
ALICE HLT TPC Tracking of Pb-Pb Events on

GPUs

David Rohr1, Sergey Gorbunov1, Artur Szostak2, Matthias Kretz1,
Thorsten Kollegger1, Timo Breitner1, Torsten Alt1 for the ALICE
HLT Collaboration
1 Johann-Wolfgang-Goethe University, Frankfurt, Germany
2 Department of Physics and Technology, University of Bergen, Norway

E-mail: drohr@cern.ch

Abstract. The online event reconstruction for the ALICE experiment at CERN requires
processing capabilities to process central Pb-Pb collisions at a rate of more than 200 Hz,
corresponding to an input data rate of about 25 GB/s. The reconstruction of particle trajectories
in the Time Projection Chamber (TPC) is the most compute intensive step. The TPC online
tracker implementation combines the principle of the cellular automaton and the Kalman filter.
It has been accelerated by the usage of graphics cards (GPUs). A pipelined processing allows
to perform the tracking on the GPU, the data transfer, and the preprocessing on the CPU in
parallel. In order for CPU pre- and postprocessing to keep step with the GPU the pipeline
uses multiple threads. A splitting of the tracking in multiple phases searching for short local
track segments first improves data locality and makes the algorithm suited to run on a GPU.
Due to special optimizations this course of action is not second to a global approach. Because
of non-associative floating-point arithmetic a binary comparison of GPU and CPU tracker is
infeasible. A track by track and cluster by cluster comparison shows a concordance of 99.999%.
With current hardware, the GPU tracker outperforms the CPU version by about a factor of
three leaving the processor still available for other tasks.

1. Introduction
ALICE (A Large Ion Collider Experiment) is a dedicated Pb-Pb detector designed to exploit the
physics potential of nucleus-nucleus interactions at the Large Hadron Collider at CERN [1, 2].

The base-line design consists (from inside out) of a high-resolution Inner Tracking System
(ITS), a cylindrical Time Projection Chamber detector (TPC), particle identification detectors,
and a single-arm electromagnetic calorimeter.

Reconstruction of the particle trajectories (tracking) is one important step during event
reconstruction. The Time Projection Chamber (TPC) detector is the main tracking detector
of ALICE. Traversing particles ionize gas molecules inside the TPC. The ionization points are
measured and are called clusters. Computing the TPC tracks from the clusters is a major part of
the event reconstruction and it is computationally very expensive. The TPC detector consists of
two cylindrical volumes placed along the beam; either volume is split into 18 trapezoidal readout
sectors. The detector measures track positions on 159 rows as it is shown in Fig. 1.

The online event reconstruction in ALICE is performed by the High-Level Trigger. The overall
online reconstruction scheme is presented in Fig. 2. It starts with the TPC cluster finder, which

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012044 doi:10.1088/1742-6596/396/1/012044

Published under licence by IOP Publishing Ltd 1

Figure 1. Geometry of a TPC sector. Figure 2. HLT reconstruction scheme.

identifies clusters out of the TPC raw data. These reconstructed clusters are sent to the sector
tracker which reconstructs the tracks in each TPC sector individually. Then the sector tracks
are merged by the track merger algorithm, and later updated with the measurements from the
ITS detector. The reconstruction of the event’s vertex and the physical triggers are run at the
end of the reconstruction tree structure. Typically, every processing stage reduces the size of
the event data. This scheme processes data as early as possible avoiding any unnecessary copy
steps and uses all available data locality and parallelization.

The core of the event reconstruction takes place in the TPC sector tracker, which creates
tracks from the TPC measurements. It is the only component which processes the TPC clusters,
the higher level components operate on the reconstructed sector tracks.

Figure 3. a) Neighbors finder. b) Evolution step of the Cellular
Automaton.

The tracking algorithm starts with a combinatorial search for track candidates (tracklets),
which is based on the Cellular Automaton method [3]. Local parts of trajectories are created

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012044 doi:10.1088/1742-6596/396/1/012044

2

from geometrically nearby clusters, thus eliminating unphysical cluster combinations at the local
level. The combinatorial processing consists of the following two steps:

• Neighbors finder: For each cluster at a row k the best pair of neighboring clusters from
rows k+1 and k-1 is searched for, as it is shown in Fig. 3a. The neighbor selection criterion
requires the cluster and its two best neighbors to form a straight line. The links to the best
two neighbors are stored. Once the best pair of neighbors is found for each cluster, the step
is completed.

• Evolution step: Reciprocal links are determined and saved, all the other links are removed
(see Fig. 3b).

Every saved one-to-one link defines a part of the trajectory between the two neighboring
clusters. Chains of consecutive one-to-one links define the tracklets. After the tracklets are
created, the following steps are executed:

• Tracklet construction: Track parameters are fit to the tracklets using the Kalman filter.
These parameters are then used to extrapolate the trajectory to adjacent rows and search
for more clusters belonging to the tracklet. When meeting a χ2-condition the clusters are
collected to the tracklet and the track parameters are refitted. This is repeated until no
more clusters are found.

• Tracklet selection: Some of the track candidates can have overlapping parts. In this case
the longest track is saved, the shortest removed. A final quality check is applied to the
reconstructed tracks, including a cut on the minimal number of clusters and a cut for low
momentum.

2. Sector Tracking on GPU
The original ALICE HLT TPC tracker was designed with parallelism in mind. Within all
tracking steps multiple tasks can be executed simultaneously, e.g. producing the links in the
neighbors finder can be done for each cluster independently or extrapolation and fitting of
different tracklets in the tracklet constructor can be done in parallel. The GPU tracker uses one
thread per cluster or per track in each of the steps. The implementation is such that GPU and
CPU tracker share most of the source code in a common file. Only small special wrappers exist
for both particular architectures that include the common files. This approach greatly improves
the maintainability.

Besides the steps of the above-described algorithm its implementation adds two more tasks:
initialization and track output. These steps merely perform data reformatting and are memory
bound while touching most bytes only once. Thus, due to limited PCIe bandwidth these tasks
cannot benefit from the GPU and are still processed by the CPU. For all other steps a GPU
implementation was developed.

For ensuring good GPU utilization, processing of the sectors is arranged in a pipeline such
that while the GPU performs the tracking for sector i the CPU can preprocess sector i−1. During
development and operation of the GPU tracker, new processors and GPUs became available.
Initially, the GPU tracker ran on Intel Nehalem quad-core CPUs and NVIDIA GTX 295 GPUs.
Now, the GPU tracker runs on AMD Magny-Cours twelve-core processors and GTX480 GPUs.
The new processor has a higher peak performance considering all twelve cores, but for single
thread applications the old processor is faster. Since the original pipeline of the GPU tracker
only used a single thread, the hardware update sped up the tracking but slowed down pre- and
postprocessing. In addition, a change to the output format slowed down the postprocessing even
more. As a consequence, the single-threaded pipeline that works well on the old hardware is
unsuited for the new compute nodes. Fig. 4 shows the measured times of the pipeline steps of
the first Fermi tracker version.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012044 doi:10.1088/1742-6596/396/1/012044

3

Figure 4. Pipeline of the first Fermi Tracker Implementation.

The figure reveals that the GPU is idling for a significant amount of time. Two optimizations
approach this problem. At first, algorithmic optimizations to the output procedure could reduce
the computation time. Second, a multithreaded version of the pipeline was developed, that uses
multiple CPU cores which alternately process the tasks in the pipeline. The pipeline processing
is visualized in Fig. 5. The GPU remains busy, except for the initialization of the first and the
output of the last sector in the pipeline.

Figure 5. Pipeline of the Fermi Tracker with Multithreading.

3. Consistency of GPU and CPU Tracking
The functionality of both CPU and GPU tracker is examined with Monte-Carlo simulations.
Both trackers run on the set of clusters produced in the simulation. Afterward, the obtained
tracks are compared with the reference tracks from the simulation. Under this perspective
tracking efficiencies of GPU and CPU tracker show no difference. Another possibility to compare
the results is to compare physical statistics derived from the tracks. An analysis of various
statistical quantities revealed that there is only one which shows a slight variation: the number
of clusters per track. The reason is that both trackers find essentially the same tracks but in
some cases assign the clusters differently.

Although GPU and CPU tracker results are basically equivalent, it is desirable to do a
comparison as direct as possible - in the best case on a bit level. However, such a bitwise
comparison is impossible for three reasons:
• Indeterministic cluster to track assignment,
• Inconsistent sorting of the tracks,
• Non-associative floating-point arithmetic.

3.1. Cluster assignment
The initial rule for the assignment was to assign the clusters to the longest track possible. In the
case of two tracks of the same length the first one was used. Because of the multithreading of
the GPU tracker the order in which the tracklets are constructed is not well defined. Therefore,
the cluster assignment for two tracks of identical length is not deterministic. The GPU and
CPU tracks themselves are almost identical but in rare cases a cluster is assigned to another
track. This made the results incomparable.

A better criterion for the cluster assignment has thus been searched for. The idea is to use
a continuous measure instead of the discrete tracklet length. It is self-evident that the χ2 value
(normalized residual between the clusters and the trajectory) can be used for this purpose.
Multiple possibilities exist:

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012044 doi:10.1088/1742-6596/396/1/012044

4

• Using the residual between the cluster and the track.
• Using the residual of the entire track.
• Using a combination of the residual and the track length.

The first option naively sounds like a good idea. However, the results are merely bad. Usually
at least two tracklets for one track are found. This track is then reconstructed twice resulting in
two tracklets with almost identical clusters. It is desired to keep the better tracklet, assign all
clusters to this tracklet, and remove the other instance of the track as a clone. However, when
using the residual between the cluster and the track, about halve of the clusters get assigned to
the one instance while the rest is considered belonging to the other instance. The clone is not
removed. Therefore, the residual for the full track is used.

Using only the residual for the assignment leads to unsolvable problems with short tracks,
as it is often simple to fit a trajectory to only few clusters. Thus, a combination of the tracklet
length and the residual is better. For accomplishing this, a cluster weight w is implemented as

w = n · (α− χ2

β). The value of β is chosen such that χ2

β is of order 1 for normalization reasons.

The factor α is called the χ2-suppression factor and n is the length of the tracklet. The clusters
are then assigned to the tracks such that the cluster weights are maximum. Thus, α =∞ results
in the old behavior where only the tracklet length is decisive. In general, the bigger α the lower
is the influence of χ2. Fig. 6 shows how the tracking quality varies with α.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

4 8 32 128 1024 infinite

95

96

97

98

99

100

M
ea

n
/ R

M
S

 /
F

al
e

an
d

 C
lo

ne
 R

at
e

E
ffi

ci
en

cy

Chi2 suppression factor

Efficiency
Fake Rate

Clone Rate
Z-Resolution (Mean)
Z-Resolution (RMS)

Phi-Resolution (Mean)
Phi-Resolution (RMS)
Pt-Resolution (Mean)
Pt-Resolution (RMS)

Figure 6. Efficiency and Resolution using different χ2 Suppression Factors.

It turns out that incorporating the residual even improves the tracking efficiencies, reduces
clone and fake rates, and either improves or maintains the resolutions. For very small α the
tracking gets unstable. Finally, in the tracker a value of α = 6 is employed as it is considered
the best tradeoff between efficiency and stability.

3.2. Track Sorting
Analogously to the tracklet order which led to an indeterministic cluster assignment as described
above, the order of the final sector tracks after the tracklet selection can have a marginal effect
on the track merging. This is overcome by a fast sorting of the tracks in between of sector
tracking and track merging.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012044 doi:10.1088/1742-6596/396/1/012044

5

3.3. Floating-Point Arithmetic
With both above problems solved, no other effect of concurrency on the tracking result is
observed. Still, different compilers (or even different compiler options) produce results which
are not bitwisely identical because the floating-point arithmetic is not associative leading to
different rounding. Unfortunately, there is no way to negate this but the effect is mitigated by
the design of the tracker. The sector tracker only performs the track finding. It outputs a list of
clusters for each track and the track merger does a refit of the track. Hence, as long as despite
of different rounding the same clusters are found, the result will be bitwisely the same because
the varying intermediate calculations are not used by the merger. If within one row two clusters
are equally close to the trajectory, depending on the rounding either the one or the other can
get assigned to the track. In such cases the result differs.

The influence on the tracking result is analyzed in the following way: A sample of events
is processed by CPU and by GPU. A one-to-one correspondence of the resulting tracks is
determined. Within a pair of tracks for each row it is checked if the assigned clusters are
identical. If no GPU counterpart for a CPU track is found, all its clusters differ by definition.
Using this criterion the agreement of CPU and GPU is 99.99976%. Fig. 7 shows that with the
improvements the above-mentioned difference in the cluster per track statistic vanishes.

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000

 40 60 80 100 120 140 160

T
ra

ck
s

Clusters

CPU
GPU

Figure 7. Comparison of GPU and CPU Cluster per Track Statistics after
the Improvements.

4. GPU Tracker Performance
Fig. 8 shows a performance comparison of GPU and CPU tracker for a central heavy ion event.
The left part of the diagram presents the processing time of all the tracking steps for one TPC
sector and the right part shows the total tracking time for the entire TPC with and without the
multi-threaded pipeline. The CPU tracker uses trivial parallelization over the sectors. Since the
CPU tracker employs more threads than the multi-threaded GPU tracker, the tasks initialization
and tracklet output are faster on CPU than on GPU. Still, using more threads in the GPU tracker
is not necessary since the pipelined processing hides the CPU computation time. Fig. 9 shows
that both CPU and GPU tracking time depend linearly on the input data size the GPU tracker
having a small offset. Fig. 10 shows that with the multithreaded pipeline the actual performance
of the CPU is negligible as long as it is fast enough to feed the pipeline.

5. Global Tracking
The sector tracking approach has one inherent shortcoming. The sector tracker only searches
for track segments with at least 30 clusters. If a track crosses two sectors but the track segment
within one of the sectors is very short, the sector tracker does not find it. Hence, an additional
step that prolongs track segments is included. Having finished the sector tracking the tracker

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012044 doi:10.1088/1742-6596/396/1/012044

6

 0

 2000

 4000

 6000

 8000

Initialization

Neighbors

Finder

Neighbors

Cleaner

Start-Hits

Finder

Tracklet
Constructor

Tracklet
Selector

Tracklet
Output

Full Run

Full M
ulti-

threaded Run

0

125

250

375

500

T
ra

ck
er

 C
om

po
ne

nt
 T

im
e

[µ
s]

F
ul

l T
ra

ck
in

g
T

im
e

[m
s]

Tracker Component

CPU (Westmere, 3.8 GHz, 6 Cores)
63

3

37
49

22
4

12
6

81
64

54
2

21
3

50
6

50
6

GPU (GTX285, Nehalem, 3 GHz)
28

25

23
87

54 87

39
54

14
80 17

58

31
8

GPU (GTX480, Nehalem, 3 GHz)
14

10

13
41

39 48

25
26

85
0

84
6

29
3

21
0

GPU (GTX580, Westmere 3.8, GHz)

11
47

11
28

29 41

21
48

71
2

58
2

23
4

17
3

Figure 8. GPU Tracker Processing Speed.

0*105
1*105
2*105
3*105
4*105
5*105
6*105
7*105
8*105
9*105

0*106 1*106 2*106 3*106 4*106

F
ul

l T
ra

ck
in

g
T

im
e

[µ
s]

Clusters

CPU Time
GPU Time
CPU Time Fit
GPU Time Fit

Figure 9. GPU Tracker Performance
Dependency on Input Data Size.

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

T
ra

ck
in

g
T

im
e

[m
s]

CPU Frequency [GHz]

CPU Tracker
GPU Tracker

Figure 10. GPU Tracker Performance
Dependency on CPU Performance.

searches for track segments ending in the innermost or outermost part of the TPC at the edge of
a sector. The track parameters are then converted to the coordinate system of the neighboring
sectors and the tracklet construction step is continued. Fig. 11 visualizes the situation.

x

x

Slice n

Slice n-1

Slice n+1

Slice n+2

Slice n+3

5 w4 Ro s

5 ws4 Ro
Segment with less than
30 Clusters, found only
with Global Tracking

Segment used as seed
for Global Tracking

Segment with at least
30 Clusters; Global
Tracking not necessary

Figure 11. Global versus Local Tracking.

Since the prolonged tracking does not find more TPC tracks, tracking efficiency, clone and
fake rates do not change with global tracking. In contrast, the resolution improves since the fit
now incorporates more clusters.

6. Tracking during the 2010 and 2011 runs
The GPU tracker was operated during the Pb-Pb runs in November 2010 and 2011. Currently,
the HLT is equipped with GTX480 GPUs. During this time only one problem emerged. After

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012044 doi:10.1088/1742-6596/396/1/012044

7

the TPC had changed the procedure for trip-recovery, it was possible that some sectors were
filled with noise, which was not handled properly by the GPU tracker. The problem has been
identified and solved. It originated from a synchronization problem between the multiple threads
in the pipeline after the GPU runs out of memory due to the immense amount of clusters in a
noisy sector. Fig. 12 shows an image of the online event display during the first run with active
GPU tracking.

Figure 12. Event in first Pb-Pb Physics Run shown in Online Event
Display.

7. Conclusion
The online track reconstruction for the ALICE TPC has been ported to GPUs. The GPU tracker
is faster by about a factor of three. It must be noted that the CPU is much more expensive than
the GPU so the performance per cost is significantly larger. By and large, the single GPU can
perform the tracking equally fast as both CPU chips employing all available cores. The CPU
cores, which are still available during GPU tracking, are required for various HLT tasks such
as track merging, cluster transformation, vertexing, and so forth. Hence, plugging a GPU in a
compute node actually saves the cost of an additional node and of the additional infrastructure
required for more nodes. Since the GPUs cost only a fraction of the entire HLT facility, the
extra hardware costs for tracking are negligible.

The GPU tracker was proven to be in no way inferior to its CPU counterpart both in terms of
efficiency and resolution. It was deployed in November 2010 and proved to be stable in nonstop
operation.

References
[1] The ALICE collaboration, “ALICE - Technical Proposal for A Large Ion Collider Experiment at the CERN

LHC,” CERN, Geneve, Rep. CERN-LHCC-95-71; LHCC-P-3, 1995.
[2] The ALICE collaboration, “The ALICE Experiment at the CERN LHC,” JINST, vol. 3, no. 08, Aug. 2008.
[3] I. Kisel, “Event reconstruction in the CBM experiment,” Nucl. Instr. and Meth. A, vol. 566, no. 1, pp. 85-88,

Oct. 2006.
[4] S. Gorbunov, D. Rohr et al., “ALICE HLT High Speed Tracking on GPU”, in 2011 IEEE Transactions on

Nuclear Science, vol. 58, no. 4
[5] D. Rohr, “ALICE TPC Online Tracking on GPGPU based on Kalman Filter“, Diploma Thesis, University of

Heidelberg, 2010

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012044 doi:10.1088/1742-6596/396/1/012044

8

