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Abstract. A columnar data representation is known to be an efficient way for data storage, 
specifically in cases when the analysis is often done based only on a small fragment of the 
available data structures. A data representation like Apache Parquet is a step forward from a 
columnar representation, which splits data horizontally to allow for easy parallelization of data 
analysis. Based on the general idea of columnar data storage, working on the FNAL LDRD 
Project FNAL-LDRD-2016-032, we have developed a striped data representation, which, we 
believe, is better suited to the needs of High Energy Physics data analysis. A traditional columnar 
approach allows for efficient data analysis of complex structures. While keeping all the benefits 
of columnar data representations, the striped mechanism goes further by enabling easy 
parallelization of computations without requiring special hardware. We will present an 
implementation and some performance characteristics of such a data representation mechanism 
using a distributed no-SQL database or a local file system, unified under the same API and data 
representation model. The representation is efficient and at the same time simple so that it allows 
for a common data model and APIs for wide range of underlying storage mechanisms such as 
distributed no-SQL databases and local file systems. Striped storage adopts Numpy arrays as its 
basic data representation format, which makes it easy and efficient to use in Python applications. 
The Striped Data Server is a web service, which allows to hide the server implementation details 
from the end user, easily exposes data to WAN users, and allows to utilize well known and 
developed data caching solutions to further increase data access efficiency. We are considering 
the Striped Data Server as the core of an enterprise scale data analysis platform for High Energy 
Physics and similar areas of data processing. We have been testing this architecture with a 2TB 
dataset from a CMS dark matter search and plan to expand it to multiple 100 TB or even PB 
scale. We will present the striped format, Striped Data Server architecture and performance test 
results. 

1. Introduction 
High Energy Physics data analysis is an iterative process of distilling large amounts of data to extract 
physical information and presenting it in a most optimal way. Typically, the physicist repeats the process 
of refining the data filtering, data compilation and information representation many times, and reducing 
the time of individual iteration reduces the time of the overall analysis process and allows the physicist 
to deliver the results sooner. 
 
Currently, HEP data is stored in files and the analysis is essentially a repeating process of running the 
analysis software over a large set of files. In order to reduce the iteration time, the physicists reduce the 
initial dataset (set of files) to a smaller set by using 2 methods: 

● Skimming is a process of pre-filtering potentially interesting events so that there are fewer events 
to process during each run. 

http://creativecommons.org/licenses/by/3.0
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● Slimming is removing the elements of data structure which are not relevant for the particular 
analysis the physicist is performing. Typical dataset used for analysis before slimming contains 
~1000 columns, whereas typical analysis uses only one or two dozens of these columns. 

Once the dataset is reduced, the physicist can run their analysis code over smaller amounts of data in a 
more efficient way, but data reduction contributes to the overall analysis process and slows it down. In 
addition, because each physicist or group of physicists have their own way to reduce data, they all tend 
to replicate data multiple times between all the reduced datasets they create over time. 
 
What we are proposing is a fundamentally different way of storing data (see Fig. 1), which would 
support a much more efficient and fast data analysis process. We propose to store analysis data in a 
database with efficient and scalable access and largely eliminate the need to reduce and duplicate data 
by providing direct and immediate access to the needed data and only to the needed data. 

 
Figure 1. Data analysis process 

 
In addition, we propose to move from the event loop style of analysis to vector-based calculations, 
which, when combined with functional and/or declarative algorithm representation, can be moved easily 
from CPU to GPU or other SIMD processing platforms as the underlying computing fabric. 

2. Striped Data Representation 
High Energy event data structures can be viewed as a list of uniform tuples, some elements of which 
can in turn be lists of uniform tuples, recursively. We developed a format of representing these kind of 
data structures, based on a columnar approach, suitable to store data in a non-relational database or a 
BLOB storage. As in columnar representations, the data is represented as a set of columns, each 
column is essentially a vector of values for a single data attribute for the whole dataset (see Fig. 2). 
Then we cut columns into segments called “stripes”. Each stripe contains data from a set of HEP 
events, typically for 1K to 10K or more events. All columns are split along the same event boundaries. 
For example, if we have columns A and B, we split them in such a way that if we have a stripe for 
column A with data for events ranging from 112000 to 112999, then there will be a stripe for column 
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B with data for exactly the same events 112000 to 112999 in the same order. These event ranges are 
called Event Groups or Row Groups. 
 

 
Figure 2. Striped Data Representation 

 
This format of data representation works very well with no-SQL, key-BLOB data storage systems. 
Each stripe is stored as a BLOB, indexed by the combination of the dataset name, the column name 
and the row group number. The BLOB contents is in fact a numpy[1] array immediately importable 
into numpy without any data conversion, which makes the use of such storage very efficient. 
 
Here are the advantages of using strd data representation for HEP data analysis: 

1. We can use almost any storage capable of storing key-BLOB pairs. Those include a wide 
range of no-SQL databases. We can also use relational databases, or even a UNIX file system 
to store this kind of data and the details of the actual data representation can be hidden behind 
a uniform data access interface. Of course, each particular type of underlying storage has its 
own performance and other characteristics, and not all of them will be practically useful, but 
functionally any key-BLOB storage can support the striped format.  

2. Columnar representation allows the user to retrieve only columns they need for their analysis 
and never touch unused columns. 

3. Because data is represented in a numpy-friendly way, significant parts of calculations can be 
performed over stripes as vector operations instead of operations over individual event 
properties, thus moving large portion of calculations, if not all of them, from the event loop to 
vector calculations (see Fig. 3). On the other hand, we are not proposing to eliminate the event 
loop. The idea is to move as much as possible from event loop to vector calculations. 
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Figure 3. Moving calculations from event loop to vectors 

 
4. Because stripes are immutable (except for rare cases when the entire dataset needs to be 

updated in the database, e.g. to correct an error), web services and data caching techniques can 
be leveraged to significantly increase efficiency of the data management and delivery and 
reduce development and maintenance cost of the system. This way we can take advantage of 
the fact that typical data analysis reuses the same data repeatedly multiple times. 

5. Using web services as the data delivery mechanism makes it easy to leverage Internet and 
cloud technologies and provides great deal of flexibility in building distributed data centers, 
helping members of large international collaborations contribute their resources to the 
collaboration. 

 

3. Implementation 
 
We implemented a test instance of the striped storage system and a small analysis computing cluster at 
FNAL (see Fig. 4) 
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Figure 4. Demo instance of the striped storage 

The data storage part was implemented using 13 servers. Each data server was a 8-core computer with 
0.9TB data disk. We chose CouchBase[2] as the database software to store data. CouchBase is a rather 
simple, distributed no-SQL database with memory cache. On top of the CouchBase cluster, we put 2 
redundant web servers and then a web cache computer with 20GB RAM-based cache. We used nginx[3] 
as the web server engine. 
 
We loaded about 2TB, 0.5 billion events, about 700 columns of CMS[4] dark matter search n-tuples data 
into the system. 
 
The computing portion was implemented as a set of independent worker processes in Python, running 
on 2 16-core computers, so we had 30 workers in total. The data was uniformly distributed among all 
available workers. Each worker has its own data cache. The algorithm of data distribution among 
workers always sends the same data to the same worker to make sure they can reuse their local cache. 
In total, we had 3 layers of RAM cache in the system – the CouchBase own memory cache, web server 
cache and then the worker local cache. 
 
The analysis platform is also Python based. Currently, it is written in Python 2.7. The user front end is 
implemented as a iPython/Jupyter notebook with plotting using Matplotlib. The user notebook 
communicates with the workers via TCP sockets, so the user notebook can run anywhere, as long as it 
can reach the workers.  
 
To measure performance of the demo system we built, we ran simple di-muon invariant mass analysis, 
building the distribution of Z-boson mass. On this our cluster, we managed to achieve the performance 
of about 1 million events per second using only 30 worker processes.  
 
To demonstrate the flexibility of the system architecture, we created a Docker container with the worker 
code, and ran the analysis successfully running the workers on the iMac desktop, the analysis 2-node 
cluster described above and the AWS cloud. All the workers were accessing the data via cached web 
server located at FNAL. 
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4. Conclusion 

We have developed a format to represent HEP data in a way suitable to be stored in a non-relational 
database. The data representation format and the database storage mechanism we developed allow to 
store and analyse data in much more efficient way it is done currently, by eliminating the need to slim 
and duplicate data. Also storing data in a database with scalable and efficient interfaces allow for 
scalable and massively parallel data analysis, which largely eliminates the need to skim data. The 
architecture we propose is highly flexible and does not require co-location of data and computing 
components. Wide use of Internet and web services technologies allows to deploy the storage as well 
as the computational components on the cloud. In addition, it allows to have the computing fabric to 
be distributed over WAN, heterogeneous and dynamic in terms of individual compute node 
availability. This allows a science collaboration to build distributed computing and storage facilities 
and have individual members of the collaboration flexibly contribute their resources to the 
collaboration. 

The proposed computational model moves bulk of the computations from the event loop to the vector-
based paradigm, which allows to move to functional and/or declarative programming models, which, 
in turn, allow to move computations easily from CPU to GPU and other SIMD platforms. 

Utilization of data caching techniques significantly increases the efficiency of the analysis process, 
taking advantage of the repeating nature of the HEP analysis process. 

We built a demo HEP data analysis platform based on iPython/Jupyter as the user interface. 

We were able to build a small 30 cores demo analysis cluster and test its performance on a real 2TB 
dataset from CMS and achieved a performance of 1 million events per second with all the components 
written in Python. 

The proposed approach has a great potential of replacing existing file-based data analysis models and 
can significantly increase the efficiency of the analysis process, reduce time to insight, add flexibility 
in building storage and analysis facilities, and open new areas of HEP research, currently not possible 
due to a relatively slow analysis process. 
 
 
 
 

5. References 

[1] S. van der Walt, S. C. Colbert, G. Varoquaux, The NumPy Array: A Structure for Efficient 
Numerical Computation, Computing in Science Engineering, 2011, Vol. 3 

[2] http://couchbase.com 

[3] http://nginx.org 

[4] Chatrchyan, S. et. al., The CMS experiment at the CERN LHC, JINST, 2008, Vol. 3 


