
different detector technologies, with scintillator tiles (|η | < 1.7) or LAr (1.5 < |η | < 4.9) as the active
medium, and with steel, copper, or tungsten as the absorber material. The muon spectrometer consists
of superconducting air-core toroids, a system of trigger chambers covering the range |η | < 2.4, and
high-precision tracking chambers allowing muon momentum measurements for |η | < 2.7. ATLAS uses
a two-level trigger system to select events [29]. A low-level hardware trigger is implemented in custom
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electronics and reduces the data rate to a design value of ∼ 100 kHz using a subset of detector information.
A high-level software trigger selects events with interesting final states using software algorithms that
access the full detector information, reducing the average accepted event rate to ∼ 1 kHz.

4 Samples of simulated processes

Samples of simulated events for various pp collision processes are used to estimate the signal efficiency,
develop and optimize the signal region (SR) selection, and in some cases estimate SM background
contributions to the SRs. For the GGM model used to interpret the photon+jets results, the SUSY mass
spectra and branching fractions are calculated using SUSPECT 2.43 [30] and SDECAY 1.5 [31], respectively,
inside the package SUSY-HIT 1.5a [32], and with Higgs boson decay provided by HDECAY 3.4 [33].
For the GGM models used to interpret the diphoton results, the SUSY mass spectra and branching
fractions are calculated using SUSPECT 2.41 [30] and SDECAY 1.3b [31], respectively. For all models, the
Monte Carlo (MC) SUSY signal samples were generated to leading-order accuracy using MG5−aMC@NLO
v2.3.3 [34], with up to two extra partons included beyond the underlying 2→ 2 SUSY production process.
The simulation used the NNPDF2.3LO parton distribution functions (PDF) set [35], and was interfaced
to PYTHIA 8.212 [36] with the ATLAS A14 set of tuned parameters [37] for the modeling of the parton
showering, hadronization and underlying event. Strong and electroweak SUSY production cross sections
are calculated to next-to-leading order (NLO) in the strong coupling constant, adding the resummation
of soft gluon emission at next-to-leading-logarithm accuracy (NLO+NLL) [38–44]. The nominal cross
section and its uncertainty are taken from an envelope of cross-section predictions using different PDF
sets and factorization and renormalization scales, as described in Ref. [45].

While most of the backgrounds to the GGM models under examination are estimated through the use
of control samples selected from data, as described below, the extrapolation from control regions (CRs)
to signal regions depends on samples of simulated events, as do the optimization studies. Simulated
SM processes include single-photon and diphoton production both with and without an associated vector
boson, tt̄ production both with and without an accompanying photon, and multijet production. With
the exception of the tt̄γ process, Standard Model processes were generated using the SHERPA v2.1.1
simulation package [46], making use of the CT10 [47] PDF set. Matrix elements were calculated for up
to three-parton emission at leading order (LO) using the COMIX [48] generator and then combined with
the SHERPA parton shower [49] according to an improved CKKW procedure [50]. The tt̄γ process was
generated to next-to-leading-order accuracy using MG5−aMC@NLO v2.3.3 [34] in conjunction with PYTHIA
8.186 [51] with the NNPDF2.3LO PDF set and the A14 set of tuned parameters.

All MC samples were processed with the GEANT4-based simulation [52, 53] of the ATLAS detector,
or, where appropriate, a simulation of the ATLAS detector based on parametrized shower shapes in the
calorimeter, and GEANT4 elsewhere. Corrections are applied to the samples of simulated events to account
for differences between data and simulation in the photon-based trigger, identification, and reconstruction
efficiencies, as well as for the efficiency and misidentification rate of the algorithm used to identify jets
containing b-hadrons (b-tagging). The effect of additional pp interactions per bunch crossing (“pileup”)
is taken into account by overlaying simulated minimum-bias events according to the observed distribution
of the number of pileup interactions in data.
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5 Reconstruction of candidates and observables

Primary vertices are formed from sets of two or more tracks, each with transverse momentum pT >

400MeV, that are consistent with having originated at the same three-dimensional space point within the
luminous region of the colliding proton beams. When more than one such primary vertex is found, the
vertex with the largest scalar sum of the squared transverse momenta of the associated tracks is chosen.

Electron candidates are reconstructed from EM calorimeter energy clusters consistent with having arisen
from the impact of an electromagnetic particle (electron or photon) upon the face of the calorimeter. For
the object to be considered an electron, it is required to match a track reconstructed by an algorithm
optimized for recognizing charged particles with a high probability of bremsstrahlung. Electrons are
required to pass a “tight” set of identification requirements as defined in Refs. [54–56], based on the
characteristics of the EM shower development, the quality of the associated reconstructed track, and the
quality of the association of the track with the calorimeter deposition. Electron candidates used by these
searches are further required to have pT > 25 GeV and |η | < 2.47, but excluding the transition region
1.37 < |η | < 1.52 between the barrel and end cap calorimeters. A track-based isolation requirement
is imposed, with the scalar sum of the transverse momenta of tracks within a cone of size ∆R = 0.2
(excluding that of the electron candidate’s track) required to be less than a value that leads to a loss of
efficiency of 5% for electrons with pT = 25 GeV, and of less than 1% for electrons with pT > 60 GeV.
Finally, the electron track is required to be consistent with having originated from the primary vertex in
the r–z plane.

Electromagnetic clusters in the range |η | < 2.37 (excluding the transition region 1.37 < |η | < 1.52) are
classified as photon candidates provided that they either have no matched track (“unconverted” photons)
or have one or more matched tracks consistent with having originated from a photon conversion vertex
(“converted” photons). Photon candidates are required to have EγT > 25 GeV, where EγT is the energy
of the photon candidate, measured in the EM calorimeter, multiplied by the cosine of the angle of its
trajectory relative to the plane perpendicular to the z axis. The photon direction is estimated either using
EM calorimeter shower-depth segmentation (if unconverted) or the position of the conversion vertex (if
converted), together with constraints from the pp collision point. Photon candidates are also required
to fulfill “loose” or “tight” identification criteria [57, 58] based on observables that reflect the shape of
the electromagnetic showers in the calorimeter, in particular in the finely segmented first layer. While
tight photons are required for all SRs, loose photons are used to construct control samples that aid in the
estimation of backgrounds arising frommisreconstructed jets. If an EMcalorimeter deposition is identified
as both a photon and an electron, the photon candidate is discarded and the electron candidate retained.
Additionally, a calorimeter-based isolation requirement is imposed: after correcting for contributions from
pileup and the deposition ascribed to the photon itself, the transverse energy E0.4

T deposited in a cone
of size ∆R = 0.4 surrounding the photon candidate’s energy deposition must satisfy the relation E0.4

T <

2.75GeV + 0.22 × EγT , with EγT in GeV.

Muon candidates are reconstructed via a combination of track information from the muon spectrometer
and the inner tracking systems. Muons must pass the “medium” identification requirements defined
in Ref. [59], based on requirements on the number of hits in the different inner detector and muon
spectrometer subsystems, and on the significance of the charge-to-momentum ratio measurement. Muon
candidates are required to have pT > 25GeV and |η | < 2.7. Muon candidates are also required to pass
an isolation requirement identical to that for electron candidates. Finally, the muon track is required to be
consistent with having originated from the primary vertex in both the r–z and r–φ planes.
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Making use of utilities within the FastJet package [60], jets are reconstructed from three-dimensional
energy clusters in the calorimeter [61] with the anti-kt jet clustering algorithm [62] with a radius parameter
R = 0.4. In the diphoton analysis, only jet candidates with pT > 30GeV and |η | < 2.8 are considered. For
jets used in the photon+jets analysis, the acceptance is further reduced to |η | < 2.5. Jets are calibrated as
described in Refs. [63, 64], with the expected average energy contribution from pileup clusters subtracted
in accordance with the angular area of the jet. Jets resulting from the hadronization of b-quarks are
identified using the multivariate MV2c10 b-tagging algorithm, which is based on quantities such as impact
parameters of associated tracks, and reconstructed secondary vertices [65, 66]. This algorithm is used at
a working point that provides 77% b-tagging efficiency in simulated tt̄ events, and a rejection factor of
134 for light-quark and gluon jets and 6 for charm jets.

To avoid ambiguity that arises when an electron or photon is also reconstructed as a jet, the following
procedure is used: if a jet and an electron or photon are reconstructed with a separation of ∆Ry < 0.2,
the electron or photon is retained and the jet is discarded; if 0.2 < ∆Ry < 0.4 then the jet is retained and
the electron or photon is discarded. Finally, in order to suppress the reconstruction of muons arising from
showers induced by jets, if a jet and a muon are found with ∆Ry < 0.4 the jet is retained and the muon is
discarded.

The vector momentum imbalance ®Emiss
T in the transverse plane is obtained from the negative vector sum of

the reconstructed and calibrated physics objects, and an additional soft term. The soft term is constructed
from all tracks that are not associatedwith any reconstructed electron, muon or jet, but which are associated
with the primary vertex.

Several additional observables are defined to help in the discrimination of SM backgrounds from potential
GGM signals. The “effective mass” meff is defined as the scalar sum of the transverse energy of identified
photons, any additional leptons and jets in the event, plus the value of Emiss

T . The “photon-enhanced” total
visible transverse energy observable HT is defined as the transverse energy of the selected photons and
any additional leptons and jets in the event, without the addition of Emiss

T . In this case the contribution
from photonic signatures is emphasized by discarding the photon-jet ambiguity resolution procedure when
identifying photons and jets. Requiring a minimum value for either of these observables exploits the high
energy scale associated with the production of massive SUSY partners. The photon–Emiss

T separation
∆φ(γ, Emiss

T ) is defined as the azimuthal angle between the ®Emiss
T vector and the selected photon. In the

diphoton analysis, ∆φmin(γ, Emiss
T ) is defined to be the minimum value of ∆φ(γ, Emiss

T ) of the two selected
photons. The minimum jet–Emiss

T separation ∆φmin(jet, Emiss
T ) is defined as the minimum azimuthal angle

between the ®Emiss
T vector and the two leading (highest-pT) jets in the event. For the diphoton analysis,

leading jets are required to have pT > 75GeV for the purpose of constructing this observable, and if no
such jet is found no requirement is placed on the observable. Small values of these angular-separation
observables are often associated with SM backgrounds arising from poorly reconstructed photons or jets.
Finally, the quantity R4

T is defined as the scalar sum of the transverse momenta of the four highest-pT jets
in the event divided by the scalar sum of the transverse momenta of all jets in the event; smaller values of
R4

T are typical for the jet-rich events of the higgsino–bino GGMmodel that is the focus of the photon+jets
analysis.
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6 Event selection

The data sample is selected by a trigger requiring the presence of one loose photon with ET > 140 GeV for
the photon+jets analysis, or two loose photons with ET > 35 GeV and ET > 25 GeV, respectively, for the
diphoton analysis. After applying data-quality requirements related to the beam and detector conditions,
the total available integrated luminosity is 36.1 fb−1.

For the diphoton analysis, targeting the exploration of the gluino–bino, squark–bino and wino–bino GGM
models incorporating a purely binolike χ̃0

1 , two separate SR selection strategies are used: a “SRγγS ”
selection targeting the production of higher-mass strongly coupled SUSY states (gluinos and squarks) and
a “SRγγW ” selection targeting the production of lower-mass weakly coupled SUSY states (winos). For each
of these approaches, two SRs are defined: the first (SRγγS−L, SRγγW−L) optimized for the case of a lower-mass
χ̃0

1 and the second (SRγγS−H, SRγγW−H) for a higher-mass χ̃0
1 . For fixed production-scale (gluino, squark,

wino) mass, increasing the mass of the bino NLSP increases the energy carried off by the unobserved
gravitinos, at the expense of the overall visible energy deposition.

For the photon+jets analysis, targeting the higgsino–bino GGMmodel, a further two SRs are defined. The
first of these (SRγj

L ) is optimized for a high-mass gluino and a low-to-intermediate mass neutralino, for
which there is a large mass difference between the gluino and the neutralino. Such events are characterized
by large jet multiplicity and exceptional hadronic activity, but moderate missing transverse momentum.
The second of these SRs (SRγj

H ) targets the compressed scenario for which the difference between the
gluino and neutralino masses is small, resulting in lower jet multiplicity and suppressed hadronic activity
while producing harder photons and greater missing transverse momentum.

All four diphoton SRs require two tight, isolated photons with ET > 75 GeV, while SRγj
L and SRγj

H require a
single tight, isolated photon with ET > 145 GeV and ET > 400 GeV, respectively. To exploit the transverse
momentum imbalance created by the unobservable gravitinos, an event must exhibit significant Emiss

T to
be included in any of the SRs. To ensure that the Emiss

T observable is accurately measured, minimum
requirements on ∆φmin(γ, Emiss

T ) and ∆φmin(jet, Emiss
T ) are considered for each SR.

Requirements are made on a number of additional observables, defined in Section 5, with values chosen
to optimize the sensitivity to the GGM signal of interest in each SR. To exploit the high energy scale
associated with SUSY production at masses close to the expected limit of sensitivity of the various
SRs, all SRs include minimum requirements on one of the two total-transverse-energy observables HT
or meff . As an illustration, Figure 3 (left) shows the HT distribution of diphoton events as well as that
expected from SM sources (estimated as described in Section 7) and from four characteristic scenarios
of the binolike NLSP GGM gluino-production model. Due to the large backgrounds arising from SM
single-photon production, requirements must be placed on additional observables in order to optimize the
signal sensitivity in the photon+jets analysis. A minimum of five (three) jets is required for events in SRγj

L
(SRγj

H ). For SRγj
L of the photon+jets analysis, an additional requirement that events have R4

T < 0.90 helps
reduce the background from SM events, which tend to have fewer and softer jets than do signal events.
Examples of the discriminating power of the R4

T observable are shown in Figure 3 (right). Finally, for
both SRγj

L and SRγj
H , events with one or more leptons (electron or muon) are rejected in order to suppress

the contribution from SM events containing leptonically decaying W or Z bosons produced in association
with a hard radiated photon (“Vγ” production). In addition, a predecessor to SRγj

L , originally designed for
a search using a smaller data set (13.2 fb−1), has been retained, as the number of events observed in that
search exceeded the background prediction. This third photon+jets SR is referred to as SRγj

L200, and differs
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from SRγj
L only by the relaxed requirement Emiss

T > 200 GeV relative to the Emiss
T > 300 GeV requirement

of SRγj
L . A summary of the selection requirements for the various SRs is presented in Table 1.
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parameter spaces of the gluino–bino and wino–bino GGM models (mass values in GeV). Events outside the range
of the displayed region are included in the highest-value bin. Right: distribution of R4

T for the sample satisfying
all SRγj

L selection criteria except the R4
T requirement itself, but with a relaxed requirement of Emiss

T > 100 GeV.
Also shown are the expected R4

T distributions of contributing SM processes as well as those for two points in the
mg̃–mχ̃0

1
parameter space of the GGM model relevant to the photon+jets analysis (mass values in GeV). The value

of the gluino mass arises from the choice M3 = 1900 GeV, while the values of the χ̃0
1 mass arise from the choices

µ = 400 and µ = 600 GeV, combined with the constraint that the branching fraction of χ̃0
1 → γG̃ be 50%. The

vertical dashed line and left-pointing arrow show the region of the R4
T observable selected for inclusion in SRγj

L .
Uncertainties are shown as hatched bands for the various expected sources of SM background (statistical only) and
as error bars for data. The lower panels show the ratio of the data to the SM prediction.

7 Background estimation

Backgrounds to the various SRs arise from a number of sources that generate real photons in combination
with energetic neutrinos, as well as events in which one or more energetic jets or electrons are misidentified
as photons. In the following, the methodology of the background estimation for the two experimental
signatures is discussed, and the resulting background estimates, broken down by source, are tabulated.
Backgrounds arising frommisidentified jets and electrons are estimated through the use of control samples
including jets or electrons, scaled by misidentification rates determined from data. Other backgrounds
are estimated via MC simulation, often constrained by observed event counts in dedicated CRs. For
the estimation of background contributions that rely upon MC simulation, either directly or through the
estimation of “transfer factors” relating the background content of CRs to that of corresponding SRs, the
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Table 1: The requirements defining the seven SRs for the diphoton and photon+jets searches. All symbols are
defined in the text. An ellipsis is entered when no such requirement is made in the given signal region.

Signal region SRγγS−L SRγγS−H SRγγW−L SRγγW−H SRγj
L SRγj

L200 SRγj
H

Number of photons ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 1 ≥ 1 ≥ 1
EγT [GeV] > 75 > 75 > 75 > 75 > 145 > 145 > 400
Number of jets ... ... ... ... ≥ 5 ≥ 5 ≥ 3
Number of leptons ... ... ... ... 0 0 0
Emiss
T [GeV] > 150 > 250 > 150 > 250 > 300 > 200 > 400

HT [GeV] > 2750 > 2000 > 1500 > 1000 ... ... ...
meff [GeV] ... ... ... ... > 2000 > 2000 > 2400
R4

T ... ... ... ... < 0.90 < 0.90 ...
∆φmin(jet, Emiss

T ) > 0.5 > 0.5 > 0.5 > 0.5 > 0.4 > 0.4 > 0.4
∆φmin(γ, Emiss

T ) (∆φ(γ, Emiss
T )) ... > 0.5 ... > 0.5 (> 0.4) (> 0.4) (> 0.4)

effect of MC modeling uncertainties is considered.

In the photon+jets analysis, expected SM backgrounds constrained by CRs are determined separately for
each SR with a maximum-likelihood fit, referred to as the “background-only fit.” The background-only fit
constrains the normalization of the dominant backgrounds to the observed event yields in the associated
CRs, assuming that no signal is present in the CRs. The inputs to the fit for each SR include the numbers of
events observed in its associated CRs and the number of events predicted by simulation in each region for
all background processes. The latter are described by Poisson statistics. The systematic uncertainties in
the expected values are included in the fit as nuisance parameters, modeled by Gaussian distributions with
widths corresponding to the sizes of the associated uncertainties. Correlations between the various CRs are
taken into account. The product of the various probability density functions forms the likelihood, which
the fit maximizes by adjusting the background normalization and the nuisance parameters. Background
models are confirmed in validation regions (VRs) with selection criteria closely related to those of the
corresponding SR, but with one or more selection criteria modified to suppress the potential contribution
of a GGM signal to the VR.

7.1 Backgrounds to the diphoton analysis

Backgrounds from SM contributions to the four diphoton SRs are grouped into three primary components.
The first of these, referred to as “QCD background,” arises from a mixture of processes that include γγ
production as well as γ + jet and multijet events with at least one jet misreconstructed as a photon. The
second background component, referred to as “EW background,” is due primarily to W + X (here “X”
can be any number of jets, accompanied by no more than one photon; the two-photon case is treated
separately) and tt̄ events. These events tend to include final-state neutrinos that produce significant Emiss

T .
In both cases, EW background events entering the signal regions generally have at least one electron
misreconstructed as a photon. The QCD and EW backgrounds are estimated through the use of dedicated
control samples of data events.
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The third background component, referred to as “irreducible,” consists of W and Z bosons produced
in association with two real photons, with a subsequent decay into one or more neutrinos. For this
background, theW(→ `ν)+γγ component dominates, and requires corrections to its LO contribution that
are both large and rapidly varying across the phase space of the W(→ `ν) + γγ (plus possible additional
jets) process [67]. Thus a data-driven approach is developed to constrain the W(→ `ν) + γγ contribution
to the four SRs. The Z(→ νν̄) + γγ contribution is estimated directly from the MC simulation.

The QCD background to SRγγS−L, SRγγS−H, SRγγW−L and SRγγW−H is expected to arise from events with a
single real, isolated photon and a jet whose fragmentation fluctuates in such a manner as to cause it to
be misidentified as a second isolated photon (“jet → γ” events), and, to a lesser extent, from events
with two real, isolated photons unaccompanied by any additional electroweak bosons (“QCD diphoton”
events). The contribution from dijet events is found to be small and largely incorporated into the jet→ γ

background estimate.

To estimate the jet → γ contribution, a “QCD control sample” is identified within the diphoton-trigger
data sample by selecting events for which one photon candidate satisfies the tight selection criterion,
while the other satisfies the loose but not the tight photon criterion. Both photons are required to have
EγT > 75 GeV, and events containing electrons are vetoed to reduce contamination from W → eν decays.
A model of the jet→ γ background is then obtained by multiplying the number of control-sample events
by a loose-to-tight scale factor in the range 0.1–0.5, depending upon the values of pT and η of the loose
photon, determined from events with poorly isolated photons (10 < E0.4

T − 0.22 × EγT < 30 GeV). Studies
with MC simulated samples as well as Emiss

T and HT sideband data show this sample to be dominated
by misreconstructed particles in hadronic jets, and also suggest that the Emiss

T distribution of this control
sample adequately reproduces the Emiss

T distribution of the QCD background in the high-Emiss
T region used

for the signal selection.

A diphoton MC sample, scaled as a function of Emiss
T and the number of jets to reproduce the observed

numbers of data events in the region 0 < Emiss
T < 150 GeV, is used for the estimation of the small diphoton

contribution to the QCD background. Before the application of a requirement on HT, and for each bin in
the number of observed jets, an Emiss

T -dependent scale factor of between 0.7 and 1.3 is applied to the MC
simulation to establish agreement between data and simulation. The scaling behavior for values of Emiss

T
in the diphoton SRs is estimated by extrapolating the Emiss

T dependences of the scale factors observed for
Emiss
T < 150 GeV into the region Emiss

T > 150 GeV. This procedure yields the level of agreement between
the data and MC distributions of HT illustrated in Figure 3.

For each SR, the jet → γ (QCD diphoton) background estimate is obtained by counting the number
of scaled QCD control (diphoton MC) events satisfying the combined Emiss

T , HT and ∆φ requirements
for the given SR. The statistical uncertainty in each estimate is determined according to the unscaled
number of events in the QCD control and diphoton MC samples that satisfy these requirements. If no
events remain in the given sample, a one-sided statistical uncertainty is adopted, corresponding to the
68% confidence level (C.L.) Poisson upper limit on the possible background contribution. An additional
uncertainty of ±50% is included to account for possible modeling uncertainties. The resulting QCD
background estimates and their overall uncertainties are shown in Table 2, separately for the jet→ γ and
QCD diphoton contributions.

The EW background is estimated via an “electron–photon control sample” composed of events with at
least one isolated tight photon and one isolated electron, each with ET > 75 GeV; when there is more
than one identified electron, the one with the highest pT is used. The electron–photon control sample is
scaled by the probability for such an electron to be misreconstructed as a tight photon, as estimated from
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Table 2: The expected and observed numbers of events for the four diphoton signal regions. The quoted errors are
the combined statistical and systematic uncertainties.

Signal region SRγγS−L SRγγS−H SRγγW−L SRγγW−H

Jet→ γ 0.19+0.21
−0.19 0.19+0.21

−0.19 0.93 ± 0.67 0.19+0.21
−0.19

QCD diphoton 0.00+0.17
−0.00 0.00+0.17

−0.00 0.15+0.17
−0.15 0.00+0.17

−0.00
EW background 0.08 ± 0.04 0.06 ± 0.04 0.88 ± 0.23 0.51 ± 0.15
(W → `ν)γγ 0.22 ± 0.14 0.21 ± 0.13 1.55 ± 0.78 1.08 ± 0.56
(Z → νν)γγ 0.01 ± 0.01 0.03 ± 0.02 0.15 ± 0.08 0.27 ± 0.13
Expected background events 0.50+0.30

−0.26 0.48+0.30
−0.25 3.7 ± 1.1 2.05+0.65

−0.63
Observed events 0 0 6 1

a comparison of the rate of Z boson reconstruction in the eγ and ee final states. The electron-to-photon
scale factor varies between 1% and 5%, with larger factors associated with larger values of |η |, since the
misidentification rate depends on the amount of material in front of the calorimeter. Events with additional
photons or leptons are vetoed from the control sample to preserve its orthogonality to the various diphoton
and photon+jets SRs. After applying all additional selection requirements to the scaled electron–photon
control sample, and including a systematic uncertainty of ±20% associated with the determination of
the scale factor, the resulting estimates of the EW background to the four diphoton SRs are shown in
Table 2.

The W(→ `ν) + γγ background to the four diphoton SRs is estimated using a lepton–diphoton (`γγ) CR.
To enhance the contribution of W(→ `ν)+ γγ and to ensure that the `γγ CR is exclusive of the four SRs,
the photon ET requirement is lowered to 50 GeV and a requirement of 50 < Emiss

T < 150 GeV is imposed.
To ensure that the CR sample arises from the same region of the W(→ `ν) + γγ process phase space
as the expected background, a further requirement that the transverse momentum of the `γγ system be
greater than 100 GeV is imposed. A total of 13 events is observed in the CR, for which MC simulation
suggests that 3.9 events are expected to arise from SM sources other than W(→ `ν)+ γγ. In the limit that
no GGM signal contributes to the `γγ control region, an enhancement factor of 1.6 ± 0.6 ± 0.4 must be
applied to the W(→ `ν) + γγ MC sample to achieve agreement between the MC simulation and data in
the `γγ control region. The statistical uncertainty of ±0.6 arises from the Poisson error in the difference
between the observed number of events in the `γγ control region and the number of events expected from
SM processes other than W(→ `ν) + γγ production. The systematic uncertainty of ±0.4 arises from
assuming that the non-W(→ `ν) + γγ contributions to the `γγ CR have an uncertainty of 100%; this
uncertainty dominates smaller contributions arising from potential mismodeling of the detector response.
For each diphoton SR, the W(→ `ν)+ γγ background estimate is then provided by applying all associated
SR requirements to the scaled W(→ `ν) + γγ MC sample. The resulting W(→ `ν) + γγ background
estimate in each of the four SRs, assuming that there is no signal contribution to the `γγ CR, is shown in
Table 2. Also shown is the combined background estimate, including uncertainty, from all SM sources;
for the Z(→ νν̄) + γγ background, an uncertainty of ±45% is assigned to account for the effect of QCD
scale dependence associated with the limited-order simulation of the Z(→ νν̄) + γγ process discussed in
Section 4.
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Table 3: Definition, expected content and observed content of the seven validation regions used to confirm the
diphoton analysis background model. Here, Nlep is the number of required leptons of the stated type, and Nexp and
Nobs are the expected and observed numbers of events, respectively. The remainder of the quantities are defined
in the text. Events satisfying the selection requirements of any of the four diphoton signal regions are excluded
from these validation regions. The uncertainties in the numbers of expected events are the combined statistical and
systematic uncertainties. An ellipsis is entered when no such requirement is made of the given validation region.

EγT [GeV] ∆φmin(jet, Emiss
T ) Nlep HT [GeV] Emiss

T [GeV] Nexp Nobs

VR1γγ > 75 > 0.5 ... ... < 150 43500 ± 4400 43918
VR2γγ > 75 > 0.5 ... 1000–2500 < 150 2850 ± 520 3139
VR3γγ > 75 > 0.5 ... ... 100–150 112 ± 36 109
VR4γγ > 50 ... 1e < 2000 ... 34.5 ± 7.2 38
VR5γγ > 50 ... 1µ < 2000 ... 19.8 ± 7.1 25
VR6γγ > 75 > 0.5 ... > 1750 ... 290 ± 130 336
VR7γγ > 75 > 0.5 ... ... > 100 139 ± 40 146

The accuracy of the resulting overall background model is confirmed by the use of seven VRs that, while
excluding events in the four diphoton SRs, have kinematic properties similar to those of the signal region.
The definitions of these VRs are shown in Table 3, together with the expected and observed numbers of
events in each region. Figure 4 also shows this comparison, with the expected number of events broken
down into its contributing SM sources.

Figure 5 shows the distribution of the missing transverse momentum Emiss
T for the sample satisfying

all requirements of the SRγγW−H (left) and SRγγW−L (right) selections except the Emiss
T requirement itself.

Overlaid are the expected SM backgrounds, separated into the various contributing sources.

7.2 Backgrounds to the photon+jets analysis

Backgrounds from SM contributions to the three photon+jets SRs are expected to arise from both events
with real photons and events for which an electron or a jet is misidentified as a photon. The former
source is expected to receive contributions from events in which a W/Z boson or a tt̄ pair is produced
in association with a real photon (Wγ, Zγ and tt̄γ backgrounds), with neutrinos in the subsequent
weak decays of these produced states providing significant Emiss

T . The contribution from single-top
production in association with a high-energy photon is expected to be negligible. Events with real
photons can also contribute to the background in the photon+jets analysis when significant Emiss

T arises
from instrumental sources (QCD background). The Wγ, tt̄γ and QCD backgrounds are estimated by
constraining a corresponding MC sample to match the observed event count in a dedicated CR enriched
in the given background process but otherwise kinematically similar to the given SR, making use of the
maximum-likelihood approach described at the beginning of this section. The MC simulation is then used
to provide an estimate of the expected background in the photon+jets SRs. Smaller contributions from
Zγ and γγ (with or without an accompanying W or Z boson) production are estimated directly from the
MC simulation. The methods used to estimate contributions from events for which electrons (“e → γ”
backgrounds) or jets (“jet → γ” backgrounds) are misidentified as photons are identical to those used
in the diphoton analysis, with the exception that the single-photon trigger sample is used instead of the
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Figure 4: Comparisons between expected and observed content of the validation and signal regions for the diphoton
analysis. The uncertainties in the numbers of expected events are the combined statistical and systematic uncertain-
ties. The lower panel shows the pull (difference between observed and expected event counts normalized by the
uncertainty) for each region.

diphoton trigger sample, the requirement that the electron or loose photon be accompanied by a tight
isolated photon is removed, and the requirement for photons to be considered poorly isolated is changed
to 8 < E0.4

T − 0.22 × EγT − 2.45 < 27 GeV.

All CRs require at least one isolated photon with ET > 145 GeV. The QCD-background control region
CRγ+jets is similar to SRγj

L , but with the Emiss
T requirement lowered to Emiss

T > 100 GeV, the R4
T requirement

removed, the number of required jets lowered to three, and the∆φmin(jet, Emiss
T ) requirement inverted. This

provides a region dominated by real photons arising from radiative QCD processes that is otherwise fairly
similar to the photon+jets SRs. The Wγ-background control region CRWγ is defined by requiring that
there be one or more isolated leptons (electron or muon), at least one jet, and no b-tagged jet in the event.
In addition, the Emiss

T requirement is changed to 100 < Emiss
T < 200 GeV and the meff requirement reduced

to meff > 500GeV in order to enhance and isolate theWγ contribution. The tt̄γ-background control region
CRt t̄γ is defined similarly, but requires at least two jets, and that two of the jets are b-tagged jets. In order to
increase the number of events in the CR the Emiss

T requirement is lowered to 50 < Emiss
T < 200 GeV. Both

the Wγ-background and tt̄γ-background CRs maintain the requirement ∆φmin(jet, Emiss
T ) > 0.4. Table 4

summarizes the selection criteria for the three photon+jets analysis CRs.

The event counts in the resulting QCD, Wγ and tt̄γ CRs are used to scale the γ+jet, Wγ and tt̄γ MC
samples, respectively, after applying a selection identical to that of the corresponding CR. The scale
factors are determined in a simultaneous fit to all CRs, taking into account mutual cross contamination
between the different backgrounds. The scale factors (ratio of the derived background contribution in
the corresponding control region to the MC expectation) are found to be 1.67 ± 0.49, 1.24 ± 0.11 and
1.20 ± 0.17 for the QCD, Wγ and tt̄γ backgrounds, respectively. The resulting SR contributions from
the QCD, Wγ and tt̄γ processes depend upon transfer factors, given by MC simulation, that relate the
contribution of a given background process in the CR to that in the SR. Uncertainties in the transfer
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Figure 5: Distribution of the missing transverse momentum Emiss
T for the sample satisfying all requirements of

the (left) SRγγW−L and (right) SRγγW−H selection except the Emiss
T requirement itself. Overlaid are the expected SM

backgrounds, separated into the various contributing sources. Also shown are the signal expectations for the
(mW̃ ,mχ̃0

1
) = (1000, 100) GeV and (mW̃ ,mχ̃0

1
) = (1000, 800) GeV models. The vertical dashed lines and right-

pointing arrows show the region of the Emiss
T observable selected for inclusion in SRγγW−L and SRγγW−H. The lower

panels show the ratio of observed data to the combined SM expectation. For these plots, the band represents the
range of combined statistical and systematic uncertainty in the SM expectation. Events outside the range of the
displayed region are included in the highest-value bin.

factors include those arising from experimental uncertainties in the efficiency for identifying objects and
in measuring their energy, as well as theoretical uncertainties that are estimated by varying the underlying
PDF set and renormalization and factorization scales used in the generation of theMCbackground samples.
These uncertainties are incorporated into the overall background estimate uncertainties that arise from the
simultaneous fit. Estimates for the contributions of the three real-photon backgrounds are shown in Table 5,
with the overall uncertainty taking into account correlations between the various background sources. For
the three photon+jets SRs, the systematic uncertainty in each background estimate is dominated by the
theoretical uncertainties in the relevant MC samples and the experimental uncertainties in the jet energy
scale and resolution.

The accuracy of the resulting photon+jets analysis background model is confirmed by the use of 11 VRs.
Similar to the diphoton analysis VRs, these VRs exclude events in the various photon+jets SRs while
having kinematic properties similar to those of the signal region. Validation regions VR1γj through
VR6γj, defined in Table 6, target the confirmation of the modeling of backgrounds arising from γ+jets
production. Validation regions VR7γj through VR11γj, defined in Table 7, target the confirmation of the
modeling of backgrounds arising from Wγ and tt̄γ production and from the misidentification of electrons
as photons. Figure 6 shows the comparison between the expected and observed content in the VRs, with
the expected content broken down into its contributing SM sources.

Figure 7 shows the distribution of the missing transverse momentum Emiss
T for the sample satisfying all

requirements of the SRγj
H (left) and SRγj

L or SRγj
L200 (right) selections except the Emiss

T requirement itself.
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Table 4: Selection criteria for the three photon+jets analysis control regions. Here, Nγ is the number of required
photons, EγT the transverse energy of the leading photon, Nlep the number of required leptons, Njets the number of
required jets, and Nb -jets the number of required b-quark jets. The remainder of the quantities are defined in the text.
An ellipsis is entered when no such requirement is made in the given control region.

CRγ+jets CRWγ CRt t̄γ

Nγ ≥ 1 ≥ 1 ≥ 1
EγT > 145 GeV > 145 GeV > 145 GeV
Nlep 0 ≥ 1 ≥ 1
Emiss

T > 100 GeV 100–200 GeV 50–200 GeV
Njets ≥ 3 ≥ 1 ≥ 2
Nb-jets ... 0 ≥ 2
∆φ(jet, Emiss

T ) < 0.4 > 0.4 > 0.4
∆φ(γ, Emiss

T ) > 0.4 ... ...
meff > 2000 GeV > 500 GeV > 500 GeV

Table 5: The expected and observed numbers of events in the photon+jets signal regions. The quoted errors are the
combined statistical and systematic uncertainties.

Signal region SRγj
L SRγj

L200 SRγj
H

γ + jets (QCD) 0.00+0.21
−0.00 0.42+0.43

−0.42 0.14 ± 0.14
Wγ 0.54 ± 0.24 0.81 ± 0.22 0.40 ± 0.26
Zγ 0.31 ± 0.16 0.36 ± 0.13 0.42 ± 0.19
tt̄γ 0.30 ± 0.11 0.54 ± 0.17 0.07 ± 0.03
e→ γ 0.07 ± 0.03 0.16 ± 0.06 0.04 ± 0.04
Jet→ γ 0.07+0.44

−0.07 0.35+0.36
−0.35 0.01+0.50

−0.01
γγ/Wγγ/Zγγ 0.03 ± 0.01 0.03 ± 0.01 0.06 ± 0.02
Expected background events 1.33+0.58

−0.32 2.68+0.64
−0.63 1.14+0.61

−0.36
Observed events 4 8 3

Overlaid are the expected SM backgrounds, separated into the various contributing sources.

8 Signal yield and associated uncertainties

GGM signal acceptances and efficiencies are estimated using MC simulation for each simulated point in
the gluino–bino, wino–bino, squark–bino and higgsino–bino parameter spaces, and vary widely across
the regions of these spaces relevant to establishing the model constraints presented below. The product of
acceptance and efficiency tends to be greatest (30%–35%) when the masses of both the produced and the
NLSP states are largest, leading to large amounts of both visible energy and missing transverse momentum
that would clearly distinguish signal from background events. However, for the more restrictive selection
of the photon+jets analysis, particularly when the NLSP mass is small, the product of acceptance and

17



Table 6: Definition, expected content, and observed content of the six validation regions used to confirm the accuracy
of the modeling of the γ + jets background to the photon+jets analysis. Here, EγT is the transverse energy of the
leading photon, Nlep is the number of required leptons, Njets is the number of required jets, and Nexp and Nobs are
the expected and observed numbers of events, respectively. The remainder of the quantities are defined in the text.
The uncertainties in the expected numbers of events are the combined statistical and systematic uncertainties. An
ellipsis is entered when no such requirement is made in the given validation region.

VR1γj VR2γj VR3γj VR4γj VR5γj VR6γj

EγT [GeV] > 145 > 145 > 145 > 400 > 400 > 400
Nlep 0 0 0 0 0 0
Njets ≥ 5 ≥ 5 ≥ 5 ≥ 3 ≥ 3 ≥ 3
∆φ(jet, Emiss

T ) > 0.4 > 0.4 > 0.4 > 0.4 > 0.4 > 0.4
∆φ(γ, Emiss

T ) > 0.4 > 0.4 > 0.4 > 0.4 > 0.4 > 0.4
Emiss
T [GeV] 50–175 75–175 100–175 100–175 125–175 150–175

meff [GeV] > 2000 > 2000 > 2000 > 2000 > 2000 > 2000
R4

T < 0.90 < 0.90 < 0.90 ... ... ...
Nexp 112 ± 20 42 ± 11 10.9 ± 4.1 120 ± 36 36.6 ± 9.9 13.4 ± 5.5
Nobs 108 41 15 126 40 10

Table 7: Definition, expected content, and observed content of the five validation regions used to confirm the
accuracy of the modeling of the Wγ, tt̄γ, and electron-to-photon misidentification backgrounds to the photon+jets
analysis. Here, EγT is the transverse energy of the leading photon, Nlep is the number of required leptons, Njets is
the number of required jets, Nb -jets is the number of required b-quark jets, and Nexp and Nobs are the expected and
observed numbers of events, respectively. The remainder of the quantities are defined in the text. The uncertainties
in the expected numbers of events are the combined statistical and systematic uncertainties. An ellipsis is entered
when no such requirement is made in the given validation region.

VR7γj VR8γj VR9γj VR10γj VR11γj

EγT [GeV] > 145 > 145 > 145 > 145 > 145
Nlep ≥ 1 ≥ 1 ≥ 1 ≥ 1 ...
Njets ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 1
Nb-jets ... ... ... ... ≥ 1
∆φ(jet, Emiss

T ) > 0.4 > 0.4 > 0.4 < 0.4 > 0.4
∆φ(γ, Emiss

T ) ... ... ... ... < 0.4
Emiss

T [GeV] < 200 < 200 > 200 > 200 > 200
meff [GeV] > 1000 > 1500 [1000, 2000] > 1500 [500, 2000]
Nexp 408 ± 79 66 ± 12 127 ± 23 12.1 ± 2.1 87 ± 12
Nobs 410 59 129 11 94

efficiency can be significantly smaller. For example, for the region relevant to establishing limits at low
values of mχ̃0

1
, the acceptance times efficiency of the SRγj

L selection is of the order of 0.1%, leading to a
relatively modest constraint on the mass of produced SUSY states.

The MC-based estimate of the signal yield is affected by various experimental systematic uncertainties,
described below. The resulting experimental systematic uncertainty in the signal yield is incorporated in
the determination of limits on the mass parameters of the various GGM signal models considered in this
search.
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Figure 6: Comparisons between expected and observed content of the validation and signal regions for the pho-
ton+jets analysis. The uncertainties in the expected numbers of events are the combined statistical and systematic
uncertainties. The lower panel shows the pull (difference between observed and expected event counts normalized
by the uncertainty) for each region.

The uncertainty in the integrated luminosity is 2.1%. It is derived, following a methodology similar to that
detailed in Ref. [68], from a calibration of the luminosity scale using x–y beam-separation scans performed
in August 2015 and May 2016. Making use of a bootstrap method, the efficiency of the single-photon
trigger is determined to be greater than 99%, with an uncertainty of less than ±1%, for photons satisfying
the photon+jets selection criteria [29]. The diphoton trigger efficiency is found to be close to 100% for
events satisfying the diphoton analysis selection criteria, with an uncertainty of less than ±0.4%.

The η-dependent uncertainty in the efficiency of photon identification, determined as described inRef. [58],
is between ±0.2% and ±0.4% for EγT < 200 GeV, and between ±1% and ±4% for larger values of EγT . The
uncertainty in the energy scale for electrons and photonswith high ET, determined as described inRef. [55],
varies with η over the range ±(0.5–1.5)%. For high ET, the uncertainty in the photon energy resolution is
dominated by the uncertainty in the constant term of the calorimetric energy resolution; at ET = 300 GeV,
the relative uncertainty is ±(30–40)% depending on η. For jets with 100 < pT < 500 GeV, the uncertainty
in the jet energy scale is found to be less than ±1% [64]. Due to uncertainties in corrections for pileup,
this uncertainty rises with falling pT, reaching a value of about ±4.5% at pT = 20 GeV. Uncertainties in
the values of whole-event observables, such as Emiss

T and HT, arise from uncertainties in the energy of
the objects from which they are constructed. In addition, the Emiss

T observable receives a contribution
from tracks associated with the primary vertex but not associated with any of the reconstructed objects
in the event [69]. Uncertainties arising from the inclusion of these unassigned contributions are found to
contribute negligibly to the overall uncertainty in the value of the Emiss

T observable.

In the regions of GGMparameter space relevant for establishing the exclusion limits discussed in Section 9,
and excepting MC statistical uncertainty, the quadrature sum of the individual sources of systematic
uncertainty in the signal reconstruction efficiency in the diphoton analysis is of order±5%, and is dominated
by the uncertainties in photon identification and the calorimetric energy scales. In the photon+jets analysis
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Figure 7: Distribution of the missing transverse momentum Emiss
T for the sample satisfying all requirements of the

(left) SRγj
H and (right) SRγj

L or SRγj
L200 selection except the Emiss

T requirement itself. Overlaid are the expected SM
backgrounds, separated into the various contributing sources. Also shown are the signal expectations for points in
the mg̃–mχ̃0

1
parameter space of the GGM model relevant to the photon+jets analysis (mass values in GeV). The

value of the gluino mass arises from the choice M3 = 1900 GeV. The χ̃0
1 mass values of 1868, 1920, 442 and

652 GeV arise from the choices µ = 1810, 1868, 400 and 600 GeV, respectively, combined with the constraint that
the branching fraction of χ̃0

1 → γG̃ be 50%. The vertical dashed lines and right-pointing arrows show the region
of the Emiss

T observable selected for inclusion in SRγj
H and SRγj

L ; for SRγj
L200, the Emiss

T requirement is 200GeV rather
than 300GeV. The lower panels show the ratio of observed data to the combined SM expectation. For these plots, the
band represents the range of statistical uncertainty in the SM expectation. Events outside the range of the displayed
region are included in the highest-value bin.

the systematic uncertainty is larger (approximately ±20%), due partially to an increased sensitivity to the
jet energy scale and resolution associated with the multiple-jet requirement.

9 Results

The number of events observed in each SR is shown in Table 8, along with the size of the expected SM
background. These results are also illustrated in Figures 4 and 6, with the expected background broken
down into its contributing SM sources. No significant evidence of physics beyond the SM is observed in
any of the SRs.

The most significant excess relative to the expected background is observed in SRγj
L200 of the photon+jets

analysis. Considering both statistical and systematic uncertainty, and assuming that all observed events
are from SM sources, an observation of eight or more events over an expected background of 2.68+0.64

−0.63
events represents an upward fluctuation with a probability of occurrence of approximately 0.9%.

Based on the observed and expected numbers of events in the seven SRs shown in Table 8, 95% C.L.
upper limits are set for each SR on the number of events from any scenario of physics beyond the SM.

20



Table 8: Summary of the observed number of events (Nobs), and the number of events expected from SM sources
(Nexp), for each of the seven SRs. Also shown are the derived (S95

obs) and expected (S95
exp) model-independent 95%

C.L. limits on the number of events from non-SM processes, and the observed (〈Aεσ〉95
obs) and expected (〈Aεσ〉

95
exp)

95% C.L. limits on the visible cross section from non-SM processes. The last column of the table shows the
significance Z of the observed excess (if any), and the probability p, capped at 0.5, that an experiment with only
background fluctuates to at least the observed number of events.

Signal region Nobs Nexp S95
obs S95

exp 〈Aεσ〉95
obs[fb] 〈Aεσ〉95

exp[fb] Z (p)

SRγγS−L 0 0.50+0.30
−0.26 3.0 3.1+1.4

−0.2 0.083 0.086+0.039
−0.003 0.00 (0.50)

SRγγS−H 0 0.48+0.30
−0.25 3.0 3.1+1.3

−0.1 0.083 0.086+0.036
−0.003 0.00 (0.50)

SRγγW−L 6 3.7 ± 1.1 8.6 5.8+2.8
−1.6 0.238 0.161+0.078

−0.044 1.06 (0.14)
SRγγW−H 1 2.05+0.65

−0.63 3.7 4.4+1.9
−1.0 0.103 0.122+0.053

−0.028 0.00 (0.50)
SRγj

L 4 1.33+0.54
−0.32 7.6 4.7+1.6

−0.8 0.210 0.130+0.044
−0.022 1.81 (0.035)

SRγj
L200 8 2.68+0.64

−0.63 11.5 5.4+2.2
−1.2 0.318 0.151+0.060

−0.033 2.36 (0.009)
SRγj

H 3 1.14+0.61
−0.36 6.6 5.9+1.8

−1.1 0.183 0.162+0.050
−0.030 1.20 (0.116)

These limits are based on the profile likelihood ratio [70] and C.L.s [71] prescriptions, making use of the
likelihood function described in Section 7. Assuming that no events due to physical processes beyond those
of the SM populate the various CRs used to estimate SR backgrounds, observed 95% C.L. upper limits on
the number of such events vary between 3.0 (for SRγγS−H and SRγγS−L) and 11.5 (for SRγj

L200). Dividing by
the integrated luminosity of 36.1 fb−1, these number-of-event limits translate into 95% C.L. upper limits
on the visible cross section for new physics, defined as the product of cross section, branching fraction,
acceptance and efficiency, for the different SR definitions. Here, the acceptance (A) is defined to be the
fraction of events whose underlying objects pass all kinematic and whole-event selection requirements,
and the efficiency (ε) to be the fraction of those events that would be observed after reconstruction in the
detector. The resulting observed visible cross-section limits vary between 0.083 fb and 0.32 fb.

By considering, in addition to the event counts in the SRs, the values and uncertainties of the acceptance
times efficiency of the SR selection requirements, as well as the NLO (+NLL) GGM cross sections [38–
44], 95% C.L. lower limits are set on the masses of the accessible SUSY states of the GGM scenarios
explored in this study. The SR with the best expected sensitivity at each simulated point in the parameter
space of the corresponding GGM model(s) is used to determine the degree of exclusion of that model
point.

For the diphoton analysis, in the region of gluino (squark) mass near the expected 95% C.L. exclusion
limit, SRγγS−H is expected to provide the greatest sensitivity to the gluino–bino (squark–bino) model for
bino masses above 1600GeV (900GeV), with a transition to SRγγS−L for bino masses below this value. For
the wino–bino model, the similar transition point between the use of SRγγW−L and SRγγW−H is found to be
at 400GeV. The resulting observed limits on the gluino and wino masses are exhibited, as a function of
bino mass, for the diphoton analysis gluino, squark and wino production models in Figures 8 through 10,
respectively. For the wino production model, the discontinuity at mχ̃0

1
= 400 GeV is due to the small

excess of events observed in the SRγγW−L signal region.
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For the purpose of establishing these model-dependent limits, both the normalization of theW(→ `ν)+γγ
background estimate and the limit on the possible number of events from new physics are extracted from
a simultaneous fit to the SR and W(→ `ν) + γγ control region. However, for masses near the various
diphoton-analysis exclusion limits, the signal contamination in the W(→ `ν) + γγ control sample is
appreciable only for the wino–bino parameter space, reaching approximately 0.4 events (4% of the 9.1
events in the `γγ CR attributed to the W(→ `ν) + γγ process) as the bino mass approaches zero. Also
shown in these three figures, as well as in Figure 11, are the expected limits, including their statistical and
background uncertainty ranges, as well as observed limits for SUSY model cross sections ±1 standard
deviation of theoretical uncertainty from their central value.

Considering all possible values of the χ̃0
1 mass, 95% C.L. lower limits of 2150GeV, 1820GeV and

1060GeV are set by the diphoton analysis on the value of the gluino, squark or wino mass, respectively,
for any value of the NLSP bino mass less than that of the gluino, squark or wino mass. Based on a sample
of 35.9 fb−1 of pp data accumulated at

√
s = 13 TeV, and assuming a branching fraction of 100% for

the photonic decay of the χ̃0
1 , the CMS Collaboration has set 95% C.L. lower limits of 1790GeV and

1580GeV for similar models of gluino and squark production and decay, respectively [4]. For a GGM
model similar to the wino–bino model of the diphoton analysis, a separate CMS Collaboration analysis [4]
has set a 95% C.L. lower limit as high as 1000GeV on the wino mass, depending on the value of the
binolike χ̃0

1 mass.
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Figure 8: Exclusion limits in the gluino–bino mass plane, using the SRγγS−H analysis for mχ̃0
1
> 1600 GeV and the

SRγγS−L analysis for mχ̃0
1
< 1600 GeV. Combinations of gluino and bino mass are excluded at greater than 95%

C.L. in the area to the left of the unbroken curve. The observed limits are exhibited for the nominal SUSY model
cross-section expectation, as well as for a SUSY cross section increased and decreased by 1 standard deviation of
the cross-section systematic uncertainty. Also shown is the expected limit, as well as the ±1 standard-deviation
range of the expected limit, which is asymmetric due to the small expected number of events. The gray region is
that previously excluded with the 2015 data sample; see Ref. [3].
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Figure 9: Exclusion limits in the squark–bino mass plane, using the SRγγS−H analysis for mχ̃0
1
> 900 GeV and the

SRγγS−L analysis for mχ̃0
1
< 900 GeV. Combinations of squark and bino mass are excluded at greater than 95% C.L.

in the area to the left of the unbroken curve. The observed limits are exhibited for the nominal SUSY model
cross-section expectation, as well as for a SUSY cross section increased and decreased by 1 standard deviation of
the cross-section systematic uncertainty. Also shown is the expected limit, as well as the ±1 standard-deviation
range of the expected limit, which is asymmetric due to the small number of expected events.

Using the photon+jets analysis, limits are set in the two-dimensional plane of the masses of the gluino and
the mixed higgsino–bino NLSP. For values of mg̃ and mχ̃0

1
close to the expected 95% C.L. exclusion limit,

SRγj
L is expected to provide a greater sensitivity for NLSP masses below approximately 1500GeV, and so

is made use of in this region; for higher NLSP masses, SRγj
H is used to establish the degree of exclusion

of points in the GGM-model parameter space. The resulting observed exclusion contour is shown in
Figure 11. In the context of this GGM model, lower limits as high as 2050GeV are established for the
gluino mass, depending on the value of mχ̃0

1
. The sensitivity of the analysis has not been explored for

values of the NLSP mass within 50GeV of that of the gluino, where the selection efficiency diminishes
due to the restriction of phase space for producing multiple high-pT jets, and the tendency of the gluino
to become metastable as the splitting between the gluino and χ̃0

1 masses becomes small.
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Figure 10: Exclusion limits in the wino–bino mass plane, using the SRγγW−H analysis for mχ̃0
1
> 400 GeV and the

SRγγW−L analysis for mχ̃0
1
< 400 GeV. The vertical axis represents bino mass while the horizontal axis represents wino

mass. Combinations of wino and bino masses are excluded at greater than 95% C.L. in the area to the left of the
unbroken curve. The observed limits are exhibited for the nominal SUSYmodel cross-section expectation, as well as
for a SUSY cross section increased and decreased by 1 standard deviation of the cross-section systematic uncertainty.
Also shown is the expected limit, along with its ±1 standard-deviation range. The discontinuity at mχ̃0

1
= 400 GeV

is due to the switch between the use of the SRγγW−L and SRγγW−H analyses, the former of which exhibits a small excess
of observed events relative to the expected SM background. The gray region is that previously excluded with the
data sample taken at

√
s = 8 TeV; see Ref. [6].
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Figure 11: Derived exclusion limits for the µ > 0 higgsino–bino GGM model explored by the photon+jets analysis.
For this figure, the underlying model parameters M3 and µ have been transformed to the physical parameters mg̃ and
mχ̃0

1
, subject to the assumptions stated in Section 2. For each point in the higgsino–bino parameter space, the SR

(SRγj
L or SRγj

H ) that provides the best expected sensitivity is used to estimate the exclusion likelihood. Combinations
of gluino and neutralino mass are excluded at greater than 95% C.L. in the area to the left of the unbroken curve.
The observed limits are shown for the nominal SUSY model cross-section expectation, as well as for a SUSY cross
section increased and decreased by 1 standard deviation of the cross-section systematic uncertainty. The expected
limit is also shown, along with its ±1 standard-deviation range.
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10 Conclusion

Making use of proton–proton collision data at
√

s = 13 TeV corresponding to an integrated luminosity
of 36.1 fb−1 recorded by the ATLAS detector at the LHC in 2015 and 2016, a search is performed for
photonic signatures of new physics associated with significant missing transverse momentum. Single-
photon and diphoton selection strategies were developed and used to search for evidence for several
general gauge-mediated SUSY-breaking scenarios. No significant excess of events over the Standard
Model expectation is observed in any of the searches, and limits are set on possible contributions of new
physics. Model-independent limits between 0.083 fb and 0.32 fb are set on the associated visible cross
section of contributions from physics beyond the Standard Model.

Based on these limits on contributions from new physics, model-dependent limits are set on the masses of
SUSY particles within the context of GGM. A diphoton signature is used to search for strongly and weakly
produced SUSY states with a decay chain proceeding through a binolike next-to-lightest supersymmetric
particle (NLSP). In the context of these models, lower limits of 2150GeV, 1820GeV and 1060GeV are
set on the masses of gluinos, squarks and a degenerate set of winos, respectively, for any value of the bino
mass less than the mass of these produced states. In addition, a photon+jets signature is used to search
for an alternative scenario in which the GGM NLSP is a higgsino–bino admixture with a roughly equal
branching fraction to photons and Z bosons. In the context of this model, lower limits as high as 2050GeV
are established for the gluino mass, depending on the value of the NLSP mass.
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