CERN Accelerating science

002299121 001__ 2299121
002299121 005__ 20210608040148.0
002299121 0248_ $$aoai:cds.cern.ch:2299121$$pcerncds:CERN$$pcerncds:CERN:FULLTEXT$$pcerncds:FULLTEXT
002299121 0247_ $$2DOI$$9bibmatch$$a10.1088/1748-0221/13/12/P12009
002299121 037__ $$9arXiv$$aarXiv:1712.08338$$cphysics.ins-det
002299121 035__ $$9arXiv$$aoai:arXiv.org:1712.08338
002299121 035__ $$9Inspire$$aoai:inspirehep.net:1644830$$d2021-06-07T06:27:40Z$$h2021-06-08T02:00:04Z$$mmarcxml$$ttrue$$uhttp://old.inspirehep.net/oai2d
002299121 035__ $$9Inspire$$a1644830
002299121 041__ $$aeng
002299121 100__ $$aBenoit, M.$$kORCID:[email protected]$$uGeneva U.$$vDépartement de Physique Nucléaire et Corpusculaire (DPNC), Université de Genève, 24 quai Ernest Ansermet 1211 Genève 4, Switzerland
002299121 245__ $$9arXiv$$aTest beam measurement of ams H35 HV-CMOS capacitively coupled pixel sensor prototypes with high-resistivity substrate
002299121 246__ $$9arXiv$$aTest beam measurement of ams H35 HV-CMOS capacitively coupled pixel sensor prototypes with high-resistivity substrate
002299121 269__ $$c2017-12-22
002299121 260__ $$c2018-12-04
002299121 300__ $$a18 p
002299121 500__ $$aThis project has received funding from the European Union’s Horizon 2020 research and innovation programme  under grant agreement No 675587.
002299121 500__ $$9Inspire$$aThis project has received funding from the European Union’s Horizon 2020 research and innovation programme  under grant agreement No 675587.
002299121 520__ $$9IOP$$aIn the context of the studies of the ATLAS High Luminosity LHC programme, radiation tolerant pixel detectors in CMOS technologies are investigated. To evaluate the effects of substrate resistivity on CMOS sensor performance, the H35DEMO demonstrator, containing different diode and amplifier designs, was produced in ams H35 HV-CMOS technology using four different substrate resistivities spanning from 80-1000 ohm cm-1. A glueing process using a high-precision flip-chip machine was developed in order to capacitively couple the sensors to FE-I4 Readout ASIC using a thin layer of epoxy glue with good uniformity over a large surface. The resulting assemblies were measured in beam test at the Fermilab Test Beam Facilities with 120 GeV protons and CERN SPS H8 beamline using 180 GeV pions. The in-time efficiency and tracking properties measured for the different sensor types are shown to be compatible with the ATLAS ITk requirements for its pixel sensors.
002299121 520__ $$9arXiv$$aIn the context of the studies of the ATLAS High Luminosity LHC programme, radiation tolerant pixel detectors in CMOS technologies are investigated. To evaluate the effects of substrate resistivity on CMOS sensor performance, the H35DEMO demonstrator, containing different diode and amplifier designs, was produced in ams H35 HV-CMOS technology using four different substrate resistivities spanning from $\mathrm{80}$ to $\mathrm{1000~\Omega \cdot cm}$. A glueing process using a high-precision flip-chip machine was developed in order to capacitively couple the sensors to FE-I4 Readout ASIC using a thin layer of epoxy glue with good uniformity over a large surface. The resulting assemblies were measured in beam test at the Fermilab Test Beam Facilities with 120 GeV protons and CERN SPS H8 beamline using 80 GeV pions. The in-time efficiency and tracking properties measured for the different sensor types are shown to be compatible with the ATLAS ITk requirements for its pixel sensors.
002299121 540__ $$barXiv$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
002299121 540__ $$3preprint$$aarXiv nonexclusive-distrib 1.0$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
002299121 540__ $$3publication$$aCC-BY-3.0$$bIOP$$uhttp://creativecommons.org/licenses/by/3.0/
002299121 65017 $$2arXiv$$aphysics.ins-det
002299121 65017 $$2SzGeCERN$$aDetectors and Experimental Techniques
002299121 690C_ $$aCERN
002299121 690C_ $$aARTICLE
002299121 693__ $$aCERN LHC$$eATLAS
002299121 693__ $$aCERN SPS
002299121 700__ $$aBraccini, S.$$uU. Bern, AEC$$vAlbert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Siedlerstrasse 5, CH-3012 Bern, Switzerland
002299121 700__ $$aCasanova, R.$$uTsukuba U.$$vFaculty of Pure and Applied Sciences, and CiRfSE, University of Tsukuba, Tsukuba 305-8571, Japan
002299121 700__ $$aCavallaro, E.$$uTsukuba U.$$vFaculty of Pure and Applied Sciences, and CiRfSE, University of Tsukuba, Tsukuba 305-8571, Japan
002299121 700__ $$aChen, H.$$uBNL, NSLS$$vBrookhaven National Laboratory (BNL), P.O. Box 5000, Upton, NY 11973-5000, U.S.A.
002299121 700__ $$aChen, K.$$uBNL, NSLS$$vBrookhaven National Laboratory (BNL), P.O. Box 5000, Upton, NY 11973-5000, U.S.A.
002299121 700__ $$aDi Bello, F.A.$$uGeneva U.$$vDépartement de Physique Nucléaire et Corpusculaire (DPNC), Université de Genève, 24 quai Ernest Ansermet 1211 Genève 4, Switzerland
002299121 700__ $$aFerrere, D.$$uGeneva U.$$vDépartement de Physique Nucléaire et Corpusculaire (DPNC), Université de Genève, 24 quai Ernest Ansermet 1211 Genève 4, Switzerland
002299121 700__ $$aFrizzell, D.$$uOklahoma U.$$vUniversity of Oklahoma, 660 Parrington Oval, Norman, OK 73019, U.S.A.
002299121 700__ $$aGolling, T.$$uGeneva U.$$vDépartement de Physique Nucléaire et Corpusculaire (DPNC), Université de Genève, 24 quai Ernest Ansermet 1211 Genève 4, Switzerland
002299121 700__ $$aGonzalez-Sevilla, S.$$uGeneva U.$$vDépartement de Physique Nucléaire et Corpusculaire (DPNC), Université de Genève, 24 quai Ernest Ansermet 1211 Genève 4, Switzerland
002299121 700__ $$aGrinstein, S.$$uTsukuba U.$$vFaculty of Pure and Applied Sciences, and CiRfSE, University of Tsukuba, Tsukuba 305-8571, Japan
002299121 700__ $$aIacobucci, G.$$uGeneva U.$$vDépartement de Physique Nucléaire et Corpusculaire (DPNC), Université de Genève, 24 quai Ernest Ansermet 1211 Genève 4, Switzerland
002299121 700__ $$aKiehn, M.$$uGeneva U.$$vDépartement de Physique Nucléaire et Corpusculaire (DPNC), Université de Genève, 24 quai Ernest Ansermet 1211 Genève 4, Switzerland
002299121 700__ $$aLanni, F.$$uBNL, NSLS$$vBrookhaven National Laboratory (BNL), P.O. Box 5000, Upton, NY 11973-5000, U.S.A.
002299121 700__ $$aLiu, H.$$uHefei, CUST$$uBNL, NSLS$$vDept. of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China$$vBrookhaven National Laboratory (BNL), P. O. Box 5000, Upton, NY 11973-5000, USA
002299121 700__ $$aMetcalfe, J.$$uANL, APS$$vArgonne National Laboratory (ANL), Argonne, IL 60439, U.S.A.
002299121 700__ $$aMeng, L.$$uLiverpool U.$$uGeneva U.$$vDepartment of Physics, University of Liverpool, The Oliver Lodge Laboratory, Liverpool L69 7ZE, UK$$vDépartement de Physique Nucléaire et Corpusculaire (DPNC), Université de Genève, 24 quai Ernest Ansermet 1211 Genève 4, Switzerland
002299121 700__ $$aMerlassino, C.$$uU. Bern, AEC$$vAlbert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Siedlerstrasse 5, CH-3012 Bern, Switzerland
002299121 700__ $$aMiucci, A.$$uU. Bern, AEC$$vAlbert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Siedlerstrasse 5, CH-3012 Bern, Switzerland
002299121 700__ $$aMuenstermann, D.$$uLancaster U.$$vLancaster University, Physics Department, Lancaster, LA1 4YB, UK
002299121 700__ $$aNessi, M.$$uCERN$$uGeneva U.$$vEuropean Organization for Nuclear Research (CERN), 385 route de Meyrin, 1217 Meyrin, Switzerland$$vDépartement de Physique Nucléaire et Corpusculaire (DPNC), Université de Genève, 24 quai Ernest Ansermet 1211 Genève 4, Switzerland
002299121 700__ $$aOkawa, H.$$uTsukuba U.$$vFaculty of Pure and Applied Sciences, and CiRfSE, University of Tsukuba, Tsukuba 305-8571, Japan
002299121 700__ $$aPerić, I.$$uKIT, Karlsruhe, IPE$$vKarlsruhe Institute of Technology (KIT), IPE, 76021 Karlsruhe, Germany
002299121 700__ $$aRimoldi, M.$$uU. Bern, AEC$$vAlbert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Siedlerstrasse 5, CH-3012 Bern, Switzerland
002299121 700__ $$aRistić, B.$$uCERN$$uGeneva U.$$vEuropean Organization for Nuclear Research (CERN), 385 route de Meyrin, 1217 Meyrin, Switzerland$$vDépartement de Physique Nucléaire et Corpusculaire (DPNC), Université de Genève, 24 quai Ernest Ansermet 1211 Genève 4, Switzerland
002299121 700__ $$aSultan, D.M.S.$$uGeneva U.$$vDépartement de Physique Nucléaire et Corpusculaire (DPNC), Université de Genève, 24 quai Ernest Ansermet 1211 Genève 4, Switzerland
002299121 700__ $$aTerzo, S.$$uTsukuba U.$$vFaculty of Pure and Applied Sciences, and CiRfSE, University of Tsukuba, Tsukuba 305-8571, Japan
002299121 700__ $$aVicente Barrero Pinto, M.$$uGeneva U.$$vDépartement de Physique Nucléaire et Corpusculaire (DPNC), Université de Genève, 24 quai Ernest Ansermet 1211 Genève 4, Switzerland
002299121 700__ $$aVilella Figueras, E.$$uLiverpool U.$$vDepartment of Physics, University of Liverpool, The Oliver Lodge Laboratory, Liverpool L69 7ZE, UK
002299121 700__ $$aWeber, M.$$uU. Bern, AEC$$vAlbert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Siedlerstrasse 5, CH-3012 Bern, Switzerland
002299121 700__ $$aWeston, T.$$uU. Bern, AEC$$vAlbert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Siedlerstrasse 5, CH-3012 Bern, Switzerland
002299121 700__ $$aWu, W.$$uBNL, NSLS$$vBrookhaven National Laboratory (BNL), P. O. Box 5000, Upton, NY 11973-5000, USA
002299121 700__ $$aXie, J.$$uANL, APS$$vArgonne National Laboratory (ANL), Argonne, IL 60439, USA
002299121 700__ $$aXu, L.$$uBNL, NSLS$$vBrookhaven National Laboratory (BNL), P. O. Box 5000, Upton, NY 11973-5000, USA
002299121 700__ $$aZaffaroni, E.$$uGeneva U.$$vDépartement de Physique Nucléaire et Corpusculaire (DPNC), Université de Genève, 24 quai Ernest Ansermet 1211 Genève 4, Switzerland
002299121 700__ $$aZhang, M.$$uIllinois U., Urbana$$vUniversity of Illinois Urbana Champaign, 1110 W Green St Loomis Laboratory, Urbana, IL 61801, USA
002299121 773__ $$cP12009$$n12$$pJINST$$v13$$y2018
002299121 8564_ $$81376722$$s5532$$uhttps://cds.cern.ch/record/2299121/files/plots_h35_w13_21-ana2_row100-200_unirrad-hv020-thr2000_inpix_eff.png$$y00031 \SI{200}{\ohm\cm}, \SI{160}{\V}, \SI{2250}{e} threshold\SI{1000}{\ohm\cm}, \SI{10}{\V}, \SI{2000}{e} threshold
002299121 8564_ $$81376723$$s1186516$$uhttps://cds.cern.ch/record/2299121/files/plots_planar1.png$$y00006 width=0.5\textwidth
002299121 8564_ $$81376724$$s1184646$$uhttps://cds.cern.ch/record/2299121/files/plots_planar2.png$$y00007 Thickness of the glue layer along the chip edge at two locations along the chip at \SI{2}{\cm} distance showing good parallelism, less than \SI{100}{\nm} difference measured with an optical microscope, from left to right.Caption not extracted
002299121 8564_ $$81376725$$s2827420$$uhttps://cds.cern.ch/record/2299121/files/plots_H35_assembly.png$$y00005 Left: deposition of epoxy on the H35DEMO matrix by the automatic glue time-pressure dispenser of the Acc$\mu$ra 100. Right: 100~\micron thin H35DEMO-FE-I4 assembly on PCB.Caption not extracted
002299121 8564_ $$81376726$$s108204$$uhttps://cds.cern.ch/record/2299121/files/plots_H35DEMO+FEI4.png$$y00003 Schematic representation of the readout chain of the H35DEMO prototype capacitively coupled to FE-I4.
002299121 8564_ $$81376727$$s138680$$uhttps://cds.cern.ch/record/2299121/files/plots_SchemaDoping.png$$y00002 Top: layout of one flavour of the H35DEMO Analog pixel. The amplifier and output stage are embedded in the central deep N-Well while to additional peripheral deep N-Well are added to each side of the central well to fill the pixel area with the collection electrode. The three deep N-Wells are electrically connected through metal to the input of the amplifier. The output top metal pad can be seen on the left side of the picture. Bottom: doping structure of the H35DEMO analog pixels illustrating the deep N-Well surrounding the P-Wells and N-Wells where the CMOS circuit is implemented.
002299121 8564_ $$81376728$$s8318$$uhttps://cds.cern.ch/record/2299121/files/plots_h35_w19_21-ana1_row100-200_unirrad-hv160-thr2000_inpix_eff.png$$y00034 Caption not extracted
002299121 8564_ $$81376729$$s5165$$uhttps://cds.cern.ch/record/2299121/files/plots_h35_w13_21-ana1_unirrad-hv100-thr2000-match_res.png$$y00016 Unbiased residual for a \SI{200}{\ohm\cm} sample, \SI{160}{\V} bias voltage, \SI{2000}{e} threshold, analog matrix 1 (blue). Fit of a gaussian convoluted with a box function (orange). $\mu$ is the mean of the distribution, $\sigma$ the width of the gaussian, $l$ the width of the box and $f_{bkg}$ the fraction of background events.
002299121 8564_ $$81376730$$s11950$$uhttps://cds.cern.ch/record/2299121/files/plots_Timing_comparison_W07_99_ana2.png$$y00016 \SI{80}{\ohm\cm}
002299121 8564_ $$81376731$$s12173$$uhttps://cds.cern.ch/record/2299121/files/plots_CS_comparison_W19_21_ana1.png$$y00015 Caption not extracted
002299121 8564_ $$81376732$$s34010$$uhttps://cds.cern.ch/record/2299121/files/plots_w13_21_ana2_comparison_matrix_2000e.png$$y00011 Detection efficiency as a function of bias voltage for the three sub-matrices of analog matrix 1 (left) and analog matrix 2 (right) for a \SI{200}{\ohm\cm} sample for a threshold of \SI{2000}{e}.Caption not extracted
002299121 8564_ $$81376733$$s86783$$uhttps://cds.cern.ch/record/2299121/files/plots_IV_1000Ohm.png$$y00010 tCharacteristic I-V curves and Arrhenius plot for \SIlist{80;200;1000}{\ohm\cm} substrate resistivity samples for temperatures ranging from \SIrange{-25}{25}{\celsius}.
002299121 8564_ $$81376734$$s7559218$$uhttps://cds.cern.ch/record/2299121/files/arXiv:1712.08338.pdf$$yPreprint
002299121 8564_ $$81376735$$s8421$$uhttps://cds.cern.ch/record/2299121/files/plots_h35_w07_99-ana2_row100-200_unirrad-hv160-thr2000_inpix_eff.png$$y00030 \SI{80}{\ohm\cm}, \SI{160}{\V}, \SI{2000}{e} threshold\SI{200}{\ohm\cm}, \SI{20}{\V}, \SI{2000}{e} threshold
002299121 8564_ $$81376736$$s327903$$uhttps://cds.cern.ch/record/2299121/files/plots_GlueDeposition_ex.png$$y00004 width=0.5\textwidth
002299121 8564_ $$81376737$$s74874$$uhttps://cds.cern.ch/record/2299121/files/plots_IV_80Ohm.png$$y00008 t
002299121 8564_ $$81376738$$s4993$$uhttps://cds.cern.ch/record/2299121/files/plots_CS_comparison_W07_99_ana2.png$$y00013 \SI{80}{\ohm\cm}\SI{200}{\ohm\cm}
002299121 8564_ $$81376739$$s9707$$uhttps://cds.cern.ch/record/2299121/files/plots_h35_w19_21-ana1_row100-200_unirrad-hv160-thr2000_eff.png$$y00028 Efficiency for the analog high-gain sub-matrices at \SI{160}{\V} and different substrate resistivity for \SI{2000}{e} threshold.The left column for analog matrix 2 and right column for analog matrix 1 show low efficiency due to interference with the monolithic NMOS and CMOS matrices.Caption not extracted
002299121 8564_ $$81376740$$s12093$$uhttps://cds.cern.ch/record/2299121/files/plots_Timing_comparison_W19_21_ana1.png$$y00018 Signal arrival time distributions in \SI{25}{\ns} bins versus bias voltage and different substrate resistivity for \SI{2000}{e} threshold.Caption not extracted
002299121 8564_ $$81376741$$s11704$$uhttps://cds.cern.ch/record/2299121/files/plots_CS_comparison_w13_21_ana1.png$$y00014 \SI{1000}{\ohm\cm}Cluster size versus bias voltage and different substrate resistivity for \SI{2000}{e} threshold.
002299121 8564_ $$81376742$$s15137$$uhttps://cds.cern.ch/record/2299121/files/plots_w13_21_ana1_comparison_matrix_2000e.png$$y00010 width=0.5\textwidth
002299121 8564_ $$81376743$$s5289$$uhttps://cds.cern.ch/record/2299121/files/plots_h35_w07_99-ana2_row100-200_unirrad-hv160-thr2000_eff.png$$y00025 \SI{80}{\ohm\cm}, \SI{160}{\V}, \SI{2000}{e}
002299121 8564_ $$81376744$$s585799$$uhttps://cds.cern.ch/record/2299121/files/plots_H35DEMOPixel.png$$y00001 Top: layout of one flavour of the H35DEMO Analog pixel. The amplifier and output stage are embedded in the central deep N-Well while to additional peripheral deep N-Well are added to each side of the central well to fill the pixel area with the collection electrode. The three deep N-Wells are electrically connected through metal to the input of the amplifier. The output top metal pad can be seen on the left side of the picture. Bottom: doping structure of the H35DEMO analog pixels illustrating the deep N-Well surrounding the P-Wells and N-Wells where the CMOS circuit is implemented.
002299121 8564_ $$81376745$$s36513$$uhttps://cds.cern.ch/record/2299121/files/plots_Eff_ana1_comparison_matrix1.png$$y00019 Analog 1, submatrix 1
002299121 8564_ $$81376746$$s39008$$uhttps://cds.cern.ch/record/2299121/files/plots_Eff_ana1_comparison_matrix3.png$$y00024 Caption not extracted
002299121 8564_ $$81376747$$s40506$$uhttps://cds.cern.ch/record/2299121/files/plots_Eff_ana1_comparison_matrix2.png$$y00022 Analog 2, submatrix 2Analog 1, submatrix 3
002299121 8564_ $$81376748$$s7973$$uhttps://cds.cern.ch/record/2299121/files/plots_h35_w07_99-ana2_row100-200_unirrad-hv020-thr2000_inpix_eff.png$$y00029 \SI{80}{\ohm\cm}, \SI{20}{\V}, \SI{2000}{e} threshold
002299121 8564_ $$81376749$$s11897$$uhttps://cds.cern.ch/record/2299121/files/plots_Timing_comparison_w13_21_ana1.png$$y00017 \SI{200}{\ohm\cm}\SI{1000}{\ohm\cm}
002299121 8564_ $$81376750$$s839246$$uhttps://cds.cern.ch/record/2299121/files/plots_H35DEMO_Layout.png$$y00000 Floor plan of the H35DEMO demonstrator sensor. The monolithic matrices including sensor elements and readout electronics are located at the left and right. The two capacitively coupled detector matrices are located in the middle.
002299121 8564_ $$81376751$$s17702$$uhttps://cds.cern.ch/record/2299121/files/plots_h35_w19_21-ana1_row100-200_unirrad-hv020-thr2000_inpix_eff.png$$y00033 Caption not extracted
002299121 8564_ $$81376752$$s78053$$uhttps://cds.cern.ch/record/2299121/files/plots_IV_200Ohm.png$$y00009 t
002299121 8564_ $$81376753$$s8586$$uhttps://cds.cern.ch/record/2299121/files/plots_h35_w13_21-ana2_row100-200_unirrad-hv160-thr2250_inpix_eff.png$$y00032 \SI{1000}{\ohm\cm}, \SI{160}{\V}, \SI{2000}{e} thresholdIn-pixel efficiency of \SIlist{80;200;1000}{\ohm\cm} resistivity substrate samples for sub-matrix 2 (Analog 2 for 80 and \SI{200}{\ohm\cm}, Analog 1 for \SI{1000}{\ohm\cm}). Pixels are arranged in a symmetric double column pattern. Note the difference in scale between data at \SI{160}{\V} and \SI{20}{\V} and the different threshold for d).
002299121 8564_ $$81376754$$s9909$$uhttps://cds.cern.ch/record/2299121/files/plots_h35_w13_21-ana2_row100-200_unirrad-hv160-thr2250_eff.png$$y00027 \SI{200}{\ohm\cm}, \SI{160}{\V}, \SI{2250}{e}\SI{1000}{\ohm\cm}, \SI{160}{\V}, \SI{2000}{e}
002299121 8564_ $$81376755$$s32712$$uhttps://cds.cern.ch/record/2299121/files/plots_Eff_ana2_comparison_matrix1.png$$y00021 Analog 2, submatrix 1Analog 1, submatrix 2
002299121 8564_ $$81376756$$s38462$$uhttps://cds.cern.ch/record/2299121/files/plots_Eff_ana2_comparison_matrix2.png$$y00023 Analog 2, submatrix 3Global efficiency of \SIlist{80;200;1000}{\ohm\cm} resistivity substrate samples for the different sub-matrices as a function of bias voltage and FE-I4 detection threshold.
002299121 8564_ $$81376757$$s38145$$uhttps://cds.cern.ch/record/2299121/files/plots_Eff_ana2_comparison_matrix3.png$$y00025 Caption not extracted
002299121 8564_ $$81441179$$s947614$$uhttps://cds.cern.ch/record/2299121/files/planar22.png$$y00008 : Thickness of the glue layer along the chip edge at two locations along the chip at \SI{2}{\cm} distance showing good parallelism, less than \SI{100}{\nm} difference measured with an optical microscope, from left to right. : Combined ToT map from analog matrix 1 (left) and 2 (right). The lower threshold on the second analog matrix is due to the higher FE-I4 threshold (\SI{3000}{e}), comparing with the \SI{2000}{e}threshold for the first analog matrix, during data acquisition.
002299121 8564_ $$81441180$$s389939$$uhttps://cds.cern.ch/record/2299121/files/pixel_pads.png$$y00030 : H35DEMO pixel pad (blue) and FE-I4 pad (green), plus neighbouring pixels, simulation mesh.
002299121 8564_ $$81441181$$s20760$$uhttps://cds.cern.ch/record/2299121/files/h35_w13_21-ana2_row100-200_unirrad-hv020-thr2000_inpix_eff.png$$y00017 : \SI{200}{\ohm\cm}, \SI{160}{\V}, \SI{2250}{e} threshold : \SI{1000}{\ohm\cm}, \SI{10}{\V}, \SI{2000}{e} threshold
002299121 8564_ $$81441182$$s314123$$uhttps://cds.cern.ch/record/2299121/files/h35_w19_21-ana1_row100-200_unirrad-hv160-thr2000_eff_2.png$$y00012 : Efficiency for the analog high-gain sub-matrices, covering rows 100 to 200 of the FE-I4 and spanning over 24 columns, at \SI{160}{\V} and different substrate resistivity for \SI{2000}{e} threshold. The left column for analog matrix 2 and right column for analog matrix 1 show lower efficiency due to the proximity with the pixels of the monolithic NMOS and CMOS matrices, which can compete for the charge signal. : Caption not extracted
002299121 8564_ $$81441183$$s15546$$uhttps://cds.cern.ch/record/2299121/files/w13_21_ana1_comparison_matrix_2000e.png$$y00030 : \SI{200}{\ohm\cm} Analog Matrix 1 efficiency $vs$ HV bias. : \SI{200}{\ohm\cm} Analog Matrix 2 efficiency $vs$ HV bias.
002299121 8564_ $$81441184$$s2434035$$uhttps://cds.cern.ch/record/2299121/files/H35DEMO_3D.png$$y00003 : (a) H35DEMO 3x3 pixel matrix. (b) FE-I4 3x3 Pixel matrix. (c) 3x3 matrices facing each other, with the conformal dielectric glue layer in between.
002299121 8564_ $$81441185$$s22300$$uhttps://cds.cern.ch/record/2299121/files/h35_w13_21-ana2_row100-200_unirrad-hv160-thr2250_inpix_eff.png$$y00005 : \SI{1000}{\ohm\cm}, \SI{160}{\V}, \SI{2000}{e} threshold : In-pixel efficiency of \SIlist{80;200;1000}{\ohm\cm} resistivity substrate samples for sub-matrix 2 (Analog 2 for 80 and \SI{200}{\ohm\cm}, Analog 1 for \SI{1000}{\ohm\cm}). Pixels are arranged in a symmetric double column pattern. Note the difference in the color scale between data at \SI{160}{\V} and \SI{20}{\V} and the different threshold for d).
002299121 8564_ $$81441186$$s287847$$uhttps://cds.cern.ch/record/2299121/files/h35_w13_21-ana2_row100-200_unirrad-hv160-thr2250_eff_2.png$$y00036 : \SI{200}{\ohm\cm}, \SI{160}{\V}, \SI{2250}{e} : \SI{1000}{\ohm\cm}, \SI{160}{\V}, \SI{2000}{e}
002299121 8564_ $$81441187$$s12598$$uhttps://cds.cern.ch/record/2299121/files/Timing_comparison_W19_21_ana1.png$$y00028 : Signal arrival time distributions in \SI{25}{\ns} bins versus bias voltage and different substrate resistivity for \SI{2000}{e} threshold. : Caption not extracted
002299121 8564_ $$81441188$$s94922$$uhttps://cds.cern.ch/record/2299121/files/tot_map.png$$y00006 : Caption not extracted
002299121 8564_ $$81441189$$s280074$$uhttps://cds.cern.ch/record/2299121/files/h35_w07_99-ana2_row100-200_unirrad-hv160-thr2000_eff_2.png$$y00033 : \SI{80}{\ohm\cm}, \SI{160}{\V}, \SI{2000}{e}
002299121 8564_ $$81441190$$s824030$$uhttps://cds.cern.ch/record/2299121/files/H35DEMO_Layout.png$$y00024 Floor plan of the H35DEMO demonstrator sensor. The monolithic matrices including sensor elements and readout electronics are located at the left and right. The two capacitively coupled detector matrices are located in the middle.
002299121 8564_ $$81441191$$s369657$$uhttps://cds.cern.ch/record/2299121/files/Eff_ana2_comparison_matrix1_a.png$$y00001 : Analog 2, submatrix 1 : Analog 1, submatrix 2
002299121 8564_ $$81441192$$s124541$$uhttps://cds.cern.ch/record/2299121/files/SchemaDoping.png$$y00012 Top: Transistor layout (\SI{20.25x95.05}{\um^2}) of one flavour of the H35DEMO pixel in the Analog Matrix. Middle: Amplifier and output stage transistors embedded in the central deep N-Well while to additional peripheral deep N-Well are added to each side of the central well to fill the pixel area with the collection electrode. The three deep N-Wells are electrically connected through metal to the input of the amplifier. The output top metal pad (dark blue square) is located on the extremity of the pixel with a small offset in the vertical direction. Bottom: doping structure of the H35DEMO analog pixel, illustrating the different doping structures. N-type implants are represented by the letter "n", while p-type is represented by "p". Shallow doping is indicated by "S" while deep implants are represented by "D". It is also possible to see the HV, GND and V$_{dd}$ input connections.
002299121 8564_ $$81441193$$s22079$$uhttps://cds.cern.ch/record/2299121/files/h35_w19_21-ana1_row100-200_unirrad-hv160-thr2000_inpix_eff.png$$y00011 : Caption not extracted
002299121 8564_ $$81441194$$s20913$$uhttps://cds.cern.ch/record/2299121/files/h35_w07_99-ana2_row100-200_unirrad-hv020-thr2000_inpix_eff.png$$y00007 : \SI{80}{\ohm\cm}, \SI{20}{\V}, \SI{2000}{e} threshold
002299121 8564_ $$81441195$$s1802941$$uhttps://cds.cern.ch/record/2299121/files/h35demo_transistor_area.png$$y00014 Top: Transistor layout (\SI{20.25x95.05}{\um^2}) of one flavour of the H35DEMO pixel in the Analog Matrix. Middle: Amplifier and output stage transistors embedded in the central deep N-Well while to additional peripheral deep N-Well are added to each side of the central well to fill the pixel area with the collection electrode. The three deep N-Wells are electrically connected through metal to the input of the amplifier. The output top metal pad (dark blue square) is located on the extremity of the pixel with a small offset in the vertical direction. Bottom: doping structure of the H35DEMO analog pixel, illustrating the different doping structures. N-type implants are represented by the letter "n", while p-type is represented by "p". Shallow doping is indicated by "S" while deep implants are represented by "D". It is also possible to see the HV, GND and V$_{dd}$ input connections.
002299121 8564_ $$81441196$$s74874$$uhttps://cds.cern.ch/record/2299121/files/IV_80Ohm.png$$y00023 : t
002299121 8564_ $$81441197$$s250273$$uhttps://cds.cern.ch/record/2299121/files/h35_w13_21-ana1_unirrad-hv100-thr2000-match_res.png$$y00010 Unbiased residual for a \SI{200}{\ohm\cm} sample, \SI{160}{\V} bias voltage, \SI{2000}{e} threshold, analog matrix 1 (blue). Fit of a gaussian convoluted with a box function (orange). $\mu$ is the mean of the distribution, $\sigma$ the width of the gaussian, $l$ the width of the box and $f_{bkg}$ the fraction of background events.
002299121 8564_ $$81441198$$s22018$$uhttps://cds.cern.ch/record/2299121/files/h35_w07_99-ana2_row100-200_unirrad-hv160-thr2000_inpix_eff.png$$y00029 : \SI{80}{\ohm\cm}, \SI{160}{\V}, \SI{2000}{e} threshold : \SI{200}{\ohm\cm}, \SI{20}{\V}, \SI{2000}{e} threshold
002299121 8564_ $$81441199$$s78053$$uhttps://cds.cern.ch/record/2299121/files/IV_200Ohm.png$$y00015 : t
002299121 8564_ $$81441200$$s34892$$uhttps://cds.cern.ch/record/2299121/files/w13_21_ana2_comparison_matrix_2000e.png$$y00034 : Detection efficiency as a function of bias voltage for the three sub-matrices of analog matrix 1 (left) and analog matrix 2 (right) for a \SI{200}{\ohm\cm} sample for a threshold of \SI{2000}{e}. : Caption not extracted
002299121 8564_ $$81441201$$s36173$$uhttps://cds.cern.ch/record/2299121/files/h35_w19_21-ana1_row100-200_unirrad-hv020-thr2000_inpix_eff.png$$y00031 : Caption not extracted
002299121 8564_ $$81441202$$s254428$$uhttps://cds.cern.ch/record/2299121/files/CS_comparison_W19_21_ana1.png$$y00038 : Caption not extracted
002299121 8564_ $$81441203$$s402555$$uhttps://cds.cern.ch/record/2299121/files/Eff_ana2_comparison_matrix3_a.png$$y00032 : Caption not extracted
002299121 8564_ $$81441204$$s17178600$$uhttps://cds.cern.ch/record/2299121/files/IMG_0794a.png$$y00009 : Caption not extracted
002299121 8564_ $$81441205$$s432181$$uhttps://cds.cern.ch/record/2299121/files/Eff_ana1_comparison_matrix3_a.png$$y00002 : Caption not extracted
002299121 8564_ $$81441206$$s259862$$uhttps://cds.cern.ch/record/2299121/files/cap_map.png$$y00018 Coupling capacitances between 9 FE-I4 pixels and a H35DEMO pixel with a 2.5 $\mu$m gap in between. : figure
002299121 8564_ $$81441207$$s984687$$uhttps://cds.cern.ch/record/2299121/files/planar12.png$$y00000 : width=0.95\textwidth
002299121 8564_ $$81441208$$s460540$$uhttps://cds.cern.ch/record/2299121/files/Eff_ana1_comparison_matrix2_a.png$$y00037 : Analog 2, submatrix 2 : Analog 1, submatrix 3
002299121 8564_ $$81441209$$s108204$$uhttps://cds.cern.ch/record/2299121/files/H35DEMO+FEI4.png$$y00027 Schematic representation of the readout chain of the H35DEMO prototype capacitively coupled to FE-I4.
002299121 8564_ $$81441210$$s242989$$uhttps://cds.cern.ch/record/2299121/files/CS_comparison_w13_21_ana1.png$$y00034 : \SI{1000}{\ohm\cm} : Cluster size versus bias voltage and different substrate resistivity for \SI{2000}{e} threshold.
002299121 8564_ $$81441211$$s86783$$uhttps://cds.cern.ch/record/2299121/files/IV_1000Ohm.png$$y00004 : t : Characteristic I-V curves and Arrhenius plot for \SIlist{80;200;1000}{\ohm\cm} substrate resistivity samples for temperatures ranging from \SIrange{-25}{25}{\celsius}. Leakage current dependence on temperature as a function of the inverse of the temperature for a \SI{1000}{\ohm\cm} substrate, also known as the Arrhenius plot, is presented in figure d). Leakage current differs from the prediction from the Shockley-Read-Hall (SRH) model of Generation-recombination of thermal carriers in a silicon bulk \cite{srh}.
002299121 8564_ $$81441212$$s12503$$uhttps://cds.cern.ch/record/2299121/files/Timing_comparison_W07_99_ana2.png$$y00027 : \SI{80}{\ohm\cm}
002299121 8564_ $$81441213$$s12459$$uhttps://cds.cern.ch/record/2299121/files/Timing_comparison_w13_21_ana1.png$$y00026 : \SI{200}{\ohm\cm} : \SI{1000}{\ohm\cm}
002299121 8564_ $$81441214$$s585872$$uhttps://cds.cern.ch/record/2299121/files/H35DEMOPixel.png$$y00019 Top: Transistor layout (\SI{20.25x95.05}{\um^2}) of one flavour of the H35DEMO pixel in the Analog Matrix. Middle: Amplifier and output stage transistors embedded in the central deep N-Well while to additional peripheral deep N-Well are added to each side of the central well to fill the pixel area with the collection electrode. The three deep N-Wells are electrically connected through metal to the input of the amplifier. The output top metal pad (dark blue square) is located on the extremity of the pixel with a small offset in the vertical direction. Bottom: doping structure of the H35DEMO analog pixel, illustrating the different doping structures. N-type implants are represented by the letter "n", while p-type is represented by "p". Shallow doping is indicated by "S" while deep implants are represented by "D". It is also possible to see the HV, GND and V$_{dd}$ input connections.
002299121 8564_ $$81441215$$s323421$$uhttps://cds.cern.ch/record/2299121/files/GlueDeposition_ex.png$$y00021 : width=0.29\textwidth
002299121 8564_ $$81441216$$s1227946$$uhttps://cds.cern.ch/record/2299121/files/h35demo_glue2.png$$y00015 : width=0.38\textwidth : Left: deposition of epoxy on the H35DEMO matrix by the automatic glue time-pressure dispenser of the Acc$\mu$ra 100. Middle: glue (partially) deposited on double pixel column. Right: 100 ~\micron thin H35DEMO-FE-I4 assembly on PCB.
002299121 8564_ $$81441217$$s393641$$uhttps://cds.cern.ch/record/2299121/files/Eff_ana1_comparison_matrix1_a.png$$y00024 : Analog 1, submatrix 1
002299121 8564_ $$81441218$$s7559218$$uhttps://cds.cern.ch/record/2299121/files/1712.08338.pdf$$yFulltext
002299121 8564_ $$81441219$$s242311$$uhttps://cds.cern.ch/record/2299121/files/CS_comparison_W07_99_ana2.png$$y00020 : \SI{80}{\ohm\cm} : \SI{200}{\ohm\cm}
002299121 8564_ $$81441220$$s415331$$uhttps://cds.cern.ch/record/2299121/files/Eff_ana2_comparison_matrix2_a.png$$y00020 : Analog 2, submatrix 3 : Global efficiency of \SIlist{80;200;1000}{\ohm\cm} resistivity substrate samples for the different sub-matrices as a function of bias voltage for different substrate resistivities and FE-I4 detection threshold.
002299121 8564_ $$81452732$$s15546$$uhttps://cds.cern.ch/record/2299121/files/w25_w13_21_ana1_comparison_matrix_2000e.png$$y00025 : \SI{200}{\ohm\cm} Analog Matrix 1 efficiency $vs$ HV bias. : \SI{200}{\ohm\cm} Analog Matrix 2 efficiency $vs$ HV bias.
002299121 8564_ $$81452733$$s2434035$$uhttps://cds.cern.ch/record/2299121/files/w15_H35DEMO_3D.png$$y00014 : (a) H35DEMO 3x3 pixel matrix. (b) FE-I4 3x3 Pixel matrix. (c) 3x3 matrices facing each other, with the conformal dielectric glue layer in between.
002299121 8564_ $$81452734$$s1227946$$uhttps://cds.cern.ch/record/2299121/files/w40_h35demo_glue2.png$$y00040 : width=0.38\textwidth : Left: deposition of epoxy on the H35DEMO matrix by the automatic glue time-pressure dispenser of the Acc$\mu$ra 100. Middle: glue (partially) deposited on double pixel column. Right: 100 ~\micron thin H35DEMO-FE-I4 assembly on PCB.
002299121 8564_ $$81452735$$s17178600$$uhttps://cds.cern.ch/record/2299121/files/w36_IMG_0794a.png$$y00036 : Caption not extracted
002299121 8564_ $$81452736$$s22079$$uhttps://cds.cern.ch/record/2299121/files/w30_h35_w19_21-ana1_row100-200_unirrad-hv160-thr2000_inpix_eff.png$$y00030 : Caption not extracted
002299121 8564_ $$81452737$$s280074$$uhttps://cds.cern.ch/record/2299121/files/w7_h35_w07_99-ana2_row100-200_unirrad-hv160-thr2000_eff_2.png$$y00007 : \SI{80}{\ohm\cm}, \SI{160}{\V}, \SI{2000}{e}
002299121 8564_ $$81452738$$s1802941$$uhttps://cds.cern.ch/record/2299121/files/w18_h35demo_transistor_area.png$$y00018 Top: Transistor layout (\SI{20.25x95.05}{\um^2}) of one flavour of the H35DEMO pixel in the Analog Matrix. Middle: Amplifier and output stage transistors embedded in the central deep N-Well while to additional peripheral deep N-Well are added to each side of the central well to fill the pixel area with the collection electrode. The three deep N-Wells are electrically connected through metal to the input of the amplifier. The output top metal pad (dark blue square) is located on the extremity of the pixel with a small offset in the vertical direction. Bottom: doping structure of the H35DEMO analog pixel, illustrating the different doping structures. N-type implants are represented by the letter "n", while p-type is represented by "p". Shallow doping is indicated by "S" while deep implants are represented by "D". It is also possible to see the HV, GND and V$_{dd}$ input connections.
002299121 8564_ $$81452739$$s323421$$uhttps://cds.cern.ch/record/2299121/files/w33_GlueDeposition_ex.png$$y00033 : width=0.29\textwidth
002299121 8564_ $$81452740$$s314123$$uhttps://cds.cern.ch/record/2299121/files/w35_h35_w19_21-ana1_row100-200_unirrad-hv160-thr2000_eff_2.png$$y00035 : Efficiency for the analog high-gain sub-matrices, covering rows 100 to 200 of the FE-I4 and spanning over 24 columns, at \SI{160}{\V} and different substrate resistivity for \SI{2000}{e} threshold. The left column for analog matrix 2 and right column for analog matrix 1 show lower efficiency due to the proximity with the pixels of the monolithic NMOS and CMOS matrices, which can compete for the charge signal. : Caption not extracted
002299121 8564_ $$81452741$$s20760$$uhttps://cds.cern.ch/record/2299121/files/w0_h35_w13_21-ana2_row100-200_unirrad-hv020-thr2000_inpix_eff.png$$y00000 : \SI{200}{\ohm\cm}, \SI{160}{\V}, \SI{2250}{e} threshold : \SI{1000}{\ohm\cm}, \SI{10}{\V}, \SI{2000}{e} threshold
002299121 8564_ $$81452742$$s22300$$uhttps://cds.cern.ch/record/2299121/files/w29_h35_w13_21-ana2_row100-200_unirrad-hv160-thr2250_inpix_eff.png$$y00029 : \SI{1000}{\ohm\cm}, \SI{160}{\V}, \SI{2000}{e} threshold : In-pixel efficiency of \SIlist{80;200;1000}{\ohm\cm} resistivity substrate samples for sub-matrix 2 (Analog 2 for 80 and \SI{200}{\ohm\cm}, Analog 1 for \SI{1000}{\ohm\cm}). Pixels are arranged in a symmetric double column pattern. Note the difference in the color scale between data at \SI{160}{\V} and \SI{20}{\V} and the different threshold for d).
002299121 8564_ $$81452743$$s460540$$uhttps://cds.cern.ch/record/2299121/files/w17_Eff_ana1_comparison_matrix2_a.png$$y00017 : Analog 2, submatrix 2 : Analog 1, submatrix 3
002299121 8564_ $$81452744$$s86783$$uhttps://cds.cern.ch/record/2299121/files/w38_IV_1000Ohm.png$$y00035 : t : Characteristic I-V curves and Arrhenius plot for \SIlist{80;200;1000}{\ohm\cm} substrate resistivity samples for temperatures ranging from \SIrange{-25}{25}{\celsius}. Leakage current dependence on temperature as a function of the inverse of the temperature for a \SI{1000}{\ohm\cm} substrate, also known as the Arrhenius plot, is presented in figure d). Leakage current differs from the prediction from the Shockley-Read-Hall (SRH) model of Generation-recombination of thermal carriers in a silicon bulk \cite{srh}.
002299121 8564_ $$81452745$$s585872$$uhttps://cds.cern.ch/record/2299121/files/w20_H35DEMOPixel.png$$y00020 Top: Transistor layout (\SI{20.25x95.05}{\um^2}) of one flavour of the H35DEMO pixel in the Analog Matrix. Middle: Amplifier and output stage transistors embedded in the central deep N-Well while to additional peripheral deep N-Well are added to each side of the central well to fill the pixel area with the collection electrode. The three deep N-Wells are electrically connected through metal to the input of the amplifier. The output top metal pad (dark blue square) is located on the extremity of the pixel with a small offset in the vertical direction. Bottom: doping structure of the H35DEMO analog pixel, illustrating the different doping structures. N-type implants are represented by the letter "n", while p-type is represented by "p". Shallow doping is indicated by "S" while deep implants are represented by "D". It is also possible to see the HV, GND and V$_{dd}$ input connections.
002299121 8564_ $$81452746$$s34892$$uhttps://cds.cern.ch/record/2299121/files/w27_w13_21_ana2_comparison_matrix_2000e.png$$y00027 : Detection efficiency as a function of bias voltage for the three sub-matrices of analog matrix 1 (left) and analog matrix 2 (right) for a \SI{200}{\ohm\cm} sample for a threshold of \SI{2000}{e}. : Caption not extracted
002299121 8564_ $$81452747$$s259862$$uhttps://cds.cern.ch/record/2299121/files/w12_cap_map.png$$y00012 Coupling capacitances between 9 FE-I4 pixels and a H35DEMO pixel with a 2.5 $\mu$m gap in between. : figure
002299121 8564_ $$81452748$$s12459$$uhttps://cds.cern.ch/record/2299121/files/w26_Timing_comparison_w13_21_ana1.png$$y00026 : \SI{200}{\ohm\cm} : \SI{1000}{\ohm\cm}
002299121 8564_ $$81452749$$s432181$$uhttps://cds.cern.ch/record/2299121/files/w37_Eff_ana1_comparison_matrix3_a.png$$y00037 : Caption not extracted
002299121 8564_ $$81452750$$s242311$$uhttps://cds.cern.ch/record/2299121/files/w19_CS_comparison_W07_99_ana2.png$$y00019 : \SI{80}{\ohm\cm} : \SI{200}{\ohm\cm}
002299121 8564_ $$81452751$$s20913$$uhttps://cds.cern.ch/record/2299121/files/w9_h35_w07_99-ana2_row100-200_unirrad-hv020-thr2000_inpix_eff.png$$y00009 : \SI{80}{\ohm\cm}, \SI{20}{\V}, \SI{2000}{e} threshold
002299121 8564_ $$81452752$$s984687$$uhttps://cds.cern.ch/record/2299121/files/w31_planar12.png$$y00028 : width=0.95\textwidth
002299121 8564_ $$81452753$$s242989$$uhttps://cds.cern.ch/record/2299121/files/w3_CS_comparison_w13_21_ana1.png$$y00003 : \SI{1000}{\ohm\cm} : Cluster size versus bias voltage and different substrate resistivity for \SI{2000}{e} threshold.
002299121 8564_ $$81452754$$s824030$$uhttps://cds.cern.ch/record/2299121/files/w23_H35DEMO_Layout.png$$y00022 Floor plan of the H35DEMO demonstrator sensor. The monolithic matrices including sensor elements and readout electronics are located at the left and right. The two capacitively coupled detector matrices are located in the middle.
002299121 8564_ $$81452755$$s287847$$uhttps://cds.cern.ch/record/2299121/files/w13_h35_w13_21-ana2_row100-200_unirrad-hv160-thr2250_eff_2.png$$y00013 : \SI{200}{\ohm\cm}, \SI{160}{\V}, \SI{2250}{e} : \SI{1000}{\ohm\cm}, \SI{160}{\V}, \SI{2000}{e}
002299121 8564_ $$81452756$$s22018$$uhttps://cds.cern.ch/record/2299121/files/w6_h35_w07_99-ana2_row100-200_unirrad-hv160-thr2000_inpix_eff.png$$y00006 : \SI{80}{\ohm\cm}, \SI{160}{\V}, \SI{2000}{e} threshold : \SI{200}{\ohm\cm}, \SI{20}{\V}, \SI{2000}{e} threshold
002299121 8564_ $$81452757$$s12503$$uhttps://cds.cern.ch/record/2299121/files/w34_Timing_comparison_W07_99_ana2.png$$y00031 : \SI{80}{\ohm\cm}
002299121 8564_ $$81452758$$s254428$$uhttps://cds.cern.ch/record/2299121/files/w22_CS_comparison_W19_21_ana1.png$$y00022 : Caption not extracted
002299121 8564_ $$81452759$$s369657$$uhttps://cds.cern.ch/record/2299121/files/w21_Eff_ana2_comparison_matrix1_a.png$$y00021 : Analog 2, submatrix 1 : Analog 1, submatrix 2
002299121 8564_ $$81452760$$s36173$$uhttps://cds.cern.ch/record/2299121/files/w32_h35_w19_21-ana1_row100-200_unirrad-hv020-thr2000_inpix_eff.png$$y00032 : Caption not extracted
002299121 8564_ $$81452761$$s415331$$uhttps://cds.cern.ch/record/2299121/files/w39_Eff_ana2_comparison_matrix2_a.png$$y00039 : Analog 2, submatrix 3 : Global efficiency of \SIlist{80;200;1000}{\ohm\cm} resistivity substrate samples for the different sub-matrices as a function of bias voltage for different substrate resistivities and FE-I4 detection threshold.
002299121 8564_ $$81452762$$s250273$$uhttps://cds.cern.ch/record/2299121/files/w8_h35_w13_21-ana1_unirrad-hv100-thr2000-match_res.png$$y00008 Unbiased residual for a \SI{200}{\ohm\cm} sample, \SI{160}{\V} bias voltage, \SI{2000}{e} threshold, analog matrix 1 (blue). Fit of a gaussian convoluted with a box function (orange). $\mu$ is the mean of the distribution, $\sigma$ the width of the gaussian, $l$ the width of the box and $f_{bkg}$ the fraction of background events.
002299121 8564_ $$81452763$$s74874$$uhttps://cds.cern.ch/record/2299121/files/w14_IV_80Ohm.png$$y00013 : t
002299121 8564_ $$81452764$$s78053$$uhttps://cds.cern.ch/record/2299121/files/w10_IV_200Ohm.png$$y00010 : t
002299121 8564_ $$81452765$$s94922$$uhttps://cds.cern.ch/record/2299121/files/w16_tot_map.png$$y00016 : Caption not extracted
002299121 8564_ $$81452766$$s108204$$uhttps://cds.cern.ch/record/2299121/files/w5_H35DEMO+FEI4.png$$y00005 Schematic representation of the readout chain of the H35DEMO prototype capacitively coupled to FE-I4.
002299121 8564_ $$81452767$$s389939$$uhttps://cds.cern.ch/record/2299121/files/w24_pixel_pads.png$$y00023 : H35DEMO pixel pad (blue) and FE-I4 pad (green), plus neighbouring pixels, simulation mesh.
002299121 8564_ $$81452768$$s12598$$uhttps://cds.cern.ch/record/2299121/files/w4_Timing_comparison_W19_21_ana1.png$$y00004 : Signal arrival time distributions in \SI{25}{\ns} bins versus bias voltage and different substrate resistivity for \SI{2000}{e} threshold. : Caption not extracted
002299121 8564_ $$81452769$$s947614$$uhttps://cds.cern.ch/record/2299121/files/w28_planar22.png$$y00026 : Thickness of the glue layer along the chip edge at two locations along the chip at \SI{2}{\cm} distance showing good parallelism, less than \SI{100}{\nm} difference measured with an optical microscope, from left to right. : Combined ToT map from analog matrix 1 (left) and 2 (right). The lower threshold on the second analog matrix is due to the higher FE-I4 threshold (\SI{3000}{e}), comparing with the \SI{2000}{e}threshold for the first analog matrix, during data acquisition.
002299121 8564_ $$81452770$$s124541$$uhttps://cds.cern.ch/record/2299121/files/w11_SchemaDoping.png$$y00011 Top: Transistor layout (\SI{20.25x95.05}{\um^2}) of one flavour of the H35DEMO pixel in the Analog Matrix. Middle: Amplifier and output stage transistors embedded in the central deep N-Well while to additional peripheral deep N-Well are added to each side of the central well to fill the pixel area with the collection electrode. The three deep N-Wells are electrically connected through metal to the input of the amplifier. The output top metal pad (dark blue square) is located on the extremity of the pixel with a small offset in the vertical direction. Bottom: doping structure of the H35DEMO analog pixel, illustrating the different doping structures. N-type implants are represented by the letter "n", while p-type is represented by "p". Shallow doping is indicated by "S" while deep implants are represented by "D". It is also possible to see the HV, GND and V$_{dd}$ input connections.
002299121 8564_ $$81452771$$s402555$$uhttps://cds.cern.ch/record/2299121/files/w2_Eff_ana2_comparison_matrix3_a.png$$y00002 : Caption not extracted
002299121 8564_ $$81452772$$s393641$$uhttps://cds.cern.ch/record/2299121/files/w1_Eff_ana1_comparison_matrix1_a.png$$y00001 : Analog 1, submatrix 1
002299121 8564_ $$81454957$$s7672501$$uhttps://cds.cern.ch/record/2299121/files/10.1088_1748-0221_13_12_P12009.pdf$$yFulltext from Publisher
002299121 8564_ $$81527929$$s7675102$$uhttps://cds.cern.ch/record/2299121/files/fulltext1644830.pdf$$yFulltext
002299121 960__ $$a13
002299121 980__ $$aARTICLE