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Lepton-hadron colliders that use a proton or nucleus beam of current and future hadron

colliders and let it collide with an electron beam from a newly built electron accelerator
bring attractive physics programs which are strong and complementary to the hadron

collider physics. Machine development for Energy Recovery LINAC and physics per-

formance studies of such electron-hadron colliders, specifically the LHeC that uses the
existing LHC beam and FCC-eh that is an option of Future Circular Collider program,

are ongoing and reviewed in this article.
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1. Introduction

Deep inelastic scattering (DIS) of electrons on protons or nuclei has been tradition-

ally the best way to probe the inner structure of nucleon and nuclei. At high energies,

in addition to the electromagnetic (photon) exchange, the electroweak bosons play

important roles; the γ/Z exchange induces neutral current (NC) DIS, while the W

exchange results in charged current (CC) DIS, in which the outgoing neutrino is

undetected and leaves a missing energy signature. The scattering is described by

two kinematic variables, Q2, the squared momentum transfer between the lepton

and hadron, and Bjorken x, the fraction of the nucleon momentum carried by the

scattering parton.

The HERA collider at DESY was the last and highest-energy ep collider which

had a center-of-mass (cms) energy of 318 GeV. It provided the PDF (parton dis-

tribution functions) of the proton up to the scale of Q2 ≈ 104 GeV2 and down to

x ≈ 10−5, which are indispensable inputs to the physics at the LHC.
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It is natural to consider the possibilities of future colliders using the proton

(or heavy-ion) beam of a hadron collider and let it collide with an electron beam

(polarizable) from a newly built electron machine. Two ideas have been discussed;

the LHeC1 collides a 60 GeV e-beam with the 7 TeV p-beam of the LHC, with

a center-of-mass (cms) energy of 1.3 TeV, and FCC-eh collides a 60 GeV e-beam

with the 50 TeV p-beam of the planned FCC (Future Circular Collider), with a cms

energy of 3.5 TeV. Both ideas have an option to use a beam of nuclei in addition to

the proton beam.

Since such a facility uses a beam of the already built hadron collider, it can be

realized at an affordable cost. It can run concurrently with hadron-hadron collision

experiments, and provides much cleaner collision environment than h-h experiments

(negligible pile-up), while realizing higher cms energy than e+e− colliders.

2. Machine and Detector

The proposed electron machine for LHeC/FCC-eh is an energy recovery LINAC

(ERL), which is a horserace-track like ring with two 10 GeV LINACs. After three

turns, the beam is accelerated to 60 GeV. The circumference of the ring is approxi-

mately 9 km (see Fig. 1). A unique characteristic of the ERL is that the beam after

the collision runs in the same LINAC at an opposite phase to the accelerated beam

and is thus decelerated, giving back the power for acceleration. In this way the RF

power is recycled and a lot of wall-plug power consumption can be saved.

The LINAC has a series of 802 MHz five-cell superconducting cavities with an

accelerating gradient of 18 MV/m. With high current electron beam, the collider

aims at an instantaneous luminosity of 1034 cm−2s−1, providing physics dataset of

100 fb−1 per year. A small-scale ERL demonstrator called PERLE3 is proposed at

LAL, Orsay. It will have two LINACs with four cavities each, which after three

turns give ≈ 400 MeV beam of ≈ 15 mA. The main purpose of PERLE is to probe

the ERL operation in multi-Megawatt regime and the multipass mode with a veryLHeC	ERL	Baseline	Design	

Concurrent	operaDon	to	pp,	LHC	becomes	a	3	beam	faclity.	P	<	100	MW.	CW		
Fig. 1. Layout of Energy Recovery LINAC2.
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LHeC	Detector	2016	

PK:	Status	11/16	

Fig. 2. Schematic of a future ep detector4.

high current, but also a low-energy, high-intensity ep/eA(γp/γA) physics program

can be envisaged.

Also detector designs are ongoing in the LHeC/FCC-eh working group aiming at

optimization of physics performance. Because of the large asymmetry of the beam

energies, the detector is also asymmetric like the detectors at HERA. Very low-angle

tagging of particles is important so the detector coverage extends to high repidity.

Fig. 2 shows a schematic of a detector design.

3. Physics Opportunities at Lepton-Hadron Colliders

A variety of physics programs are discussed for LHeC/FCC-eh, which are unique

and complementary to hadron collider physics programs. Some highlights among

them are briefly discussed in the following.

3.1. Ultimate precision measurements of PDF and αS

It is clear from LHC experience that precise knowledge of PDFs is vital information

for searches and precision physics at hadron colliders. High-x region is relevant

for searches for new, very high mass particles. At very large collision energy like

FCC (cms energy of 100 TeV), small-x region below 10−5 becomes relevant even

for common physics targets such as W/Z, Higgs or top quarks. Figure 3 shows the

uncertainty of gluino pair production cross section at the LHC (cms energy 14 TeV).

Using the current PDF sets on the market, the uncertainty exceeds 100% above

gluino mass of 2 TeV. With the knowledge of precise PDF from LHeC measurements,

this uncertainty squeezes to below 10%. Also the uncertainty of Higgs production

cross section from PDF shrinks enough using the LHeC PDF so that the cross

section measurement at the LHC becomes sensitive to the Higgs mass value6.
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high x PDFs: link to LHC!
•  large uncertainties in high x PDFs limit searches for new physics at high scales!

many interesting processes at LHC are gluon-gluon initiated:                                        
top, Higgs, … and BSM processes, such as gluino pair production!
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C. Gwenlan, PDFs and QCD at the LHeC 

Fig. 3. Uncertainty of gluino pair produc-
tion cross section at LHC5.
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signal on top of backgrounds8.

From the DIS measurements, also the strong coupling constant αS can be

extracted by a simultaneous fit with PDFs. A precision of 0.3% is expected at the

LHeC, which can further improve to 0.1% when combined with HERA results7.

3.2. ep collider as a Higgs factory

The production cross section of Higgs bosons in ep collision lies at sub-picobarn

range at LHeC and FCC-eh energies, which makes it very attracting for precise

Higgs studies. The CC channel is particularly interesting due to suppression of NC

DIS background and the possibility of increasing the cross section with electron

polarization (−80% is assumed in the performance evaluation).

Figure 4 shows an invariant mass distribution for H → bb̄ reconstruction with a

cut-based analysis assuming 10 years (1000 fb−1) of data taking. In the signal mass

window, 3600 signal events are observed on top of 1250 background events. This

leads to a Hbb coupling measurement of below 1% precision (statistical error only).

Using multivariate techniques, much developed in the LHC physics, one can

further improve the precision and could even measure the Hcc coupling which

is deemed very difficult at hadron colliders. Table 1 summarizes the precision of

the couplings anticipated at several configurations including the one using Double-

energy LHC (proton beam energy of 14 TeV with stronger magnets in the existing

LHC tunnel).

Table 1. Higgs coupling precisions expected at future lep-

ton-hadron colliders9. Ee=60 GeV is assumed.

LHeC e+DLHC FCC-eh

(Ep=7 TeV, (Ep=14 TeV, (Ep=50 TeV,
Coupling

√
s ≈1.3 TeV)

√
s ≈1.8 TeV)

√
s ≈3.5 TeV)

κ(Hbb) 0.5% 0.3% 0.2%

κ(Hcc) 4% 2.8% 1.8%
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EW physics at LHeC and FCC-eh Daniel Britzger
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Figure 2: Measurements of the W-boson mass (left) and Z-boson mass (right) from HERA, LHeC and
FCC-eh (simulated) data and compared to the PDG values.

PDFs have to be determined from the same data, and by performing a simultaneously determina-
tion of the PDFs and EW parameters the uncertainties of the PDFs are accounted for accordingly.
The fitting methodology follows closely previous approaches [3, 4, 5] and it is observed that the
prospects for the EW parameters are insensitive to details of the PDF fit methodology. The calcu-
lations are performed in the on-shell scheme, where the theory is expressed in terms of α, mW , mZ ,
and ∆r.

4.2 W-boson, Z-boson and top-quark masses

The uncertainty values of mW and mZ are determined in the PDF+EW-fit, where one of the masses
is determined together with the PDFs, while the other boson mass is taken as external input. The
expected uncertainties are displayed in figure 2 and compared to the PDG values [6], and to the
uncertainties obtained when performing our PDF+EW-fit to the final combined HERA data [3].
The expected uncertainties of mW are

∆mW(LHeC) = ±14(exp)±10(PDF) MeV and

∆mW(FCC-eh) = ±9(exp)±4(PDF) MeV,

for LHeC and FCC-eh, respectively, where the breakdown into experimental and PDF uncertainties
is obtained by repeating the fit with PDF parameters fixed. The expected uncertainties of mZ are
about 19 MeV and 11 MeV for LHeC and FCC-eh, respectively, and are thus of similar size than
those of mW . The expected precision of mZ can not compete with the precise measurements at the
Z-pole by the LEP and SLC experiments, but the future ep facilities will test the SM much more
precisely than hitherto, and they will improve significantly the current precision of mW .

A simultaneous determination of mW and mZ together with the PDFs is performed and results
are compared to a determination from H1 [5] in figure 3 (left). Due to the large correlation be-
tween mW and mZ , HERA data is not sufficient to determine those values reliably. Contrarily, the
highly increased center-of-mass energy of LHeC or FCC-eh will allow for such a simultaneous
determinaton of mW and mZ with high precision.

4

Fig. 5. W mass measurement accu-

racy at HERA and future ep colliders10.
As a reference, current accuracy from

ATLAS11 is 19 MeV, slightly larger

than the PDG2016 band (±15 MeV).

About the functional forms

However, the Hessian method used e.g. in EPPS16 is not particularly
accurate when there’s no, or only very weak constraints

• Significant non-quadratic components in the global �2 function

• Large correlations among the fit parameters

Would need Monte-Carlo methods to more reliably map the uncertainties

=) Further work needed

Despite all the shortcomings, a typical result using a more flexible form
(the red one in the previous slide) for the gluons:
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H. Paukkunen for the LHeC study group An update on nuclear PDFs at the LHeC

Fig. 6. Anticipated improvement

on nuclear PDF precision at LHeC
(gluon distribution in lead)14.

3.3. Top and electroweak physics

The energy-frontier electron-hadron collider produces also a large number of top

quarks and W/Z bosons, with little background from hadronic QCD events and

pileup events inherent to hadron colliders. Figure 5 shows a prospect of W mass

measurements from CC DIS data from LHeC, FCC-eh and a combination of them.

A very competitive measurement can be made in comparison with the current accu-

racy. The possibility of polarizing the electron beam (up to 80% is expected) brings

further opportunities in the electroweak measurements. A search for single-top pro-

duction brings a competitive test of FCNC top couplings, especially with u quarks

which are abundant in the proton.

3.4. Beyond SM physics

It is fair to say that the highest-energy hadron collider is the front runner in the

discovery of new heavy particles or states, but there are places where ep collider

can make a case. An example is a leptoquark (LQ), a hypothetical state that cou-

ples directly with a lepton and a quark. It is expected that LQs found in HL-LHC

would be also found at ep colliders. Then, ep colliders can study thoroughly the

characteristics of the new particle, by determining its quantum numbers such as

lepton/baryon numbers, spin and generation indices, thanks to the ability to con-

trol the electron beam charge and polarization12. Other topics of interest include

compositeness, charged Higgs, sterile neutrinos, long-lived parties, or anomalous

couplings.

3.5. Diffractive physics and nuclear PDF

Another interesting area to be probed is the low-x and diffractive physics. Compared

to HERA, the reachable kinematics is much enhanced. At very low-x below 10−4,
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there is no data to constrain the gluon distribution, which is expected to saturate

somewhere. Also a lot of diffractive measurements can be done, using rapidity gap

events or installing roman-pot type forward proton spectrometers13.

If a beam of nuclei is available in the hadron machine (like Pb in the LHC),

the first measurement of nuclear PDFs using electon-hadron collider can be made

(note that HERA circulated only protons as the hadron beam). Compared to the

past measurements from fixed-target experiments, the gain of kinematics is four

orders of magnitude in x and Q2. Figure 6 shows an example of improvement in the

accuracy of nuclear PDF measurement.

4. Conclusions

A new electron-hadron collider, using a hadron beam of existing or planned hadron

colliders, is a cost-effective and attractive future program. A design of an ERL

with 60 GeV electron beam is at an advanced state, and a demonstrator PERLE

is proposed. An ep/eA energy frontier machine, with 100 times Q2 reach and 1000

times integrated luminosity compared to HERA, will bring a rich physics program

which is complementary to, and strengthens, the discovery programs at HL-LHC

and FCC-hh. It has a different physics objectives from the Electron Ion Collider15

(EIC) in US, which is a lower energy machine and focuses on spin and medium-x

structure of nucleon and nuclei.
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