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Superconducting accelerator magnets require sophisticated monitoring and means of protection due to the large energy stored in
the magnetic field. Numerical simulations play a crucial role in understanding transient phenomena occurring within the magnet,
and can, therefore, help to prevent disruptive consequences. We present a 2-D FEM model for the simulation of electro-thermal
transients occurring in superconducting accelerator magnets. The magnetoquasistatic problem is solved with a modified magnetic
vector potential formulation, where the cable eddy currents are resolved in terms of their equivalent magnetization. The heat
balance equation is then investigated, and the relevant heat sources are discussed. The model implements a two-port component
interface and is resolved, as part of an electrical circuit, in a cooperative simulation scheme with a lumped-parameter network.

Index Terms—Superconducting Accelerator Magnet, Quench, Finite Element Method, Equivalent Magnetization, Eddy Currents.

I. INTRODUCTION

C IRCULAR accelerators for high-energy particle physics
require intense magnetic fields to control the trajectories

of the particle beams. These fields are generated by means
of high-field superconducting magnets, which are electrically
connected in series, and operated in circuits that contain up to
hundreds of elements. It is of paramount importance to ensure
a safe management of the stored energy which, if released
in an uncontrolled way, could compromise the integrity of
the superconducting circuit. This is critical in case of an
event such as a quench [1], where the energy is released
as Ohmic losses. Quenches cannot always be prevented, and
must be considered among the possible operational scenarios.
Generally, dedicated quench detection and protection systems
are in place to quickly discharge the stored energy, in order to
avoid overheating of the coil. These systems influence both,
the quench evolution in the coil and the electrical transient
in the rest of the circuit. A careful analysis of the electro-
thermal transient is fundamental for the design of both, the
magnet and the quench protection system, and for the safe
operation of the circuit.

We present a finite-element electro-thermal 2-D model of
a superconducting magnet, resolved at the scale of half-turns
over which material properties and physics laws are homog-
enized. The model accounts for the non-linear temperature-
and field-dependent material properties and for the induced
eddy-currents in the cable, as well as in the coil’s copper
wedges. The model consistently resolves the field formulation
in presence of iron saturation [2], and dynamic effects in both
the coil [3] and the wedges. In particular, the inter-strand
eddy currents formulation follows [4], with an extra averaging
operator that is discussed in II-B.The thermal formulation
covers the coil assembly, including structural elements such
as insulation foils and wedges, to account for the turn-to-turn
and layer-to-layer heat propagation [5], [6]. The model has
been developed as a modular component of a wider numerical

architecture, which implements the concept of cooperative
simulation. The aim of the architecture is to resolve the
electro-dynamic coupling between the magnet, the protection
systems, and the remaining network, leading to consistent
simulations.

In this paper, we discuss in detail the electro-thermal
formulation, and how it is implemented in the model. Hence
we provide a two-port component interface, which is used to
co-simulate the model with an external electrical circuit.

II. METHOD

The electro-thermal model combines the magnetic vector
potential formulation ∇ × ~A = ~B with the heat balance
equation. The magnetoquasistatic field solution, fixed with
the Coulomb gauge and driven by the current density source
~Js, determines the magnet’s electrodynamics and the related
thermal losses. The eddy-currents’ term σ∂t ~A, proportional to
the conductivity σ, is replaced for the cable by an equivalent
magnetization factor ~Mcc [1], [7] proportional to the time
derivative of the magnetic flux density ∂t ~B via an equiva-
lent time constant τloop. The cable’s persistent magnetization
~Mpers [1], [8] is considered in ~Mdyn = ~Mcc + ~Mpers, lead-

ing the dynamic effects to be consistently included in the
constitutive law ~B = ν−1( ~H + ~Mdyn), where ~H represents
the magnetic field and ν−1 is the magnetic permeability. The
temperature field T is determined by the balance of the heat
ρCp∂tT stored in the system, the heat flux O ·~q, and the heat
source Q. The contributions to Q stem from dynamic losses
Qdyn and Ohmic losses QOhm in the coil, and eddy current
losses Qeddy in the wedges. The proposed formulation leads,
on the 2-D domain Ω, to the following coupled equations,
where ~A = (0, 0, Az)

∇× (ν ∇× ~A) = ~Js + σ∂t ~A+∇× ~Mdyn,

Cp∂tT + O · ~q = Q,

Q = Qdyn +Qeddy +QOhm.

(1)
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Fig. 1: (a) Single-quadrant cross section of the quadrupole magnet’s coil. (b) Actual and homogenized cable’s cross section; the light-
and dark-grey domains refer respectively to the superconducting and the copper domains; the remaining white domain represents the
cable’s voids, here considered as filled with epoxy resin. (c) Definition of a (η, ω) local reference frame, as function of α. (d) The cable’s
characteristic strand loops with their associated magnetic flux density components, in a local frame.

The boundary ∂Ω is linked to Ω through a layer of infinite
domain elements [9]. Let ~n be the outward pointing vector;
if no symmetry is exploited, the Dirichlet boundary condition
~n × ~A = 0 is imposed. The model is driven by an external
current Is in order to be coupled with the co-simulation
algorithm. The current is distributed over the nht half-turns as
~Js = ~χIs [10], through the density function ~χ =

∑nht
i=1 ~χht,i.

To ensure flexibility for the FEM approach, the model is
created by a Java routine that transforms a user’s input into
a distributed model, relying on the Application Programming
Interface (API) provided by COMSOLr.

A. Homogenization of the cable’s geometry

The magnet coil’s discretization resolves the scale of half-
turns (ht), which are paired in turns (tu) to form closed
loops at infinity, as in Fig. 1a. Each half-turn Ωht contains
ns strands of ds diameter (see Fig. 1b), made of a composite
of superconducting material and copper whose relative volu-
metric fractions are defined as fsc and fCu. In the model, the
generic half-turn’s surface |Ωst| = nsπd

2
s /4 is approximated

with a polygon, introducing a discretization error which is
compensated through a suitable homogenization density factor
κht = |Ωst|/|Ωht|. For later use, we define for each half-turn
their tilting angle α and two lines `ω , `η parallel respectively
to the wide and narrow edges (see Fig. 1c).

B. Electrodynamics

The superconducting coil features both, inter-filament
(IFCC) and inter-strand (ISCC) coupling currents, accounted
in the field solution (see Fig. 2) through their equivalent
magnetization, as ~Mcc = ~MIFCC + ~MISCC (see Fig. 3). This
avoids to resolve the coil domain at the micrometric scale
of the cable’s filamentary structure: the equivalent magneti-
zation combines the laws of Faraday and Ampère-Maxwell,
assuming an a-priori knowledge of the currents’ loops.

The IFCC’s magnetization always counteracts ∂t ~B in a 2-D
domain. It features the time constant τIFCC which depends on
the magneto-resistivity of the strand’s copper matrix, and on
the filament’s diameter and twist pitch [7], [11],

~MIFCC = −κht ν τIFCC ∂t ~B. (2)

The ISCC’s magnetization features three distinct contribu-
tions [12], which reflect the three characteristic strand loops

`ω,c, `ω,a and `η,a associated to the ISCCs paths in a fully
transposed cable (see Fig. 1d). Each of the three ISCCs
contributions is homogenized, then expressed per cable’s
unit length [7] and linked to an equivalent time constant
(τω,c, τω,a, τη,c). The original loops are replaced by the equiv-
alent loops `ω and `η , orthogonal respectively to the cable’s
wide and narrow edges. The tensor of the loops’ equivalent
time constants reads, in a local reference frame (ω, η), as

τISCC =

[
τω,c + τω,a 0

0 τη,a

]
. (3)

Due to the formulation’s dependency on the turns’ orienta-
tions, it is suitable to introduce the rotation matrix R(α),
positive definite for a counterclockwise rotation of the 2-
D Euclidean space. It is also convenient to define the
P (`ω,η) operator, which provides the average of the nor-
mal components of a given vectorial field over `ω and `η .
Hence, we define τISCC,α = R(−α)τISCCR(α) and ∂t ~Bα =

R(−α)P (`ω,η)R(α)∂t ~B, leading to

~MISCC = −κht ν τISCC,α ∂t ~Bα. (4)

The persistent magnetization term ~Mpers accounts for the
cable’s persistent eddy currents circulating in the super-
conducting filaments and it is implemented as in [1], [8],
according to the Critical State Model [13], neglecting the
hysteretic behavior. The critical current density Jc(B, T ) [1],
implemented as [14], is homogenized as Jc,ht = κhtfscJc,
leading to

~Mpers = − 2

3π
dfJc,ht

(
1− |

~Js|2

J2
c,ht

)
~uB (5)

where df represents the superconducting filaments’ diameter,
and ~uB = ~B/| ~B| is the magnetic flux density versor. ~Mpers
decays rapidly with the increase of Is, being negligible during
high-field operations.

The magnet’s structural elements are subjected to eddy
currents, which are negligible in the laminated iron yoke
and steel collar, but relevant in the copper wedges in the
coil assembly. The wedges do not form closed loops at
infinity and do not have external leads, so that we require∫

Ωwedge
( ~Jeddy · ~n) dΩ = 0.
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Fig. 2: Quadrupole magnet at nominal field, in T.

C. Heat Balance

The thermal diffusivity of copper dominates
that of the insulation, at cryogenic temperature
(10 � 0.05 mm2/ms, [15]). Therefore, we consider
Ωht as an isothermal domain, over which the material
properties are averaged. The heat diffusion term implements
the Fourier Law ~q = −kOT and it accounts for the heat
exchanged through both, the insulation layer of each half-
turn, and the insulation foil between the inner and outer stack
of cables. Due to the aspect ratio of the half-turns’ insulation
layer (> 100 on the turn’s wide side), k is redefined as
kht, symmetric and anisotropic, to neglect the tangential
component of the heat flux. In the implementation, an in-
built feature called thin layer avoids to mesh the half-turn’s
insulation layer, while the insulation foil is explicitly meshed.
The half-turn domains implement a specific heat capacity
ρCp,ht which accounts for the superconducting material, the
copper stabilizer, the external insulation and for the filling
material which impregnates the cable’s voids (see Fig. 1b).
Each material contributes with its volumetric fraction fi to
ρCp,ht = κht

∑n
i fiρiCp,i.

The heat source Q acting on the coil assembly features three
main contributions. The specific losses Qeddy associated to the
eddy currents in the wedges are proportional to the wedges
conductivity σwedge, as Qeddy = ~Jeddy · σ−1

wedge
~Jeddy. The spe-

cific losses Qdyn, deposited by the dynamic effects in the coil,
are evaluated from the associated variation of the magnetic
energy density function [16]. Losses are determined from (2),
(4), (5) as Qdyn = ~MIFCC · ∂t ~B+ ~MISCC · ∂t ~Bα + ~Mpers · ∂t ~B.
The contribution QOhm related to the Ohmic losses appears
when and where the cable’s working point moves out of
the superconducting material’s critical surface [1], losing the
superconducting state. We model the quench state-transition
through a suitable transition-variable ξht. Joule losses are
accounted as QOhm = ~Js · σ−1

ht
~Js, where the equivalent

half-turn resistivity σ−1
ht is calculated using a reformulation

of the Stekly approximation [17] for the current sharing
regime [18], simplifying the extraction of the coil’s equivalent
resistance(Sec. II-D). In detail σ−1

ht is scaled by the C1 class
logistic function [19] ξht where the tuning coefficients are
chosen as c = 0.5, r = 10, leading to

σ−1
ht =

ξht

κhtfCu
σ−1

Cu , ξht =
1

1 + e
−r

(
|~Js|−Jc,ht

Jc,ht
−c

) , (6)

Fig. 3: IFCC and ISCC magnetic flux density in T, at 5kA, during a
linear ramp-up of 100A/s, calculated as a difference of two solutions.

Alternatively to (6), one can directly fit the E = f(J) with
a logistic function, ensuring a finite amount of energy with
respect to the power law [8]. Nevertheless, in this case the
calculation of σ−1

ht adds an implicit algebraic equation so that
(6) has been found to be more efficient.

D. Two-ports component interface

From the solution we extract two quantities per coil’s unit
length: the total resistance Rc and the inductive voltage Uc,
calculated as the time derivative of the coil’s linked flux. If
the average of the vector potential ~Aht over a generic half-turn
Ωht is introduced, the coil’s equivalent parameters read

Rc =

nht∑
i=1

(σ−1
ht,i Ωht,i), Uc =

nht∑
i=1

(
~χht,i · ∂t ~Aht,i

)
. (7)

Given the turns’ electrical connection order, the definition of
the resistive and inductive voltage per turn allows to evaluate
the voltage-to-ground distribution along the magnet’s coil.

III. RESULTS

The proposed formulation is applied to simulate the Hi-
Lumi MQXF quadrupole magnet [20] in a circuit, as a first
application to magnets based on Nb3Sn superconducting tech-
nology. The two-port component interface (Sec. II-D), com-
bined with the equivalent lumped-parameter representation
proposed in [21], is used to interface the FEM model with a
PSPICE circuit. The chosen value for the circuital inductance
of the magnet is 60 mH [21]. The circuit simulates a test
bench which is arranged as in [22], where the formulation
has been cross-checked for Nb-Ti magnets. The resistor in
parallel with the magnet is equal to 175 mΩ.

The FEM and the circuit models are co-simulated applying
the waveform relaxation technique [23]. The results refer
to a simulation scenario called quench-back. The magnet’s
nominal operating condition at 1.9 K, 17.8 kA, determines
the initial condition of the circuit. Then, the current dynamics
and the subsequent field variation induce losses in the coil
assembly due to the IFCCs (Fig. 4a) and ISCCs (Fig. 4b)
in the cable, and the eddy currents in the wedges (Fig. 4c).
Dynamic losses influence the current decay, contributing to
dissipate the stored energy, and heat up the coil until super-
conductivity is lost. While the quench increases the magnet’s
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Fig. 4: Co-simulation results, at 50 ms. (a) Inter-filament coupling
losses, in W/m3. (b) Inter-strand coupling losses, in W/m3. (c)
Eddy-current losses, in W/m3. (d) Ohmic losses, in W/m3. (e)
Temperature map, in K. (f) Voltage-to-ground map, in V.

temperature, the coil resistance contributes to an even faster
discharge of the current, limiting the deposition of the Ohmic
losses (Fig. 4d) which determine the temperature distribution
(Fig. 4e). The combination of the resistive and inductive
voltage leads to the voltage-to-ground profile presented in
Fig. 4f. The model is meshed with 13·103, 2nd-order elements,
over which the the monolithically-coupled field equations are
discretized and processed by the direct solver PARDISO. The
solution required 190 time steps, using a 2nd-order backward
differentiation formula. The computational time for a magnet’s
quadrant discharge (500 ms) is about 2h, on a standard
workstation.

IV. CONCLUSIONS

We successfully developed a 2-D finite-element electro-
thermal model for accelerator magnets. The model accounts
for the dynamic effects occurring both in the superconducting
cable through equivalent magnetization formulations, and
in the copper wedges. The thermal formulation includes
the coil’s structural elements and accounts for the layer-to-
layer propagation. A two-port component interface allows the
model to be co-simulated with an external circuit. Assuming

the need of a fast extraction of the stored energy, the quench-
back scenario is analyzed, and the magnet’s integrity is
assessed.
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