
CERN-ACC-2018-0006
08-02-2018

arto.niemi@cern.ch

Report

An Open Modelling Approach for Availability and Reliability of Systems
— OpenMARS

Jussi-Pekka Penttinen1,2, Arto Niemi 1,3 and Johannes Gutleber3

1Tampere University of Technology, Tampere, Finland
2Ramentor, Tampere, Finland
3CERN, Geneva, Switzerland

Abstract

This document introduces and gives specification for OpenMARS, which is an open modelling approach
for availability and reliability of systems. It supports the most common risk assessment and operation
modelling techniques. Uniquely OpenMARS allows combining and connecting models defined with dif-
ferent techniques. This ensures that a modeller has a high degree of freedom to accurately describe the
modelled system without limitations imposed by an individual technique. Here the OpenMARS model
definition is specified with a tool independent tabular format, which supports managing models devel-
oped in a collaborative fashion. Origin of our research is in Future Circular Collider (FCC) study, where
we developed the unique features of our concept to model the availability and luminosity production
of particle colliders. We were motivated to describe our approach in detail as we see potential further
applications in performance and energy efficiency analyses of large scientific infrastructures or industrial
processes.

Keywords: Reliability, Availability, Modelling, Risk assessment, Fault tree analysis, Reliability block
diagram, Markov analysis, Failure mode and effects analysis, Petri net

Report CERN-ACC-2018-0006

Contents
1 Introduction . 1

2 Tables for Class Definition . 1

2.1 Fundamental Classes . 1

2.2 Class Definition Table . 3

2.3 Class Attribute Table . 4

3 Tables for Defining Model Elements and Structure . 5

3.1 Element Creation Table . 5

3.2 Element Connection Table . 6

3.3 Methods to Ease Definition of Vast Models . 7

3.4 Predefined Class Elements . 9

4 Attribute Value Table for Model Parameter Definition . 10

5 Model Information Tables . 11

5.1 Model Table . 11

5.2 Changes Table . 12

6 Acknowledgements . 13

7 References . 14

A Annex A: Meta Data Group Properties for the Model Table 15

B Annex B: Property Data Types . 17

B.1 String . 17

B.2 Number . 17

B.3 Duration and Rate . 17

B.4 Array and Map Definition . 18

B.5 Defining Links to External Data . 18

B.6 References . 19

C Annex C: Transitions . 20

C.1 Exponential Distribution (TrExp) . 21

C.2 Constant Distribution (TrConst) . 21

C.3 Weibull Distribution (TrWeibull) . 21

C.4 Normal and Log-normal Distributions (TrNorm and TrLognorm) 22

C.5 Immediate Probability Distribution (TrProb) . 22

C.6 History Data Fitting (TrHistory) . 22

C.7 References . 24

D Annex D: Modelling Techniques . 25

D.1 Advanced Fault Tree Analysis (FTA) Modelling Technique 25

D.2 Markov Modelling Technique . 31

D.3 Reliability Block Diagram (RBD) Modelling Technique 32

D.4 OpenMARS Modelling Technique . 34

D.5 Other Modelling Techniques . 39

D.6 References . 43

E Annex E: Analysis of OpenMARS Models . 44

E.1 Basic Probability Simulator Tool . 44

E.2 Discrete Event Simulator (DES) Tool . 44

E.3 Sensitivity Analysis Tool . 45

i

Report CERN-ACC-2018-0006

1 Introduction
The Open Modelling approach for Availability and Reliability of Systems (OpenMARS) allows to define
models with any of the most common risk assessment modelling techniques [1], such as Fault Tree
Analysis (FTA), Reliability Block Diagram (RBD), Markov analysis, Failure Mode and Effects Analysis
(FMEA) and Petri Net (PN). Annex D describes presently defined techniques but our approach is scalable
and open to support also additional modelling techniques. Uniquely our concept allows combining and
connecting models created with different techniques, which gives modellers a high degree of freedom to
accurately describe the details and behaviours of the system they are modelling. Our recognition of this
need is backed by more than decade’s worth of experience in concrete use cases that go beyond scope of
traditional risk assessment techniques [2, 3].

In addition to reliability and availability various other Key Performance Indicators (KPI) exists for
a system. For instance, industry uses Overall Equipment Efficiency (OEE) calculations [4] to link avail-
ability and goods production. This link is not always trivial. For example, our particle collider availability
model takes into account operation time and operational cycle to calculate the collision production [5].
For such cases the OpenMARS approach allows to combine operation and production models to risk as-
sessment modelling techniques. We also introduce a freely definable production function, which allows
modellers to include programming code to define any application specific KPI and their interactions.

This document gives specification on how to define models in platform independent and human
readable tabular format. Tables are natural way to store the models into a database. We see possibility
to use the tables as an open interface. The tools can be implemented for creation, visual presentation
and analysis of the OpenMARS models. Also, it is feasible to create tools which convert the model
information between our format and other formats enabling shared use of different reliability software.

In OpenMARS a model consist of elements that have classes. The class defines which kind of
attributes the element has. Each modelling technique has a catalogue of available classes and our goal
is that the most cases should be covered with them. To guarantee that our modelling concept is always
applicable, we allow expert users to extend the model specific classes to tailor them for their special
needs.

Our approach uses five different tables to define models. Chapter 2 describes the two class tables
used for modelling technique definition. Chapter 3 explains the next two tables used for the model
elements and structure definition. The model parametrization is done in the attribute value table, which
is described in Chapter 4. In addition, our specification recognizes the model identification and tracking
as the necessities for collaborative work. These features are covered in Chapter 5.

2 Tables for Class Definition
The OpenMARS approach is based on fundamental classes, which are described in Chapter 2.1. The
class definition table (Chapter 2.2) specifies the other classes and the class inheritance. Each non-
fundamental class inherits some features of a fundamental class.

Each modelling technique comes with a catalogue of built in classes. Chapter 2.2.1 shows an
example of the Fault Tree Analysis (FTA) classes. More examples for various modelling techniques are
collected to Annex D. Usually these build in classes should be sufficient to build models with presently
defined techniques, but for special cases OpenMARS allows creation of custom classes. This process is
explained in Chapter 2.2.2.

Every OpenMARS class has attributes that describe the class and its behaviour. These attributes
are introduced and defined in the class attribute table, which is explained in Chapter 2.3.

2.1 Fundamental Classes
The three main fundamental classes in OpenMARS are: Element, Property and Folder. The element class
further divides to four fundamental classes: Node, Operator, State and Transition. They form a basis for
every modelling technique, which makes the combination of different techniques more straightforward.
Examples 1 and 2 describe how the fundamental classes are used with FTA.

1

Report CERN-ACC-2018-0006

Example 1. A node object contains states and transitions. For a basic fault node the states are: normal
and fault. Only one of them can be active at a certain time. The transitions define when the state changes
are made. The transition from normal state to fault is called failure and the transition from fault to normal
is called restoration. Figure 1 shows the resulting fault node with these states and transitions. These states
and transitions form a Markov model [6] that composes the fault node.

node state transition

Fault node

normal fault
restoration

failure

Fig. 1: A fault node containing normal and fault states that are connected with failure and restoration transitions

Example 2. In OpenMARS approach the operators model the relations between nodes. OR, AND, Vote
and other gates define the relations between fault nodes in FTA. Figure 2 shows how fault nodes are
connected to gate operators to form a fault tree.

System fault

OR

No pumpsMotor fault

AND

Pump 2 faultPump 1 fault

Operator

Node

Connection

Fig. 2: An example fault tree model with five fault nodes and two gate operators

The folders improve the handling of large models. Figure 3 illustrates how a model can be divided
in different system levels and how elements can be grouped in folders. Further benefits of folders are
introduced in Chapter 3.

Operator

Node

Operator

NodeNode

Operator

Node

Node Node

Node

Fig. 3: Models can contain folders to hierarchically structure elements

The class defines what attributes an element has. An attribute can be another element or a property that
stores a parameter value. A property can be for example a string or a number which are used for basic
attributes such as title, description, cost or colour. The full list of property classes is defined in Annex
B. Elements are structured attributes that have multiple properties. For example transitions defined in
Annex C are attributes of nodes.

2

Report CERN-ACC-2018-0006

2.2 Class Definition Table
Each class used in the model is introduced class definition table, which also presents the inheritance
between classes. The columns for the class definition table are CLASS and IS A. The CLASS column
defines the name of the introduced class. IS A column defines the name of the class that the new class
extends.

Following laws and a convention outline the proper use of class definition table:

Definition 3. The class names shall only consist of a-z, A-Z, 0-9 and underscore (_) characters.

Definition 4. The classes can be introduced irrespective of the order of the table rows. Thus, the inherited
class can be introduced later than the inheritance is defined.

Definition 5. It is not allowed to introduce same class more than once.

Convention 6. Each class name starts with upper-case letter. [8]

Example 7. Table 1 shows how the fundamental classes from Chapter 2.1 are introduced.1 Similarly
with Java programming language the predefined Object class is a base for all classes in OpenMARS.

Table 1: The fundamental classes in class definition table

CLASS IS A COMMENT
1 Element Object Element is a model object which contains attributes

2 Property Object Properties are used as basic attribute values of elements

3 Folder Object Folders are for organizing the model elements

4 Node Element Node is an element which contains states and transitions

5 Operator Element Operators are elements which control node states and transitions

6 State Element State is an element which models whether a particular set of circumstances is active

7 Transition Element Transition is an element which defines when state changes are made

2.2.1 Examples of Build in Classes in the Class Definition Table
The FTA classes, introduced by Examples 1 and 2, are shown in Table 2. These classes form the basis
for the Advanced FTA modelling technique, which is further defined in Annex D.

Table 2: Example of built in FTA classes in the class definition table

CLASS IS A COMMENT
1 Fault Node Node to model faults in FTA modelling technique

2 Gate Operator Logic operator in FTA modelling technique

3 OR Gate A logic operator which defines rule ”At least one”

4 AND Gate A logic operator which defines rule ”All”

5 Vote Gate A logic operator ”At least m” or ”Redundancy k out of n”, where m = n-k+1

Table 3 shows the property classes mentioned in Chapter 2.1 in the class definition table. Annex B
contains the full property class documentation.

1Additional columns exist for the definition index and for the comments. The index number helps to refer a certain row
and the comment gives a background information about the definition. The content of these two columns is not included in the
defined model.

3

Report CERN-ACC-2018-0006

Table 3: Example of built in property classes in the class definition table

CLASS IS A COMMENT
1 String Property Unformatted text

2 Name String A String with only characters a-z, A-Z, 0-9 and _ allowed

3 Colour String Predefined colour name or a specification in a supported scheme

4 Boolean String Either true or false

5 Number Property Any number

6 Integer Number A whole number without fractional component (only integer literals allowed)

7 Probability Number A number with only a value between 0 and 1 allowed, with 0 and 1 included

8 Duration Number Time interval given with value and time unit (number can be calculated by multiply-
ing the value with the factor that corresponds the time unit)

2.2.2 Model Specific Class Definition
An expert user can extend a built in class to create a model specific class. This can be needed to include a
distinct feature that is not covered by existing classes. To ensure consistency of models the users cannot
directly change the built in classes.

Example 8. Here a modeller chooses to introduce specific classes for mechanics and electronics related
faults. They extend the fault node. Creating these new classes is shown in Table 4.

Table 4: Example of two user defined classes that extend the fault class

CLASS IS A COMMENT
1 MechanicsFault Fault Model specific node for mechanics faults

2 ElectronicsFault Fault Model specific node for electronics faults

2.3 Class Attribute Table
Attributes describe a class and its behaviour in a specific modelling technique. The objects of certain
class can only contain attributes that are introduced for its class. Types and names of these attributes are
defined in the class attribute table.

The class attribute table contains three columns: CLASS, TYPE and ATTR (attribute). The
CLASS column defines the name of the class to which the attribute is associated. The TYPE column de-
fines a class name that indicates the data format and range of the property or the structure of the attribute.
The ATTR column defines the name of the introduced attribute.

Similarly with the class definition table, the class attribute table has an index and a comment
column. Following laws and a convention outline the proper use of class attribute table:

Definition 9. The attribute names shall only consist of a-z, A-Z, 0-9 and underscore (_) characters.

Definition 10. It is not allowed to introduce same attribute more than once.

Convention 11. Each attribute name starts with lower-case letter. [8]

Example 12. Table 5 shows how to introduce attributes for the classes.

4

Report CERN-ACC-2018-0006

Table 5: Examples of introducing properties for the classes

CLASS TYPE ATTR COMMENT
1 Node String title The node title which can be shown in graphical user interface

2 Node Colour background The background colour of the node shown in graphical user interface

3 Node Name initial The name of the initial state of the node

4 Vote Integer atLeast The number source node faults needed at least for target node fault

Folders and some elements are container objects that can contain other elements. In OpenMARS the
contained elements are seen as attributes of the container. The container definition specifies the allowed
classes for the contained elements. A container object can contain any number of elements of the spec-
ified class but they each need to have a distinct name. The container definition is made by giving the
asterisk (*) symbol in the ATTR column.

Example 13. Table 6 shows definition that allows folders to contain any elements and subfolders, and a
definition that allows nodes to contain only states and transitions.

Table 6: Container definitions for folders and nodes

CLASS TYPE ATTR COMMENT
1 Folder Element * Folders can contain any elements

2 Folder Folder * Folders can contain also sub folders

3 Node State * Nodes can contain states

4 Node Transition * Nodes can contain transitions

3 Tables for Defining Model Elements and Structure
Each element and folder present in the model is defined in the element creation table, which is described
in Chapter 3.1. The element connection table (Chapter 3.2) defines the relations between the elements.
One of our goals for the table based model definition was to make defining vast models easy. Here we
were motivated PSB RF-system reliability study, where the modelled system has multiple similar repet-
itive structures [7]. Chapter 3.3 introduces short-cuts that simplify the definition of repetitive structures.
Furthermore, element tables are used to predefine class elements. This is explained in Chapter 3.4 that
extends the information in Chapter 2.

3.1 Element Creation Table
The element creation table defines the elements and their location in a model. The element creation table
has three columns: CONT (container), ELEMENT and CLASS. The CONT column defines element
location, which is the container object (a folder or an element) that contains the specified element. The
ELEMENT column defines the name of the created element and the CLASS column defines the name of
the element class.

Following laws and a convention govern the proper use of the element creation table:

Definition 14. The element names shall only consist of a-z, A-Z, 0-9 and underscore (_) characters.

Definition 15. The elements can be created irrespective of the order of the table rows. Thus, the container
object can be defined after it is used as a location for an element.

Definition 16. It is not allowed to create same element more than once.

Convention 17. Each element name should start with lower-case letter. [8]

5

Report CERN-ACC-2018-0006

Each folder and element has an Unique Identifier (UID). It is created by combining the UID of the
container object with the name defined in the ELEMENT column, where the container object UID and
the name are delimited by a slash (/) symbol. The empty value in the CONT column means that the
default base folder of the model is used as a location for the created object.

Example 18. Table 7 shows how to create a folder to the default base folder. The created folder contains
four elements. The resulting UIDs of the created objects are shown in the COMMENT2 column. Figure 4
illustrates the created elements.

Table 7: Examples how create elements

CONT ELEMENT CLASS COMMENT

1 system Folder A folder for the system model created to the default base folder,
UID: /system

2 /system systemFault Fault A fault of the system, UID: /system/systemFault

3 /system systemOR OR A logic OR operator of the system, UID: /system/systemOR

4 /system noPower Fault No power to the system, UID: /system/noPower

5 /system motorFault Fault A motor fault of the system, UID: /system/motorFault

Operator
systemfault

systemOR

motorFaultnoPower
Node

Fig. 4: The three fault nodes and an OR-gate are in a system folder

3.2 Element Connection Table
The element connection table defines the relations between elements. We implemented this as a set of
ordered pairs, which is a straightforward technique to represent finite directed graphs [9]. The element
connection table has two columns: SOURCE and TARGET. The correct direction of the connection is
based on convention set up in the modelling technique.

Example 19. Table 8 shows how to add connections between fault tree elements created in Example 18.
The chosen convention to fault tree is that the child fault is the SOURCE and the parent fault is the
TARGET. Figure 5 illustrates the resulting model structure.

Table 8: Examples how to add connections between elements using element UID

SOURCE TARGET COMMENT
1 /system/systemOR /system/systemFault System OR gate connected to system fault

2 /system/noPower /system/systemOR No power connected to system OR gate

3 /system/motorFault /system/systemOR Motor fault connected to system OR gate

2Additional columns exist for the definition index and for the comments. The index number helps to refer a certain row
and the comment gives a background information about the definition. The content of these two columns is not included in the
defined model.

6

Report CERN-ACC-2018-0006

Operatorsystemfault

systemOR

motorFaultnoPower

Node

Connection

Fig. 5: The model structure with three fault nodes connected with one OR operator

Similarly with other tables, following law governs the proper use of the element connection table:

Definition 20. It is not allowed to add same connection more than once.

It is also possible to add a connection from or to an attribute of an element. This is needed for example
with mathematical function models when defining the property value used as a parameter for the function
(Annex D).

3.3 Methods to Ease Definition of Vast Models
3.3.1 Array and Reference Definitions in Element Creation Table
The array definition allows to create multiple similar elements to same container using only one table
row. This definition is made by adding index inside square brackets as a suffix of the element name,
which results as a syntax: elementName[index]. Table 9 shows examples on what can be used as an
index.

Table 9: Examples on what can be used as array definition index

Description Example
Integer 1
Name first
List of integers 1,2,3
List of names first, second, third
Integer interval 1-4 (meaning: 1,2,3,4)
Character interval a-d (meaning: a,b,c,d)

A reference definition is created by using the container object name instead of UID in the CONT column.
Example 21 shows how array and reference definitions can be used.

Example 21. The first row of Table 10 creates three pump folders with an array definition. By using
the pump folder name as a reference definition the three fault nodes and an AND gate are created to all
three folders. Figure 6 shows the resulting elements. Table 11 further highlights how to use reference
definitions by showing different ways to refer the pumpFault nodes.

7

Report CERN-ACC-2018-0006

Table 10: Examples how to create multiple elements using array definition

CONT ELEMENT CLASS COMMENT
6 pumps[1-3] Folder Three similar pump model folders

7 /pumps pumpingFault Fault A pumping fault for each folder

8 /pumps pumpingAND AND A logic AND operator of the pumping for each folder

9 /pumps pumpFault[left,right] Fault Two similar pump faults for each folder

pumpingfault
pumpingAND

pumpFault[right]pumpFault[left]

pumpingfault
pumpingAND

pumpFault[right]pumpFault[left]

pumpingfault
pumpingAND

pumpFault[right]pumpFault[left]

Fig. 6: The twelve elements in three folders created with only four definition rows

Table 11: Examples of available reference definitions

DEFINITION COMMENT
1 /pumps[1]/pumpFault[left] Element UID used to refer to certain node

2 /pumps[1]/pumpFault Refers to both nodes in first pumps folder (2 exists)

3 /pumps[2-3]/pumpFault Refers to both nodes in two last pumps folders (4 exists)

4 /pumps/pumpFault[left] Refers to all left pump fault nodes in all pumps folder (3 exists)

5 /pumps/pumpFault Refers all pump fault nodes in all pumps folders (6 exists)

6 pumps/pumpFault Similar to #5, but refers to all pump fault nodes in every pumps folder in the
project (not just the ones in the default folder)

7 pumpFault Refers to every pump fault nodes in any project folder

3.3.2 Reference Definition in Connection Table
The reference definition (Chapter 3.3.1) can be used to efficiently add connections within containers.
This simplifies connection definitions in vast models as single row can be used to define a connection in
each container that has the same name.

Example 22. Table 12 extends Example 21 by defining the connections shown in the Figure 7. If both
source and target elements contain reference definition, the connection is made only between elements
in a common container object.

Table 12: Examples on using reference definitions with connections.

SOURCE TARGET COMMENT
4 pumpingAND pumpingFault Pumping AND gate connected to pumping fault

5 pumpFault pumpingAND Both pump faults connected to pumping AND gate

8

Report CERN-ACC-2018-0006

pumpingfault

pumpingAND

pumpFault[right]pumpFault[left]

pumpingfault

pumpingAND

pumpFault[right]pumpFault[left]

pumpingfault

pumpingAND

pumpFault[right]pumpFault[left]

Fig. 7: Illustration on connections defined in Table 12

Example 23. The reference definition can be used also when connecting elements located in different
folders, but the folder needs to be specified. Table 13 extends Examples 18 – 22 and shows how to
connect elements in pumps folders to an OR-gate in system folder. Here it is notable that the definition
without specified folders (pumpingFault -> systemOR) would not create any connections as the elements
are in different containers. Figure 8 shows the resulting connections.

Table 13: Example how to use reference definition to add connection between elements from different folder

SOURCE TARGET COMMENT
6 /pumps/pumpingFault /system/systemOR All pumping fault nodes connected to system OR gate

pumpingfault

pumpingAND

pumpFault[right]pumpFault[left]

systemFault

systemOR

motorFaultnoPower

pumpingfault

pumpingAND

pumpFault[right]pumpFault[left]

pumpingfault

pumpingAND

pumpFault[right]pumpFault[left]

Fig. 8: Combination of models created to different folders

3.4 Predefined Class Elements
Element creation and connection tables can be used to further define element classes. The class elements
created for each object of a specific class are defined by giving the class name in the CONT column of the
element creation table. This is an optional way for defining class attributes (Chapter 2.3). Example 24
compares these two ways. The class element definition is allowed only if a class objects are defined as a
containers for the created element (see Example 13).

Example 24. This example shows two ways to define elements contained in the Fault class. Figure 9
reintroduces the elements of the Fault class that were first shown in Example 1. Table 14 shows how
the elements can be created in the class attribute table and Table 15 shows the same definitions in the
element creation table. Using the element creation table for these definitions is allowed as the nodes are
defined as containers for states and transitions.

9

Report CERN-ACC-2018-0006

node state transition

Fault node

normal fault
restoration

failure

Fig. 9: A fault node with normal and fault states and failure and restoration transitions

Table 14: Introduction of class elements attributes in the class attribute table

CLASS TYPE ATTR COMMENT
10 Fault State normal Normal state for all node elements of class Fault

11 Fault State fault Fault state for all node elements of class Fault

12 Fault Transition failure Transition which changes the node state from normal to fault

13 Fault Transition restoration Transition which changes the node state from fault to normal

Table 15: Introduction of class elements in the element creation table

CONT ELEMENT CLASS COMMENT
10 Fault normal State Normal state for all node elements of class Fault

11 Fault fault State Fault state for all node elements of class Fault

12 Fault failure Transition Transition which changes the node state from normal to fault

13 Fault restoration Transition Transition which changes the node state from fault to normal

Regardless on where elements are defined the element connection table is always used to add connections
between class elements. Example 25 shows how the predefined connections for the Fault class are made.

Example 25. Table 16 shows how the connections are added between class elements of faults.

Table 16: Example on defining class element connections

SOURCE TARGET COMMENT
7 Fault/normal Fault/failure Failure transition starts from the normal state.

8 Fault/failure Fault/fault Failure transition leads to the fault state.

9 Fault/fault Fault/restoration Restoration transition starts from the fault state.

10 Fault/restoration Fault/normal Restoration transition leads to the normal state.

4 Attribute Value Table for Model Parameter Definition
The attribute value table defines the values for class and element attributes. The table consist of three
columns: OBJECT, ATTR (attribute) and VALUE. The OBJECT column contains the name of the class
or the element for which the attribute value is defined. The ATTR column contains the name of the
attribute and the VALUE column the assigned value.

Annex B is dedicated for introducing the different data types. The attribute value table can contain
also two optional columns: UNIT and FORMAT. In the UNIT column it is possible to define how
quantities of the property are measured and the FORMAT column gives an indication in which format
the value is provided. If these columns are omitted, a standard units and formats are assumed.

10

Report CERN-ACC-2018-0006

It is not allowed to add same attribute for same element more than once. However, in addition to
specific element, a value can be defined for a class or a group of elements by using reference definition
(Chapter 3.3). These levels form a hierarchy that permits overwriting values. This is highlighted by Ex-
ample 26, which show definitions in different hierarchy levels. For more practical use case, Example 27
shows how failure and restoration times can be assigned.

Example 26. Table 17 shows examples how to define attribute values. The definitions are listed in
overwrite order. In a fault tree this example would make fault nodes green and pumpFaults yellow,
except for a one pumpFault, which would be red.

Table 17: Examples of property value definition highlighting the overwrite order

OBJECT ATTR VALUE COMMENT
1 Node background blue Default colour for all node objects

2 Fault background green Overwrite of the default colour for fault objects

3 pumpFault background yellow Overwrite of the colour for all the elements
named pumpFault

4 /pumps[1]/pumpFault[left] background red Overwrite of the colour for a specific pumpFault
element

Example 27. This example shows how to define attribute values for failure and repair transitions that are
attributes of the Fault class. Table 18 shows examples how to define the transitions of fault nodes. By
default a failure transition uses exponential distribution, but the row 3 of Table 18 shows how to change
this for specified nodes. Table 19 shows how to define values for the transition properties. The property
data types and transitions are more formally addressed in Annexes B and C.

Table 18: Transition definition for fault nodes

OBJECT ATTR VALUE COMMENT
1 Fault failure TransExp By default the failure transition is exponential.

2 Fault restoration TransExp By default the restoration transition is also exponential.

3 pumpFault failure TransWeibull Weibull distribution is used for failure of all pump faults

Table 19: Adding property values for fault node transitions

OBJECT ATTR VALUE COMMENT
4 motorFault/failure mean 2a Mean time to failure of exponential distribution

5 motorFault/restoration mean 2d Mean time to restoration of exponential distribution

6 pumpFault/failure scale 10d Shape parameter of Weibull distribution

7 pumpFault/failure shape 1.5 Scale parameter of Weibull distribution

8 pumpFault/restoration mean 5h Mean time to restoration of exponential distribution

5 Model Information Tables
Every model carries information that helps tracing the model origins and evolution over time. In the
OpenMARS approach the model table (Chapter 5.1) contains information about the model origin and the
changes table (Chapter 5.2) about the revisions.

5.1 Model Table
The model table contains model meta data. On minimum a model should contain information listed by
Table 20.

11

Report CERN-ACC-2018-0006

Table 20: Minimum information about a model

Item Description
Name A short and concise name, describing what this model contains

Identifier
A unique identifier (UID) of the model that is used to associate contents to a
model. This identifier may be software or human generated.

Description A textual description of the model, explaining the purpose and scope

Author
The name of the author along with sufficient information to contact the author
(e.g. affiliation, address, phone, email)

Date The creation date of the model

The model table consist of four columns: GROUP, PROPERTY, VALUE and COMMENT. Table 21
shows the recommended meta data groups for the GROUP column. Annex A lists the recommended
meta data properties for each group. The PROPERTY column has the property name and the VALUE
column defines the value for the property. An example on the model table format is given in Table 22.

Table 21: Recommended meta data groups

Group Description
General Information about the model
CM Configuration and revision management related information
Access Access management related information
Legal Legal and license related information
Directive Directives related to the model parsing and processing, e.g. include of other models

Table 22: Example of model meta information in the Model Table

GROUP PROPERTY VALUE COMMENT
1 General Name Collider_Availability General model for hadron collider availability

2 CM Status IN WORK
3 Legal Copyright CERN

5.2 Changes Table
In order to track the evolution of the model, each revision is documented as seen in Figure 10. A large
model can contain models of individual subsystems and technical elements, which evolve over time.
Figure 11 shows an example with individual revision information for a subsystem model. A model
evolves over time. From case-to-case, a model revision may use the same or different revisions of a
sub-system model.

Name Revision Date
Large Hadron Collider
Large Hadron Collider
Large Hadron Collider

10 2016-08-12
11 2017-02-10
12 2017-05-03

Fig. 10: A model evolves over time. Each revision needs to be tracked.

12

Report CERN-ACC-2018-0006

1 2016-09-01

Name Revision Date
Large Hadron Collider
Large Hadron Collider
Large Hadron Collider

10 2016-08-12
11 2017-02-10
12 2017-05-03

Cryogenics

Fig. 11: A system model contains sub-system models that can have their own version histories.

The minimum revision information shown in Table 23. In the changes table this information is presented
with four columns REV (revision), DATE, AUTHOR, STATUS and COMMENT.

Table 23: Minimum information about a revision

Item Description

Revision
A unique revision identifier. This may be a running number, a version number or an
arbitrary revision identifier possibly assigned also by a person.

Date The date of the revision in format YYYY-MM-DD

Author
The author of this revision along with sufficient information to contact the author (e.g.
affiliation, address, phone, email)

Status

Additional information that helps understanding, for which purpose this particular re-
vision can be used. This information is usually subject to a configuration management
plan that describes status and associated work flows. It is considered good practice, to
distinguish at least between a revision, which is in work and a revision that is released
for use by other persons.

Changes A brief summary of the changes in this revision with respect to the preceding revision

Example 28. An example of revision table is shown in Table 24.

Table 24: An example of a revision table

REV DATE AUTHOR STATUS CHANGES

1 0.02b 2017-10-06 Author A IN WORK Other version on subsystem fault modelling based on
alternative system implementation

2 0.02a 2017-10-05 Author B IN WORK Detailed to subsystem fault modelling

3 0.01 2017-10-02 Author A IN WORK Initial model

6 Acknowledgements
In 2017 the OpenMARS approach got the FCC Study Innovation Award, which is given for advancements
with high innovation capacity, high socio-economic impact potential or high relevance for the concepts of
a frontier particle physics research infrastructure. The development of the concept was done within scope
of an R&D project between CERN and Ramentor Oy. This work is a part of the global future circular
collider study hosted by CERN. The FCC study has received funding from the European Union’s Horizon
2020 research and innovation programme under Grant Agreement No. 654305 (EuroCirCol). In Finland,
the work for the FCC availability study has received funding from Tampere University of Technology
and Ramentor Oy.

13

Report CERN-ACC-2018-0006

7 References
[1] European Committee for Electrotechnical Standardization, Risk management. Risk assessment

techniques, EN 31010:2010, (2010).
[2] S. Virtanen, P.-E. Hagmark and J.-P. Penttinen, Proc. of the RAMS ’06. Annual Reliability and

Maintainability Symposium, (IEEE, 2006), pp. 506–511.
[3] J.-P. Penttinen and T. Lehtinen, Proc. of the 10th World Congress on Engineering Asset Manage-

ment (WCEAM 2015), (Springer, Cham, 2016), pp. 471–478.
[4] T. Kanti Agustiady and E.-A. Cudney, Total Productive Maintenance: Strategies and Implementa-

tion Guide (CRC Press, Boca Raton, 2015), p. 111.
[5] A. Niemi et al. Phys. Rev. Accel. Beams 19 (2016) 121003.
[6] International Electrotechnical Commission, Application of Markov techniques, IEC 61165:2006,

(2006).
[7] O. Rey Orozko et al. Proc. 7th Int. Particle Accelerator Conf. IPAC’16, (JaCoW, 2016),

pp. 4159–4162.
[8] J. Gosling et al., The Java® Language Specification, Java SE 8 Edition, (Oracle America, Inc,

Redwood City, 2015), pp. 134–139.
[9] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, (Springer-Verlag,

2002), p. 2.

14

Report CERN-ACC-2018-0006

Appendices
A Annex A: Meta Data Group Properties for the Model Table
Tables A.1 – A.5 describe the recommended properties for each recommended meta data group.

Table A.1: Recommended meta data properties for general group

Group Property Type Description

General Name Text

Concise name of this model that will be used as identi-
fier. The name shall only consist of a-z, A-Z, 0-9 and un-
derscore (_) characters. The name should be as short and
precise as possible. For a comprehensive description, the
purpose and scope properties should be used.

General Purpose Text A comprehensive description of the model’s purpose
General Scope Text A comprehensive description of the model’s scope

General Documentation Text
A text with a hyperlink (Text to Display and Address)
pointing to further documentation

General Author Text The full name of the author
General Email Text The e-mail address of the author

General Phone Text
The telephone number of the author including international
prefix

General Tags Text

A comma separated list of tags in name format (a-z,A-Z,0-
9,_) that helps indexing and searching for this model. The
use of whitespace characters in the comma separated list is
not allowed.

General Creation date Text Date in format YYYY-MM-DD
General Creation time Text Time in format HH:MM

General Organization Text
The organization, who defined or owns this model (e.g.
CERN)

General Unit Text
The organizational unit within the organization, who de-
fined or owns this model

General Country Text
General Street Text
General uid Text
General Town Text
General Zip Text

Table A.2: Recommended meta data properties for CM group

Group Property Type Description

CM Revision Text
The revision identifier of this model. If the file contains
only a subset of the model, the other subsets of the model
in other files must carry the same revision identifier.

CM Status Text
The revision status. Different configuration management
processes can be defined. The following status values are
recommended: IN WORK, RELEASED, DEPRECATED

CM Tag Text

A readable revision tag to help finding back frequently
used revision. As an example, the latest revision, which
is in status IN WORK might be tagged HEAD or a particu-
lar released revision may carry an easy to remember name
such as ALPHA_VERSION, BETA_VERSION.

15

Report CERN-ACC-2018-0006

Table A.3: Recommended meta data properties for access group

Group Property Type Description
Access Visibility Text

Access ACL Text
An ”Access Control List” property that can be used to de-
fine a role, group or person who can access this model us-
ing certain permissions.

Table A.4: Recommended meta data properties for legal group

Group Property Type Description
Legal Copyright Text
Legal License Text
Legal Disclaimer Text

Table A.5: Recommended meta data properties for directive group

Group Property Type Description

Directive Include Text
URL to another model or model file that needs to be re-
trieved, parsed and processed before the contents of this
model can be parsed and processed without error.

Directive Use Text

Indicate what to use from the included models. If noth-
ing is indicated all linked models will be included entirely.
Here it is possible to indicate paths to certain contained
folders or elements according to the syntax used in the
Class definition and Element definition tables.

Directive Accept Text Indicate for a particular model, which version is accepted.

16

Report CERN-ACC-2018-0006

B Annex B: Property Data Types
This annex documents property data types, which are classes that are used for basic attribute values
of elements. These classes are universally used in OpenMARS. Table B.1 lists the property data type
classes. If needed, a user can define new classes that are based on the built in property data types.

Table B.1: Property classes which can be used for basic attribute types

CLASS IS A COMMENT
1 String Property Unformatted text

2 Text String Formatted text

3 UID String A string which is proper object UID

4 Name String A string with only characters a-z, A-Z, 0-9 and _ allowed

5 Colour String String that refers to predefined colour name or a specification in a supported
scheme

6 URL String Reference to external location (as defined in [B1])

7 Boolean String Either true or false

8 Number Property Any number

9 Integer Number A whole number without fractional component

10 Probability Number A number with only a value between 0 and 1 allowed, with 0 and 1 included

11 Duration Number Time interval given with value and time unit (number can be calculated by mul-
tiplying the value with the factor that corresponds the time unit)

12 Rate Duration Value per time unit (duration can be calculated by dividing the time unit with
the value)

13 Time Number Time in format YYYY-MM-DDThh:mm:ss (as defined in [B2])

B.1 String
String property value definition consist of zero or more characters. OpenMARS approach allows also
String literals that are not enclosed in double quotes. Characters can be either a basic input character or an
escape sequence (see [B3]). The property classes inherited from the String class can contain restrictions,
which are defined in COMMENT column of Table B.1. Any string object can return a value, which is a
sequence of characters.

B.2 Number
Number property value definition can be either an integer literal or a floating point literal. Integer literals
are integer values that fit in 64 bits. Floating point literal values are represented using the IEEE 754 64-
bit double-precision binary floating-point formats [B4]. The property classes inherited from the Number
class can contain range or other restrictions, which are defined in COMMENT column of Table B.1. Any
number object can return a value, which can be converted to 64 bit integer (long), 32 bit integer (int) or
any other number format needed.

B.3 Duration and Rate
The Duration and Rate values require a time unit for defining the values. Following time units are used:

s (second), factor: 1/3600
m (minute), factor: 1/60
h (hour), factor: 1
d (day), factor: 24
a (year, annus), factor: 8766

The factor shows the units magnitude compared to 1 hour that is the base duration in the OpenMARS.
The time unit is defined in the UNIT column in the Attribute Value Table or in the VALUE column
with the specified duration value. A Duration can be even defined with multiple value-unit pairs in the

17

Report CERN-ACC-2018-0006

VALUE column (e.g. 3d 5h 12m). For Rate values the time unit is defined with a slash (/) character as a
prefix for the time unit (e.g. /h).

B.4 Array and Map Definition
Any property can be defined as an array or a map. Arrays are defined by adding square brackets as a
suffix of the property name. The array value is defined as a comma separated list in the VALUE column.

A map is defined by adding a map key inside square brackets as a suffix of the property name.
Note, also an array is considered as a map with index as a key. In context of arrays and maps, a single
value definition is considered as the first value of an array definition or the value with empty string key
of the map definition.

Example 29. Table B.2 shows examples of different value definitions.

Table B.2: Examples of array and map definitions

OBJECT ATTR VALUE COMMENT
1 anObject singleValue 5 Number 5 is put as single value to attribute singleValue

2 anObject arrayValue[] 1,2,3 Three numbers are put as values to attribute arrayValue

3 anObject arrayValue[4] 4 Number 4 is put as the fourth item in the arrayValue list

4 anObject mapValue[someKey] 4 Number 4 is put attribute mapValue with the key someKey

5 anObject mapValue[otherKey] 5 Number 5 is put attribute mapValue with the key otherKey

B.5 Defining Links to External Data
A property value can also be read from an external location. This is done by giving the Uniform Resource
Locator (URL) for an attribute with name url. The urlQuery attribute can be used to define components
of the URL (see [B1], Ch. 3.4), which give more information how the data is read.

Example 30. Table B.3 shows way how to link to external data in the attribute value table3. The rows 6
and 7 shows simple link and file location definitions. The rows 8 - 11 show how the initial URL can be
extended with url components by using the urlQuery. The use of the urlQuery is not strictly necessary,
the row 12 shows how similar information could be presented as an URL.

Table B.3: URL and format to read a property value from external location

OBJECT ATTR VALUE COMMENT
6 xxx/failure/mean url http://www.cern.ch/.../data.xml From xml file

7 xxx/restoration/mean url restorationtime.txt From txt file

8 yyy/failure/scale url http://www.cern.ch/.../file.xlsx From xlsx file

9 yyy/failure/scale/urlQuery format Excel Define the file format

10 yyy/failure/scale/urlQuery column A Define location

11 yyy/failure/scale/urlQuery row 9 Define location

12 yyy/failure/shape url .../file.xlsx?format=Excel&cell=B2 With URL query

The OpenMARS specification gives a freedom for implementations to define the allowed urlQuery values
and how they are interpreted. The URL properties could be used also to read array or map values by
giving a range of cells in a spreadsheet or to run programs by giving a link to executable file that can
return data.

3Here the reader is assumed to be familiar with Example 27 in Chapter 4.

18

Report CERN-ACC-2018-0006

B.6 References
[B1] T. Berners-Lee, R. Fielding and L. Masinter, Uniform Resource Identifier (URI): Generic Syntax,

RFC 3986, (The Internet Society, 2005).
[B2] International Organization for Standardization, Data elements and interchange formats – Informa-

tion interchange – Representation of dates and times, ISO 8601:2004, (2004).
[B3] J. Gosling et al., The Java® Language Specification, Java SE 8 Edition, (Oracle America, Inc,

Redwood City, 2015), Ch. 3.10.5, pp. 35–37.
[B4] IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic, IEEE Std 754™-2008,

(IEEE, New York, 2008).

19

Report CERN-ACC-2018-0006

C Annex C: Transitions
In OpenMARS stochastic durations such as state changes and delays are defined by transition classes.
This annex introduces the classes listed in Table C.1 by using the notation in Table C.2. The list is not
all inclusive. New class can be defined for any distribution function.

Table C.1: Transition classes, as a naming convention a prefix ”Tr” is used with all transition class names.

CLASS IS A COMMENT
1 TrExp Transition Exponential distribution

2 TrConst Transition Constant transition time without deviation

3 TrWeibull Transition Weibull distribution

4 TrNorm Transition Normal distribution

5 TrLognorm Transition Log-normal distribution

6 TrProb Transition A probability to define if an event occurs or not. Mathematically this is
similar to binomial trial.

7 TrHistory Transition Distribution class used when there is history data available

Table C.2: General notation in Annex C

Symbol Description
FX Cumulative distribution function of transition X
QX Generalized inverse distribution function of transition X
U Next random event time from the distribution
tc Current simulation clock time
µ Mean or expected value
σ Standard deviation
u Uniform random variable in the interval (0, 1)
exp(x) Natural exponential function ex

ln(x) Natural logarithm function loge(x)

The transitions are defined as distributions for the transition duration. A cumulative distribution function

FX(x) = P(X ≤ x) = u (C.1)

gives the probability u that the transition X has occurred with a time value less than or equal to time x.
To obtain results by using Monte-Carlo simulation it is necessary to generate random variables from the
specified distribution. For this purpose methods such as inversion technique [C1] are used. The inversion
technique requires generalized inverse distribution function

QX(u) = inf
x∈R
{FX(x) ≥ u} (C.2)

as the quantile function

F−1X (u) = QX(u), if FX is continuous and strictly monotonically increasing (C.3)

is not always defined. During the simulation process the random next event times are calculated by
adding the transition time obtained from C.2 to current simulation clock time:

U(u) = tc +QX(u) (C.4)

20

Report CERN-ACC-2018-0006

C.1 Exponential Distribution (TrExp)
Exponential distribution assumes constant failure rate 1/µ. The mean value is used to define functions:

Fexp(x) = 1− exp
(−x
µ

)
(C.5)

Qexp(u) = −µ ln(1− u) (C.6)

Table C.3 shows the property definition for the mean (µ).

Table C.3: Property of the exponential distribution transition class

CLASS TYPE ATTR COMMENT
1 TrExp Duration mean The mean (µ) of the exponential distribution

C.2 Constant Distribution (TrConst)
For the constant distribution the transition time Qconst = µ. It is the only property for the distribution,
as shown in Table C.4.

Table C.4: Property of the constant distribution transition class

CLASS TYPE ATTR COMMENT
2 TrConst Duration mean The constant transition time (µ)

C.3 Weibull Distribution (TrWeibull)
Weibull distribution is defined with scale parameter α and shape parameter β. Additionally, a user can
define a failure free time or location γ (see pp. 41-42 in [C2]). It fixes the point in time from which the
failures begin to occur.

Fw(x) =

1− exp

(
−
(
x−γ
α

)β)
if x ≥ γ

0 if x < γ
(C.7)

Qw(u) = γ − α ln(u)1/β (C.8)

Equations C.7 and C.8 change to functions for the basic two parameter Weibull distribution when the
location parameter γ = 0. [C1] Table C.5 lists the properties for the Weibull distribution.

Table C.5: Properties of the Weibull distribution transition class

CLASS TYPE ATTR COMMENT
3 TrWeibull Duration scale Scale parameter (α)

4 TrWeibull Number shape Shape parameter (β)

5 TrWeibull Duration location End of failure free time (γ)

21

Report CERN-ACC-2018-0006

C.4 Normal and Log-normal Distributions (TrNorm and TrLognorm)
Normal distribution is defined with mean µ and standard deviation σ parameters. The random variable is
created by using the generalized Box-Muller transformation [C3], which uses two independent random
variables:

Qnorm(u1, u2) = µ+ σ
√
−2 lnu1 cos(2πu2) (C.9)

Table C.6 lists the properties for the normal distribution.

Table C.6: Properties of the normal distribution transition class

CLASS TYPE ATTR COMMENT
6 TrNorm Duration mean Mean of the normal distribution (µ)

7 TrNorm Number deviation Standartd deviation of the normal distribution (σ)

Equation C.9 is used for creating a log-normal random variable:

Qlognorm(u1, u2) = γ + exp(Qnorm(u1, u2)) (C.10)

Possibility to add failure free time is implemented with location parameter γ, such that a failure cannot
occur before time γ The scale parameter of the log-normal is given as a mean parameter of the nor-
mal distribution. Similarly, the shape parameter is given as a deviation parameter. Table C.7 lists the
properties for the log-normal distribution.

Table C.7: Properties of the log-normal distribution transition class

CLASS TYPE ATTR COMMENT
8 TrLognorm Duration scale Scale parameter of the log-normal distribution (µ)

9 TrLognorm Number shape Shape parameter of the log-normal distribution (σ)

10 TrLognorm Duration location Location parameter of the log-normal distribution (γ)

C.5 Immediate Probability Distribution (TrProb)
Immediate probability distribution is used for situations where an event either occurs immediately or
does not occur at all. In mathematics this is referred as binomial trial. For example this has been used
to model likelihood that a back-up power source starts during a power outage. The probability p defines
how often the event is triggered:

Qprob(u) =

{
0 if u ≤ p
∞ if u > p

(C.11)

Table C.8 shows the property defined for the immediate probability distribution.

Table C.8: Property of the trial distribution transition class

CLASS TYPE ATTR COMMENT
11 TrProb Probability prob Probability p that an immediate event is triggered

C.6 History Data Fitting (TrHistory)
In the OpenMARS there is possibility to import history data to be fitted to a distribution. The built
in data matrix defines time, weigh and type parameters for rows in the data matrix. The type defines
if the recorded history for an item ended in a failure or if the item was intact at the end of recording.

22

Report CERN-ACC-2018-0006

OpenMARS uses number 1 to denote failure and 0 to intact or censored record (see pp. 217-218 in [C2]).
Table C.9 lists the properties used by the TrHistory class.

Table C.9: Properties of the history data fitting transition class

CLASS TYPE ATTR COMMENT
12 TrHistory Duration data List of history data values

13 TrHistory Number weight Weights for history data values if needed (weight of each
history data value is 1, if weights are not defined)

14 TrHistory Number type Types for history data values if needed (type of each history
data value is 1, if types are not defined)

15 TrHistory Name fitting Name of the fitting used for the history

Example 31. Figure C.1 shows a result of a year long reliability test where two items survived the
testing. Table C.10 presents the same history in a data matrix and Table C.11 in the attribute value table.
The identical histories of items 4 and 5 are presented with one row by giving it weight 2.

100d 200d 300d

1.
2.
3.
4.
5.
6.

Fig. C.1: Result of a year long reliability test

Table C.10: The failure history from the Figure C.1 in a data matrix.

Item Time Weight Type
1. 180d 1 1
2. 160d 1 1
3. 300d 1 1

4. & 5. 1a 2 0
6. 200d 1 1

Table C.11: Example history in the Attribute Value Table

OBJECT ATTR VALUE COMMENT
1 exampleHist data 180d, 160d, 300d, 1a, 200d List of history duration values

2 exampleHist weight 1,1,1,2,1 Weights for the history data values

3 exampleHist type 1,1,1,0,1 Types for the history data values

With a two parameter Weibull fitting the example history data results in Weibull distribution with scale
of 332 days and shape of 2.375 (see Ch. C.3).

23

Report CERN-ACC-2018-0006

C.7 References
[C1] P. Del Moral and S. Penev, Stochastic processes: From applications to theory, (CRC Press, Boca

Raton, 2016), Ch. 4, pp. 71-98.
[C2] B. Bertsche, Reliability in automotive and mechanical engineering, (Springer-Verlag, Berlin, 2008),

pp. 41-42.
[C3] G. Box and M. Muller, Ann. Math. Stat. 29 (1958), 610-611.

24

Report CERN-ACC-2018-0006

D Annex D: Modelling Techniques
This Annex introduces the inbuilt modelling techniques in OpenMARS and the associated classes for
each technique. The present list of techniques shown in Table D.1. In future, new modelling techniques
can be introduced and as well as alternative ways to define existing techniques.

Table D.1: The list of inbuilt modelling techniques of the OpenMARS approach

Modelling Technique Chapter Description

Advanced Fault Tree Analysis (FTA) D.1
FTA of repairable systems with cost and
maintenance modelling

Markov Analysis D.2 Follows IEC 61165:2006 [D1]
Reliability Block Diagram (RBD) D.3 Follows IEC 61078:2016 [D2]

OpenMARS D.4
Provides tools to create composite mod-
els that combine and interconnect models
defined with different techniques

Standard Fault Tree Analysis (FTA) D.5.1 Follows EN 61025:2007 [D3]
Petri Net (PN) D.5.2 Follows IEC 62551:2012 [D4]
Failure Mode and Effects Analysis (FMEA) D.5.3 Follows VDA standard [D5]

D.1 Advanced Fault Tree Analysis (FTA) Modelling Technique
The advanced fault tree analysis (FTA) extends classical FTA by including repair, cost risk (Chapter
D.1.1), maintenance action (Chapter D.1.2) and alternative consequence (Chapter D.1.3) modelling. Ta-
ble D.2 lists the classes of the technique. An advanced FTA model consist of fault nodes with gate
operators defining the connection logic.

Table D.2: Classes for advanced FTA modelling technique

CLASS IS A COMMENT
1 Fault Node Node with two states (normal, fault) and transitions (failure, restoration)

2 FaultTree Fault Top fault of the fault tree model, which contains all other faults and operators

3 Gate Operator Operator that handles Boolean logic rules

4 OR Gate The fault output occurs if any fault input occurs

5 AND Gate The fault output occurs only if all fault inputs occur

6 Vote Gate The fault output occurs only if at least m out of n fault inputs occur

7 XOR Gate The fault output occurs if exactly one fault input occurs

8 Limits Vote The fault output occurs only if at least m but no more than h fault inputs occur

9 Never Gate The fault output never occurs

10 Always Gate The fault output is always present and transmitted

11 Condition Gate The fault output occurs with certain probability if any fault input occurs

12 Delay Gate The output occurs with certain delay from any fault input

13 Ignore Gate The input elements of ignore gate are not taken into account, which can be
useful for example to disregard undeveloped parts of tree in analyses

Table D.3 shows attributes of the advanced FTA modelling technique classes. The FaultTree class is used
as the top node of the fault tree model. It is a fault that is also a container for faults, gates and folders of
the model.

25

Report CERN-ACC-2018-0006

Table D.3: Attributes of for the advanced FTA classes

CLASS TYPE ATTRIBUTE COMMENT
1 FaultTree Fault * Fault tree can contain fault nodes

2 FaultTree Gate * Fault tree can contain gate operators

3 FaultTree Folder * Fault tree can contain folders

4 Vote Integer atLeast The minimum number of inputs to create an output

5 Limits Integer atMost The maximum number of inputs to create an output

6 Condition Probability prob Probability that a fault output occurs after a fault input

7 Delay Transition delay Delay after a fault input before a fault output is created

Table D.4 shows the predefined class elements for advanced FTA modelling technique. Table D.5 shows
the connections of these class elements. As the Figure D.1 shows, all fault nodes contain normal and
fault states that are connected with failure and restoration transitions.

Table D.4: Class elements for the advanced FTA modelling technique

CONT ELEMENT CLASS COMMENT
1 Fault normal State Normal state for all node elements of class Fault

2 Fault fault State Fault state for all node elements of class Fault

3 Fault failure Transition Transition which changes the node state from normal to fault

4 Fault restoration Transition Transition which changes the node state from fault to normal

Table D.5: Class element connections for the advanced FTA modelling technique

SOURCE TARGET COMMENT
1 Fault/normal Fault/failure After normal state there can be failure transition

2 Fault/failure Fault/fault After failure transition there is fault state

3 Fault/fault Fault/restoration After fault state there can be restoration transition

4 Fault/restoration Fault/normal After restoration transition there is normal state

node state transition

Fault node

normal fault
restoration

failure

Fig. D.1: A fault node with normal and fault states and failure and restoration transitions

Example 32. As an example Figure D.2 illustrates a model structure created with the advanced FTA
modelling technique. The 10 element creation table definition rows of Table D.6 create the 18 model
elements. Altogether 17 connections have been added in 8 element connection table definition rows of
Table D.7.

26

Report CERN-ACC-2018-0006

.../pumps[1]/
pumpingFault

.../pumps[1]/
pumpingAND

.../pumps[1]/
pumpFault[right]

.../pumps[1]/
pumpFault[left]

/system

/system/
systemOR

/system/
motorFault

/system/
noPower

.../pumps[2]/
pumpingFault

.../pumps[2]/
pumpingAND

.../pumps[2]/
pumpFault[right]

.../pumps[2]/
pumpFault[left]

.../pumps[3]/
pumpingFault

.../pumps[3]/
pumpingAND

.../pumps[3]/
pumpFault[right]

.../pumps[3]/
pumpFault[left]

/system/
backupStartFails

/system/
powerInputFault

Fig. D.2: An example model structure created with advanced FTA modelling technique

Table D.6: The element creation of the advanced FTA modelling technique example

CONT ELEMENT CLASS COMMENT
1 system FaultTree Fault tree of the system

2 system systemOR OR Logic OR operator of the system

3 system noPower Fault No power to the system

4 system backupStartFails Condition Backup starts fails at certain probability

5 system powerInputFaul Fault Power input fault of the system

6 system motorFault Fault Motor fault of the system

7 system pumps[1-3] Folder Three similar pump model folders

8 pumps pumpingFault Fault A pumping fault for each folder

9 pumps pumpingAND AND Logic AND operator of the pumping for each folder

10 pumps pumpFault[left,right] Fault Two similar pump faults for each folder

Table D.7: The element connections of the advanced FTA modelling technique example

SOURCE TARGET COMMENT
1 system/systemOR system System OR gate connected to system fault tree top

2 noPower systemOR No power connected to system OR gate

3 backupStartFails noPower Backup fault causes no power

4 powerInputFault backupStartFails Backup is started after power input fault

5 motorFault systemOR Motor fault connected to system OR gate

6 pumps/pumpingFault systemOR All pumping faults connected to system OR gate

7 pumpingAND pumpingFault Pumping AND gate connected to pumping fault

8 pumpFault pumpingAND Both pump faults connected to pumping AND gate

D.1.1 Cost Risk Analysis
Costs can be associated to the number of occurrences of a transition or to the duration of a state. The cost
risk analysis can assess both negative and positive impacts. Negative impacts can be the cost of repair
each time a failure occurs or the loss of production associated to the system downtime. Positive impact
can be for example revenue of the production.

The costs are defined by using the attributes introduced in Table D.8. Different type of risks can
be modelled by using map definition (see Chapter B.4). The name of the cost type is given as an index
when the value is defined. The estimation of the risk is the mean cumulative cost caused by the transition
occurrences and the state durations during the studied analysis period.

27

Report CERN-ACC-2018-0006

Table D.8: Attributes for states to define cost risk

CLASS TYPE ATTR COMMENT
1 Transition Number cost A cost for each time the transition occurs

2 State Rate cost A cost per time unit the state is active

Example 33. Table D.9 shows the attribute value table, which defines repair costs for motor and pump
failures of Example 32. Also revenue of the uptime is defined for the normal state of the whole system.
Optionally the UNIT column of attribute value table can be used to define the currency or other variable
for the cost definitions.

Table D.9: Adding property values for cost risk

OBJECT ATTR VALUE COMMENT
1 motorFault/failure cost[repair] 1000 Each motor failure has a 1000 repair cost

2 pumpFault/failure cost[repair] 800 Each pump failure has a 800 repair cost

3 system/normal cost[revenue] 2000/h The revenue is 2000 per an operation hour

D.1.2 Analysing the Impact of Maintenance Actions
Maintenance actions can be included in advanced FTA models. Table D.10 introduces the action classes
that cover several types of maintenance operations. A fault node is container for maintenance actions as
defined in Table D.11. In a model this describes how maintenance actions aims to reduce the likelihood
of the failure modelled by the fault node.

Table D.10: Classes needed to include maintenance actions

CLASS IS A COMMENT
1 Action Object An object simulating the effects of a maintenance operation

2 Preventive Action
Maintenance carried out at predetermined intervals intended to reduce the prob-
ability of failure. (In the simulation the change is permanent and the action
interval does not influence the effect, as it is assumed that under the determined
maintenance plan the failures occur less often.)

3 Inspection Action Inspection that can detect symptoms of developing fault and such avoid the
occurrence of that failure

4 Improvement Action Maintenance carried out to reduce the degradation that could lead to a wear-out
or ageing failure

5 Replacement Action Replace the element to be as good as new

6 Finding Action Detect and repair latent failures, which are not found in normal operations

Table D.11: The container definition which allows to add actions for fault nodes

CLASS TYPE ATTR COMMENT
1 Fault Action * Fault nodes can contain any actions

Model specific class definition (see Chapter 2.2.2) allows to create classes that include specified mainte-
nance actions. All the instances of a fault class have the actions defined for the class. Example 34 shows
how class definitions are used to add maintenance actions.

Example 34. Table D.12 defines model specific classes for pumps and motor faults. Table D.13 adds
actions for the classes. Here pumps have preventive maintenance action and motors have inspection.

28

Report CERN-ACC-2018-0006

Table D.12: Model specific classes for certain component faults

CLASS IS A COMMENT
1 PumpFault Fault A class for pump faults

2 MotorFault Fault A class for motor faults

Table D.13: Predefined maintenance actions for model specific fault classes

CONT ELEMENT CLASS COMMENT
1 PumpFault preventive Preventive Preventive maintenance action to reduce likelihood of pump faults

2 MotorFault inspection Inspection Inspection to detect motor developing motor faults

Table D.14 shows attributes of the action classes. All actions have a time interval and a cost. Different
type of actions have their own attributes to define the effect of the maintenance action.

Table D.14: Attributes of the maintenance action classes

CLASS TYPE ATTR COMMENT
1 Action Transition interval The time for the maintenance interval (e.g. once per year)

2 Action Number cost The cost of the action

3 Preventive Number effectFactor
The ageing of the node is changed according to the effect factor
value when this preventive maintenance operation is active (e.g.
with an effect factor 0.75 the element ages 75 % of the calendar
time, thus the time to next failure grows by a factor of 1/0.75)

4 Inspection Duration symptom Time before the failure when the detection is possible (during
the symptom time the future failure can be avoided)

5 Inspection Probability prob
The probability that the inspection finds the failure if the action
is made during the symptom time (by default inspection always
detects the developing failure)

6 Improvement Number effectFactor
Age is used to measure degradation of an element as it e.g. af-
fects MTTF of Weibull distribution. With effect factor 0.75 an
element is 75 % ”younger” than before the improvement action.

7 Improvement Duration minAge Minimum age to make the improvement

8 Replacement Duration minAge Minimum age to make the replacement

9 Finding Probability prob The probability to detect an existing latent failure during the
failure finding action

Example 35. Table D.15 continues Example 34. It first defines that the actions have constant time
interval for specific pump and motor elements. The pump will have a preventive maintenance action
once a month, which reduces the failure rate by 50 %. The motor is inspected once per week. Here the
symptom time is only a day so the inspection can only detect and stop about one out of seven failures.

Table D.15: The attribute values of the maintenance actions

OBJECT ATTR VALUE COMMENT
1 Action interval TrConst Constant time interval used for all actions

2 /somePump/preventive/interval mean 30d Preventive action is done once per month

3 /someMotor/inspection/interval mean 7d Inspection is done weekly

4 /somePump/preventive effectFactor 0.5 Preventive action halves the failure rate

5 /someMotor/inspection symptom 1d Failure symptom time is only one day

29

Report CERN-ACC-2018-0006

D.1.3 Modelling Alternative Consequences
An event can have multiple consequences. For example a common cause fault results in several different
faults due to same direct cause. This can be modelled with a fault tree. However, the issue comes when
the consequences are exclusive and cannot be true at the same time. These cases are modelled with port
elements that are introduced in Table D.16. Table D.17 describes the attributes for ports. A gate is a
container for ports. A gate can have multiple ports that lead to alternative consequences. The ports can
have a probability attribute or a delay transition.

Table D.16: The Port class in class definition table

CLASS IS A COMMENT
1 Port Element The class used for modelling alternative consequences

Table D.17: The Port class in class attribute Table

CLASS TYPE ATTR COMMENT
1 Gate Port * Gates are containers for ports

2 Port Probability prob Probability (weight) for the port to activate (default is 1.0)

3 Port Transition delay Delay between the event and the consequence. Only the fastest conse-
quence of the same gate occurs (default is immediate transition)

The built in techniques in the advanced FTA modelling can model cases where: (i) each consequence
has a probability to occur; (ii) each consequence has a stochastic transition and only the fastest transition
occurs. As only one consequence can occur, sum of all port probabilities in one gate should be 100 %.
If this is not the case, the values are considered as weights of the ports. A transition can model the
delay between the event and the consequence. If ports in a same gate have both probability and delay
attributes, by default the fastest transition occurs. However, if multiple transitions occur at the same time,
the resulting consequence is decided stochastically based on probabilities.

The ports can be added to any gate element. Also, model specific class definition (see Chap-
ter 2.2.2) with predefined class elements (see Chapter 3.4) can be used to create special gates with
alternative consequences.

Example 36. Table D.18 shows how to add three alternative consequences for a gate. The target nodes of
the ports can be added in the Connection Table. Table D.19 defines the probabilities of each consequence.

Table D.18: The definition of three alternative consequences for a gate

CONT ELEMENT CLASS COMMENT
1 /someGate minor Port Leads to a minor consequence

2 /someGate average Port Leads to a average consequence

3 /someGate major Port Leads to a major consequence

Table D.19: The probabilities of each alternative consequence

OBJECT ATTR VALUE COMMENT
1 /someGate/minor probability 0.6 60 % probability for the minor consequence

2 /someGate/average probability 0.3 30 % probability for the average consequence

3 /someGate/major probability 0.1 10 % probability for the major consequence

30

Report CERN-ACC-2018-0006

Negations can be modelled with a not port. The not port activates when the logic rule of the gate is false.
Table D.20 introduces this element for all gates. The negation is implemented by connecting target nodes
to the not port instead of the gate.

Table D.20: Predefined not port for gate operators

CONT ELEMENT CLASS COMMENT
1 Gate not Port A port for modelling negations

Example 37. Table D.21 shows how a NAND-gate is implemented by connecting the consequence to
the not port of an AND-gate.

Table D.21: Example on how to implement a NAND-gate

SOURCE TARGET COMMENT
1 andGate/not consequence Connection from the not port of an AND-gate implements the NAND-gate

D.2 Markov Modelling Technique
OpenMARS implementation of Markov modelling technique follows the standard EN 61165 [D1]. The
basis of the implementation is a Markov model node that contains the states and transitions of a single
model. Table D.22 introduce the technique specific classes for Markov modelling technique. The initial
active state of the model is defined with initial attribute introduced in Chapter’s 2.3 Table 5. Example 38
shows how a Markov model is defined.

Table D.22: Classes for Markov modelling technique

CLASS IS A COMMENT
1 Markov Node Contains the states and transitions in a Markov model

2 StateMarkov State A state in Markov model

Example 38. Figure D.3 illustrates a phase model structure with three states created with the Markov
modelling technique. The element creation table is shown in Table D.23 and the element connection
table in Table D.24. Table D.25 shows how attribute values are defined to the start transition and sets the
prepare as the initial phase. In this example defining the transition class for the start could have been
avoided if the specific class had been defined in Table D.23.

phases

prepare produce
start

wait

p
re
p2
w
ai
t

w
ai
t2
p
re
p

p
ro
d
2w

ai
tstop

node state transition

Fig. D.3: An example model structure created with Markov modelling technique

31

Report CERN-ACC-2018-0006

Table D.23: The element creation of the Markov modelling technique example

CONT ELEMENT CLASS COMMENT
1 phases Markov Markov model node

2 phases prepare StateMarkov A state of the Markov model node

3 phases produce StateMarkov A state of the Markov model node

4 phases wait StateMarkov A state of the Markov model node

5 phases start Transition A transition of the Markov model node

6 phases stop Transition A transition of the Markov model node

7 phases prep2wait Transition A transition of the Markov model node

8 phases prod2wait Transition A transition of the Markov model node

9 phases wait2prep Transition A transition of the Markov model node

Table D.24: The element connections of the Markov modelling technique example

SOURCE TARGET COMMENT
1 prepare start From state to transition

2 start produce From transition to state

3 produce stop From state to transition

4 stop prepare From transition to state

5 prepare prep2wait From state to transition

6 prep2wait wait From transition to state

7 produce prod2wait From state to transition

8 prod2wait wait From transition to state

9 wait wait2prep From state to transition

10 wait2prep prepare From transition to state

Table D.25: Attributes for the start transition in the example

OBJECT ATTR VALUE COMMENT
1 phases initial prepare When simulation begins the prepare state is active

2 phases start TransExp The start transition is exponential

3 start mean 2d Mean time to transition

D.3 Reliability Block Diagram (RBD) Modelling Technique
Table D.26 introduces the OpenMARS implementation of Reliability Block Diagram (RBD) technique
that follows the standard IEC 61078:2016 [D2]. In OpenMARS RBD is a fault node that contains other
fault nodes that form the diagram. The RBD contains predefined start and end nodes. The RBD node is
at the normal state if there is a path from start to end that does not contain failed fault nodes. Otherwise
the RBD is in the fault state. Parallel and serial fault logics are modelled by connecting the fault nodes
in the diagram to each other to form the logics. However, the n/m redundancy structures are modelled
with a specific operator. Table D.26 show the classes and Table D.27 the attributes of the RBD modelling
technique classes.

Table D.26: Classes for Reliability Block Diagram (RBD) modelling technique

CLASS IS A COMMENT
1 RBD Fault RBD is a fault node that implements the fault and normal states with a diagram

2 RBD_Vote Operator An operator for the voting logic in the RBD

32

Report CERN-ACC-2018-0006

Table D.27: Attributes for the Reliability Block Diagram (RBD) modelling technique class

CLASS TYPE ATTR COMMENT
1 RBD Fault start Predefined start node for the diagram

2 RBD Fault end Predefined end node for the diagram

3 RBD Fault * The RBD can contain any number of intermediate fault nodes
between predefined start and end nodes

4 RBD RBD_Vote * The RBD can contain any number of vote operators

5 RBD_Vote Integer atLeast The number of input connections required for a path

Example 39. Figure D.4 shows a reliability block diagram (RBD) forming a bridge circuit structure.
(This example is taken from Chapter 5.2 in [D3].) The elements of the example structure are defined in
Table D.28 and the connections in Table D.29.

blockFault[A] blockFault[C]

blockFault[B]

start

blockFault[D]

blockFault[E] end

Fig. D.4: Bridge structure in a reliability block diagram

Table D.28: The element creation of the reliability block diagram example

CONT ELEMENT CLASS COMMENT
1 bridgeFault RBD Reliability block diagram of bridge fault

2 bridgeFault blockFault[A-E] Fault Block faults A,B,C,D and E

Table D.29: The element connections of the reliability blcok diagram example

SOURCE TARGET COMMENT
1 start blockFault[A,B] The start is connected to blocks A and B

2 blockFault[A,B] blockFault[E] Blocks A and B are connected to the block E

3 blockFault[E] blockFault[C,D] The block E is connected to blocks C and D

4 blockFault[A] blockFault[C] The block A is connected to the block C

5 blockFault[B] blockFault[D] The block B is connected to the block D

6 blockFault[C,D] end Blocks C and D are connected to the end

Example 40. This example shows how the n out of m logic can be used in RBD. Table D.30 introduces
the five fault nodes that are connected to a vote operator. The connections are added in Table D.31. Here
it is important that the vote operator is the target for the nodes. Lastly, Table D.32 defines the property
value for the logic voting operator, which defines the required number of elements in the normal state.

33

Report CERN-ACC-2018-0006

Table D.30: The element creation of the RBD voting example

CONT ELEMENT CLASS COMMENT
1 voteExample RBD Voting example RBD

2 voteExample itemFault[1-5] Fault Five item faults

2 voteExample logic RBD_Vote Logic vote operator

Table D.31: The element connections of the RBD voting example

SOURCE TARGET COMMENT
1 start itemFault[1-5] Start connected to all item faults

2 itemFault[1-5] logic Item faults connected to logic operator

3 logic end Logic operator connected to end

Table D.32: The property value definition of the RBD voting example

OBJECT ATTR VALUE COMMENT
1 /voteExample/logic atLeast 3 At least 3 out of 5 required

D.4 OpenMARS Modelling Technique
OpenMARS modelling technique provides tools to create composite models that combine and intercon-
nect models defined with different techniques. Chapter D.4.1 presents radios and listeners that are used
for relaying messages and commands between models. Chapter D.4.2 introduces the concept of modes
where a model can have different sets of values based on defined modes. Additionally OpenMARS
technique has tools for defining mathematical and logic operators. In OpenMARS these are called as
functions and they are presented in Chapter D.4.3.

This document does not fully explore the possibilities that are achievable with OpenMARS tools.
This document presents an example that interconnects a fault tree with a Markov chain and examples of
function models. Regardless with the presented tools, models done with additional techniques could be
connected to each other.

D.4.1 Radios and Listeners
Radios and Listeners enable communication between models. This allows creating composite models
comprised of interconnected sub-models defined with different techniques. Radios broadcast messages
at certain channel in defined situations. They can be attached to transitions or states. The radio broadcasts
when the transition is triggered or when the state activates or ends. Action listeners can be attached also
to both transitions and states. If listener receives a signal in certain channel, the transition or the state is
activated. The attributes to define the radios and action listeners are shown in Table D.33.

Table D.33: Radios and action listeners are added as attributes of states and transitions

CLASS TYPE ATTR COMMENT
1 State Name radio List of radio channels that broadcast when the state activates

2 State Name endRadio List of radio channels that broadcast when the state ends

3 Transition Name radio List of radio channels that broadcast when the transition is triggered

4 State Name listener List of listener channels that activate the state

5 Transition Name listener List of listener channels that trigger the transition

34

Report CERN-ACC-2018-0006

In a Markov model4 only one state can be active at certain time. Example 41 illustrates the transition
logics of the active state.

Example 41. Figure D.5 illustrates the rules for the action listeners:

1) The state can be activated as a transition exist from the active state.

2) The transition can be triggered as the source of the transition is active.

3) The state can not be activated as no direct transition exists from the active state to the listener state.

4) The transition can not be triggered as the source state is not active.

Node

Not
active

Not
active

Currently active

3) Activation
is NOT OK

2) Activation
 is OK

1) Activation
 is OK

4) Activation
is NOT OK

Fig. D.5: Allowed and not allowed activations of states and transition based on the position of the listener

Example 42. This example shows how radios and listeners can be used to connect models. Here Ex-
ample 38 is extended by radio-listener connection that sets the phases Markov model to the wait state
when the top node of the fault tree (system) is in the fault state. Figure D.6 illustrates the model struc-
ture and Table D.34 shows the attributes for the radios and listeners. The first radio is set to transmit a
message in the waitStartChannel when the fault state start in the system node. The second radio sends a
message when the normal state starts. The Markov model has listeners for these channels. The wait state
starts when a failure occurs and the prepare state starts when the system is back to the normal state. The
presented solution is not the only way to reach similar functionality.

Table D.34: The definition of the radios and listeners for the example

OBJECT ATTR VALUE COMMENT
1 system/fault radio waitStartChannel Send a message when the fault state starts

2 system/normal radio waitEndChannel Send a message when the normal state starts

3 phases/wait listener waitStartChannel Activates the wait state when message is received

4 phases/wait2prep listener waitEndChannel Activate the transition from wait to prepare

4A node can be seen to contain a Markov model, see Example 1.

35

Report CERN-ACC-2018-0006

/phases

/phases/
prepare

/phases/
produce

start

/phases/wait

p
re
p2
w
ai
t

w
ai
t2
p
re
p

p
ro
d
2w

ai
tstop

/system

/system/
normal

/system/
fault

failure

restoration node state

transition

listenerChannel

radioChannel

operator/system/
systemOR

waitStartChannelwaitEndChannel

waitStartChannel
waitEndChannel

Fig. D.6: An example of connecting models with radios and listeners

D.4.2 Mode Dependent Properties
A system can operate in different modes that can affect the system behaviour. For example certain mode
can be more demanding and thus system failure is more likely this specific mode. In the OpenMARS
the mode activations and waits are handled with listeners that wait specific radio messages. As shown in
Table D.35, a mode listener can be an attribute of an element or a folder. If a mode listener is defined for
a container, a mode change affects all the contained elements.

Table D.35: Mode listeners can be added to folders or elements

CLASS TYPE ATTR COMMENT

1 Element Name wakeListener A map of modes (key) connected to channel (values). Receiving a mes-
sage in certain channel sets the channel specific modes to activate

2 Folder Name wakeListener
A map of modes (key) connected to channel (values). Receiving a mes-
sage in certain channel sets the channel specific modes to activate (affects
all the elements in the folder)

3 Element Name waitListener A map of modes (key) connected to channel (values). Receiving a mes-
sage in certain channel sets the channel specific modes to wait

4 Folder Name waitListener
A map of modes (key) connected to channel (values). Receiving a mes-
sage in certain channel sets the channel specific modes to wait (affects all
the elements in the folder)

Example 43 show how the mode dependent behaviour is implemented by mapping the attribute values
based on modes. The attribute values from the active modes are used in the simulation.

Example 43. Table D.36 shows examples how to define mode dependent failure rates for the motorFault
in Example 32. The mode changes are connected to the prepare and produce states of the Markov model
shown in Example 42. Table D.37 shows how to add the mode listeners to start and stop the modes when
broadcast is received in specified channels.

Table D.36: Example how add to mode dependent property values

OBJECT ATTR VALUE COMMENT
1 motorFault/failure[prep] mean 6a Mean time to failure the prepare mode

2 motorFault/failure[prod] mean 2a Mean time to failure in the produce mode

36

Report CERN-ACC-2018-0006

Table D.37: Example how add to mode listener

OBJECT ATTR VALUE COMMENT

3 motorFault wakeListener[prep] prepStartChannel Wakes the prep mode when a message is re-
ceived in the prepStartChannel

4 motorFault wakeListener[prod] prodStartChannel Wakes the prod mode when a message is re-
ceived in the prodStartChannel

5 motorFault waitListener[prep] prodStartChannel Sets the prep mode to wait when a message is
received in the prodStartChannel

6 motorFault waitListener[prod] prepStartChannel Sets the prod mode to wait when a message is
received in the prepStartChannel

D.4.3 Modelling Logical and Mathematical Functions
OpenMARS contains tools to create an environment for visual programming. Table D.38 introduces
the classes used for modelling logical and mathematical function models and Table D.39 introduces the
attributes for these classes. In addition to the built in functions, OpenMARS allows users to freely define
functions with programming code. The functions are connected to values, which can be constant input
values, results or other functions. Connection to and from a function can be made also from any element
attribute.

Table D.38: Function classes

CLASS IS A COMMENT
1 Value Node A node which state is the contained number value

2 Function Operator An operator to update value nodes

3 Addition Function Predefined sum function (+), note empty sum is 0

4 Subtraction Function Predefined difference function (−)

5 Multiplication Function Predefined product function (∗), note empty product is 1

6 Division Function Predefined quotient function (/)

7 UserFunction Function A function defined by user provided a code text attribute

8 Random Value A random value between 0 and 1

Table D.39: Attributes for the function classes

CLASS TYPE ATTR COMMENT
1 Value Number value The value attribute in the value element

2 Subtraction Addition minuend
Subtraction = minuend − subtrahend. If two or more val-
ues are connected to minuend it is sum of the connected
values. If no value is connected to minuend this returns op-
posite number or additive inverse of the subtrahend.

3 Division Multiplication divident
Division = divident/divisor. If two or more values are
connected to divident, it is the product of connected values.
If no value is connected to divident this returns the multi-
plicative inverse of the divisor.

4 UserFunction Value * User function can contain freely defined input values

5 UserFunction Text code Function code

Example 44. Figure D.7 illustrates a function model structure. The elements of the function model
are defined in Table D.40. The constant input values and a result value are connected to functions in
Table D.41. The model implements the equation:

result =
duration[1] + duration[2]

divisor
(D.1)

37

Report CERN-ACC-2018-0006

Connection

/calculation/
duration[1]

/calculation/
sumDuration

Value

Function

/calculation/
duration[2]

/calculation/
dividedDuration

divident

/calculation/
divisor

/calculation/
result

Fig. D.7: An example of a function model

Table D.40: The element creation of the function model example

CONT ELEMENT CLASS COMMENT
1 calculation Folder Simple calculation example

2 calculation result Value Result of the calculation

3 calculation dividedDuration Division Quotient calculation

4 calculation sumDuration Addition Sum calculation

5 calculation divisor Value Divisor value

6 calculation duration[1,2] Value Duration values

Table D.41: The element connections of the function model example

SOURCE TARGET COMMENT
1 dividedDuration result Result value is sum / divisor

2 sumDuration dividedDuration/divident The sum is connected to the divident of the division

3 divisor dividedDuration The divisor is connected directly to the function

4 duration sumDuration The sum is duration[1] + duration[2]

Example 45. This example shows how a user defined function can be included in a model. The example
function is Equation 11 from [D6]:

Lint(tf) =

{
Lptf , : tf ≤ tlv
Lptlv + LpτL(exp(−tlv/τL)− exp(−tf/τL)), : tf ≥ tlv

(D.2)

It models how much integrated luminosity the LHC can produce based on time length of the fill tf , peak
value of instantaneous luminosity Lp, luminosity lifetime τL and luminosity levelling time tlv.

Table D.42 shows the element creation of the example function. The inputs are a map of number
values, which all need to be introduced. The element connections are made in Table D.43. There is only
one input variable coming from the simulation that needs to be connected to the function. The other
input values are constants that in this example are defined as attributes of the function.

The code attribute needs to be defined for the user function. It can be written as a text in the
attribute table or the code can be stored in an external file (see Chapter B.5). The example code imple-
menting Equation D.2 is shown in Listing 1. Here Java is used as the programming language. However,
available programming languages for user code is not set by this specification and is free to be determined
by the implementation.

38

Report CERN-ACC-2018-0006

Table D.42: The element creation of the user defined function example

CONT ELEMENT CLASS COMMENT
1 luminosity Folder Luminosity calculation example

2 luminosity production Result Resulted luminosity production

3 luminosity intLumi UserFunction Function of the luminosity production of a fill

4 intLumi fillTime Value Fill length obtained from the simulation

5 intLumi levellingTime Value Constant levelling time defined by the user

6 intLumi peakLumi Value Constant peak luminosity defined by the user

7 intLumi lumiLifetime Value Constant luminosity lifetime defined by the user

Table D.43: The element connections of the user defined function example

SOURCE TARGET COMMENT
1 simulator/fillTime luminosity/intLumi/fillTime The simulated parameter connected to the function

2 intLumi production The return value connected to a result element

Listing 1: The user defined code for the integrated luminosity function

1 i f (fillTime <= levellingTime) {
2 r e t u r n peakLumi * fillTime;
3 }
4 d o u b l e levelled = peakLumi * levellingTime;
5 d o u b l e decay = peakLumi * lumiLifetime * (Math.exp(-levellingTime /
6 lumiLifetime) - Math.exp(-fillTime / lumiLifetime));
7 r e t u r n levelled + decay;

D.5 Other Modelling Techniques
This chapter lists examples of supported modelling techniques that follow specified standards. This
shows that the OpenMARS approach can be applied to various techniques and this list can be extended
if need to use other techniques emerges.

D.5.1 Standard Fault Tree Analysis (FTA) Modelling Technique
Tables D.44 and D.45 list the classes and Table D.46 the attributes for a modelling technique that fol-
lows the standard EN 61025:2007 [D3]. This technique can be used only for analysis of non-repairable
systems. Advanced FTA technique suitable for repairable systems is presented in Chapter D.1.

Table D.44: Event classes for standard FTA modelling technique

CLASS IS A COMMENT
1 FT_Event Node Node with two states: Normal and Fault

2 FT_Basic FT_Event The lowest level event for which probability of occurrence or reliability information
is available

3 FT_Cond FT_Event Event that is a condition of occurrence of another event when both have to occur for
the output to occur

4 FT_Dorm FT_Event A primary event that represents a dormant failure; an event that is not immediately
detected but could, perhaps, be detected by additional inspection

5 FT_Undev FT_Event A primary event that represents a part of the system that is not yet developed

6 FT_House FT_Event Event which has happened, or will happen with certainty

7 FT_Zero FT_Event Event which cannot happen

39

Report CERN-ACC-2018-0006

Table D.45: Gate classes for standard FTA modelling technique

CLASS IS A COMMENT
8 FT_Gate Operator Operators for traditional fault tree analysis modelling technique

9 FT_Trf FT_Gate Transfer gate indicating that this part of the system is developed in another part or
page of the diagram

10 FT_TrfOut FT_Trf Out means that the same gate developed in this place will be used elsewhere

11 FT_TrfIn FT_Trf In means that the develop gate is elsewhere

12 FT_OR FT_Gate The output event occurs if any of the input events occur

13 FT_AND FT_Gate The output event occurs only if all of the input events occur

14 FT_Vote FT_Gate The output occurs if m or more inputs out of a total of n inputs occur

15 FT_Not FT_Gate The output event occurs only if the input event does not occur

16 FT_XOR FT_Gate The output event occurs if one, but not the other inputs occur

17 FT_NOR FT_Gate The output occurs if none of the input events occur (FT_Not with > 1 inputs)

18 FT_NAND FT_Gate The output occurs if at least one of the input events does not

19 FT_Inhibit FT_Gate The output occurs only if both of the input events take place, one of them conditional

20 FT_PAND FT_Gate The output event occurs only if the input events occur in sequence from left to right

21 FT_Seq FT_PAND
The output event (failure) occurs only if all input events occur in sequence from
left to right. This gate is identical to the PAND gate if the number of inputs to the
PAND gate is not limited to 2 as done by some analysts

22 FT_Spare FT_Gate The output event will occur if the number of spare components is less than the
number required

Table D.46: Attributes of the classes for standard FTA modelling technique

CLASS TYPE ATTR COMMENT
1 FT_Event State normal Normal state which means that the event did not occur

2 FT_Event State fault Fault state which means that the event has occurred

3 FT_Basic Probability prob Probability of the node to be in Fault state

4 FT_Vote Integer atLeast Number of inputs needed at least for output to occur

5 FT_Tfr Name link Name that connects the transfer gate to other transfer gates

Example 46. Standard fault tree analysis (FTA) model can used to model the bridge circuit model (See
Example 39). The elements of the standard FTA model are defined in Table D.47 and the connections in
Table D.48.

Table D.47: The element creation of the standard FTA example

CONT ELEMENT CLASS COMMENT
1 bridgeFault FT_Event Standard fault tree event of bridge fault

2 bridgeOR FT_OR All situations that cause the bridge fault

3 blocks[AB,CD,AED,BEC] FT_Event Block fault situations

4 blocksAND[AB,CD,AED,BEC] FT_AND AND gate for the block fault situations

5 blockFault[A-E] FT_Basic Basic events for block faults A,B,C,D and E

40

Report CERN-ACC-2018-0006

Table D.48: The element connections of the standard FTA example

SOURCE TARGET COMMENT
1 bridgeOR bridgeFault Bridge OR connected to bridge fault

2 blocks[AB,CD,AED,BEC] bridgeOR All fault situations connected to bridgeOR

3 blocksAND[AB] blocks[AB] AND gate connected to fault situation

4 blocksAND[CD] blocks[CD] AND gate connected to fault situation

5 blocksAND[AED] blocks[AED] AND gate connected to fault situation

6 blocksAND[BEC] blocks[BEC] AND gate connected to fault situation

7 blockFault[A,B] blocksAND[AB] Block faults connected to AND gate

8 blockFault[C,D] blocksAND[CD] Block faults connected to AND gate

9 blockFault[A,E,D] blocksAND[AED] Block faults connected to AND gate

10 blockFault[B,E,C] blocksAND[BEC] Block faults connected to AND gate

D.5.2 Petri Net (PN) Modelling Technique
Table D.49 lists classes for Petri net (PN) modelling technique. The definitions follow the standard
EN 62551:2012 [D4]. Petri net consist of places, transitions and arcs. In OpenMARS arcs are the
connections between places and transitions. This works in normal cases where one token is removed
from and added to places when a transition is fired. For defining the number of added and removed
tokens OpenMARS uses stream elements that have weight of the arc as an attribute. The inhibitor arc is
implemented with specific stream class.

Table D.49: Classes for Petri net (PN) modelling technique

CLASS IS A COMMENT
1 PN_Place Node Node which state is the number of PN markings (tokens)

2 PN_Transition Operator A connection from a PN_Place to other PN_Place

3 PN_Stream Element An element to define weight for upstream and downstream of transitions

4 PN_Inhibitor PN_Stream An element to define not logic for upstream of transitions

Petri nets follow [D4], such that a transition is ”valid” (or ”enabled”) when all the following conditions
are true: (i) the upstream places have at least a number of token equal to the weight of the corresponding
upstream arc; (ii) the upstream places have a number of token strictly lower than the weight of the
corresponding inhibitor arc; (iii) the predicates are ”true”.

Table D.50 shows attributes of the classes for the PN modelling technique. Predicates and asser-
tions can be included for transitions by defining them in string format. Map definitions can be used if
more than one predicates or assertions are needed. However, the functional implementation of predicates
and assertions is not specified by this document.

Table D.50: Attributes for Petri net (PN) modelling technique classes

CLASS TYPE ATTR COMMENT
1 PN_Place Integer tokens The number of PN markings

2 PN_Transition Name predicate Predicate string of map of predicates

3 PN_Transition Transition delay As soon as a transition becomes valid its attached delay distri-
bution is used to evaluate when it is going to be fired

4 PN_Transition Name assertion Assertion string or map of assertions

5 PN_Stream Integer weight Upstream and downstream can be weighted (default weight is 1
if not defined)

41

Report CERN-ACC-2018-0006

Example 47. Here an order management process is modelled with a Petri net. In the process an order
is closed when it is paid and delivered. A goal of ten completed orders per day is set to demonstrate
the weight modelling. The Petri net model elements of an order management process are defined in
Table D.51 and the connections in Table D.52. The arcs of the order process have the default weight 1
so places can be directly connected to transitions. The stream element is needed to define the weight for
the daily goal transition. Figure D.8 illustrates the resulting Petri net model.

Table D.51: The element creation of the Petri net model example

CONT ELEMENT CLASS COMMENT
1 orderStart PN_Place Has token whenever order needs to be started

2 fillOrder PN_Transition Order process is stated

3 shipOrder PN_Place The product is sent to customer

4 sendInvoice PN_Place The invoice is sent to customer

5 payment PN_Transition The customer pays the invoice

6 acceptPayment PN_Place Made payment is accepted

7 closeOrder PN_Transition Close the order when all ready

8 orderFinished PN_Place The order process has ended

9 dailyGoalWeight PN_Stream Stream element needed to define weight

10 dailyGoal PN_Transition Check when daily goal is achieved

11 success PN_Place Success after daily goal

Table D.52: The element connections of the Petri net model example

SOURCE TARGET COMMENT
1 orderStart fillOrder Start the order process

2 fillOrder shipOrder Product sending is started

3 shipOrder closeOrder Product needs to be sent before order can be closed

4 fillOrder sentInvoice Invoice sending is started

5 sentInvoice payment Wait for payment after invoice has been sent

6 payment acceptPayment Accept after customer has made the payment

7 acceptPayment closeOrder Payment needs to be accepted before order can be closed

8 closeOrder orderFinished End the order process finally

9 orderFinished dailyGoalWeight Connect to stream element after order finish

10 dailyGoalWeight dailyGoal Stream connected to transition

11 dailyGoal success Success after daily goal

Place

Transi-
tion

order
start

fill order

ship
order

send
invoice

payment
accept

payment

close
order

order
finished

daily
goal

success
weight

=10

Fig. D.8: An example of Petri net model

42

Report CERN-ACC-2018-0006

D.5.3 Failure Mode and Effects Analysis (FMEA) Modelling Technique
OpenMARS Failure Mode and Effects Analysis (FMEA) follows the standard [D5]. Table D.53 in-
troduces the FMEA attributes that can be added to any fault node. The standard [D5] allows multiple
recommended actions for identified failures. To model this a list of recommendations and improved
result values can be formed.

Table D.53: Attributes for FMEA modelling technique

CLASS TYPE ATTR COMMENT
1 Fault Text severity Text to describe severity

2 Fault Text occurrence Text to describe occurrence rate

3 Fault Text detection Text to describe detectability

4 Fault Integer sev Integer between 0 and 10 to rate the severity

5 Fault Integer occ Integer between 0 and 10 to rate the occurrence likelihood

6 Fault Integer det Integer between 0 and 10 to rate the detectability

7 Fault Integer rpn The risk priority number (RPN) is a product of sev, occ and det

8 Fault Text recommend Text to describe recommended action to reduce the risk priority

9 Fault Text responsibility Person responsible for the recommendation and the actions

10 Fault Time date Target date to complete the recommended actions

11 Fault Integer improvedSev The reduced severity if recommended mitigation is applied

12 Fault Integer improvedOcc The reduced occurrence likelihood recommended action is applied

13 Fault Integer improvedDet The improved detectability if recommended action is applied

14 Fault Integer improvedRpn The updated priority number if recommended action is applied

D.6 References
[D1] International Electrotechnical Commission, Application of Markov techniques, IEC 61165:2006,

(2006).
[D2] International Electrotechnical Commission, Reliability block diagrams, IEC 61078:2016, (2016).
[D3] European Committee for Electrotechnical Standardization, Fault Tree Analysis (FTA), EN 61025:2007,

(2007).
[D4] International Electrotechnical Commission, Analysis techniques for dependability - Petri net tech-

niques, IEC 62551:2012, (2012).
[D5] Verband der Automobilindustrie e.V. Quality assurance before series production, vol. 4, Part 2:

System FMEA Failure Mode and Effects Analysis, 1st ed. (VDA, Frankfurt am Main, 1996).
[D6] J. Wenninger, Simple models for the integrated luminosity, CERN-ATS-Note-2013-033 PERF,

(CERN, Geneva, 2013).

43

Report CERN-ACC-2018-0006

E Annex E: Analysis of OpenMARS Models
This annex defines tool classes for mathematical analyses of OpenMARS models. This document in-
troduces two simulation based analysis tools. However, there is no limitations for creating analytical
calculation tool for obtain results or solving model with specific techniques. Table E.1 introduces the
tool classes that are described more in detail in following chapters of this annex.

Table E.1: Classes for tools to analyse OpenMARS models

CLASS IS A COMMENT
1 Tool Element Class for tools used to analyse OpenMARS models

2 Simulator Tool Basic probability simulator tool

3 DES Simulator Discrete event simulator (DES) tool

4 Sensitivity Tool Sensitivity analysis tool

E.1 Basic Probability Simulator Tool
Table E.2 lists the attributes used with the the basic probability simulator tool. The tool considers only
the immediate probability transitions and elements that do not contain time durations. Thus, this tool
can be used for example to analyse models created with standard FTA modelling technique. The basic
analysis result is the failure probability of each node in the model. The results is calculated based on the
eventCount variables of nodes and currentRound variable of the simulator.

Table E.2: Attributes used with the basic probability simulator tool

CLASS TYPE ATTR COMMENT
1 Node State currentState The currently active state

2 Transition Integer eventCount The number of transition events triggered during the simulation

3 Simulator Integer maxRounds The maximum number of simulated rounds

4 Simulator Integer currentRound The current simulate round

E.2 Discrete Event Simulator (DES) Tool
The discrete event simulator (DES) extends the basic probability simulator by introducing the simula-
tion period. During each simulation round the node state change events are simulated until the defined
simulation period ends. Table E.3 lists the attributes for the DES tool that are not included in the basic
probability simulator.

Table E.3: Attributes of the discrete event simulator (DES) tool

CLASS TYPE ATTR COMMENT
5 State Duration stateTime The time the state is active during the simulation

6 DES Duration period The length of the simulation period of each round

7 DES Duration currentTime The current time in the simulation

8 DES Duration nextTime The next time that will be handled in the simulation

9 DES Duration stepLength The length of the currently made simulation step

44

Report CERN-ACC-2018-0006

The basic results are the mean number of events in the simulation period and the mean time spend in
certain state. A more extensive implementation of this tool can add new result features such as parameter
end value distribution and parameter monitoring during a simulation round.

E.3 Sensitivity Analysis Tool
Table E.4 lists attributes of the sensitivity analysis tool. Any simulator or other analyser tool can be
used with the sensitivity analysis tool. During the analysis defined parameter or parameters are gradually
changed from the minimum to the maximum value based the set number of steps. A result is stored for
each simulated value combination. Multidimensional sensitivity analyses can be created by defining a
map for parameter UIDs, min and max values and steps.

Table E.4: Attributes of the sensitivity analysis tool

CLASS TYPE ATTR COMMENT
1 Sensitivity UID analyser The UID of the tool used for sensitivity analysis

2 Sensitivity UID parameter The UID of the property value used as sensitivity parameter

3 Sensitivity Property parameterMin The minimum value of sensitivity parameter

4 Sensitivity Property parameterMax The maximum value of sensitivity parameter

5 Sensitivity Integer parameterSteps The number of steps for the sensitivity parameter

6 Sensitivity UID result The UID of the property value used as sensitivity result

45

