
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Stochastic optimization of GeantV code by use of
genetic algorithms
To cite this article: G. Amadio et al 2017 J. Phys.: Conf. Ser. 898 042026

View the article online for updates and enhancements.

Related content
The GeantV project: preparing the future
of simulation
G Amadio, J Apostolakis, M
Bandieramonte et al.

-

GeantV: from CPU to accelerators
G Amadio, A Ananya, J Apostolakis et al.

-

Adaptive track scheduling to optimize
concurrency and vectorization in GeantV
J Apostolakis, M Bandieramonte, G Bitzes
et al.

-

This content was downloaded from IP address 188.184.3.52 on 19/12/2017 at 12:36

https://doi.org/10.1088/1742-6596/898/4/042026
http://iopscience.iop.org/article/10.1088/1742-6596/664/7/072006
http://iopscience.iop.org/article/10.1088/1742-6596/664/7/072006
http://iopscience.iop.org/article/10.1088/1742-6596/762/1/012019
http://iopscience.iop.org/article/10.1088/1742-6596/608/1/012003
http://iopscience.iop.org/article/10.1088/1742-6596/608/1/012003

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 042026 doi :10.1088/1742-6596/898/4/042026

Stochastic optimization of GeantV code by use of

genetic algorithms

G.Amadio1, J.Apostolakis2, M.Bandieramonte2, S.P.Behera3,
R.Brun2, P.Canal4, F.Carminati2, G.Cosmo2, L.Duhem5, D.Elvira4,
G.Folger2, A.Gheata2,5, M.Gheata2,6, I.Goulas2, F.Hariri2, S.Y.Jun4,
D.Konstantinov2, H.Kumawat3, V.Ivantchenko2, G.Lima4,
T.Nikitina2, M.Novak2, W.Pokorski2, A.Ribon2, R.Seghal3,
O.Shadura2, S.Vallecorsa2,5 and S.Wenzel2

1 Parallel Computing Center at Sao Paulo State University (UNESP), Sao Paulo, Brazil
2 CERN, Route de Meyrin, Meyrin, Switzerland
3 Bhabha Atomic Research Centre (BARC), Mumbai, India
4 Fermilab, MS234, P.O. Box 500, Batavia, IL, 60510, USA
5 Intel Corporation, Santa Clara, CA, 95052, USA
6 Institute of Space Sciences, Bucharest-Magurele, Romania

E-mail: oksana.shadura@cern.ch

Abstract. GeantV is a complex system based on the interaction of different modules needed
for detector simulation, which include transport of particles in fields, physics models simulating
their interactions with matter and a geometrical modeler library for describing the detector
and locating the particles and computing the path length to the current volume boundary.
The GeantV project is recasting the classical simulation approach to get maximum benefit
from SIMD/MIMD computational architectures and highly massive parallel systems. This
involves finding the appropriate balance between several aspects influencing computational
performance (floating-point performance, usage of off-chip memory bandwidth, specification
of cache hierarchy, etc.) and handling a large number of program parameters that have to be
optimized to achieve the best simulation throughput. This optimization task can be treated
as a black-box optimization problem, which requires searching the optimum set of parameters
using only point-wise function evaluations. The goal of this study is to provide a mechanism
for optimizing complex systems (high energy physics particle transport simulations) with the
help of genetic algorithms and evolution strategies as tuning procedures for massive parallel
simulations. One of the described approaches is based on introducing a specific multivariate
analysis operator that could be used in case of resource expensive or time consuming evaluations
of fitness functions, in order to speed-up the convergence of the black-box optimization problem.

1. Introduction
The work is focused on the research of stochastic optimization algorithms and unsupervised
machine learning methods involving multivariate analysis for tuning High Energy Physics (HEP)
Monte-Carlo simulations with GeantV [1]. Simulation is the HEP computing activity accounting
for a sizable fraction of the WLCG cycles.

Stochastic optimization refers to the minimization or maximization of a function in the
presence of randomness in the optimization process. Assuming the use of a efficient set of genetic

http://creativecommons.org/licenses/by/3.0

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 042026 doi :10.1088/1742-6596/898/4/042026

algorithms suitable for ”black-box” multi-objective problem (MOP) with computationally-
expensive evaluations of fitness function (constrained or unconstrained Non-Dominant Sorting
Genetic Algorithms (NSGA-II [2] or NSGA-III [3] algorithms)), the main problem in the schema
of algorithms is a lack of additional checkers or operators that allow a faster convergence to the
set of global optimum points.

For GeantV simulations, we proposed a set of parameters that are considered as the most
important for tuning the applications performance. These are explicitly the run time, memory
consumption and other model-specific tuning knobs. Adding specific operators to the genetic
algorithm can be regarded as a noise reduction factor for faster approximation and convergence
to the true Pareto front. This front consists of ideal individuals selected based on the set of
parameters, while we can apply orthogonal transformation and emphasize variation to discover
strong patterns in data.

2. GeantV concurrency model
During the last decade, Geant4 [4] has been the application of choice for full detector simulation.
Its complex design having deep class structure hierarchies and calling stacks makes however hard
to exploit at best modern architectures, generating low values for the instructions retired per
cycle (IPC) and important cache misses.

The GeantV project started in 2013, pursuing a thorough R&D in several areas, including
instruction level parallelism and aiming at increasing the throughput by enabling SIMD in the
code and improving locality to avoid unnecessary load/stores and instruction fetches. This
allowed GeantV-based applications to execute efficiently on many-core vector architectures such
as Intel KNL and to optimize the usage of the system caches. The improved event throughput
is expected to partially compensate the increasing need for simulated data samples for the
High-Luminosity LHC operating regime. GeantV is getting significant benefits from the use
of optimized components, such as a new geometry modeler library that provides several novel
features including vectorization and transparent access to multiple computing architectures. The
VecGeom library [5] is stateless and able to handle vectors of tracks in the computing-intensive
parts, being adapted to heavy multi-threaded workloads. One of the advantages of VecGeom
compared to similar libraries is its high portability to accelerators (GPU, KNL, etc.), taking
advantage of their specificity.

Discussing GeantV model optimization, we can quote the ”eight dimensions of parallelism”
[6], where fine-grain parallelism is the only method allowing sustainable gains in both throughput
and in time-to-solution. Other methods have their own merits: hardware threading has a very
little gain to be expected and no action to be taken, multi-core parallelism allow reducing the
memory footprint and time-to-solution but not the throughput, while multi-node (HPC) level
gives the possibility of running many parallel jobs. These different options are all accessible to
GeantV, increasing the dimensionality of the space of parameters to be optimized. Our idea is
to try to optimize the simulation using a specific machine learning (ML) toolkit by increasing
the dimensionality coverage of the processing jobs.

The main functionality of the GeantV core is to provide data structures and concurrent
services to dispatch and control the concurrent work flow, enforce work coherence by packing
particles into vectors, and push these vectors down to the SIMD-optimised computing intensive
geometry and physics algorithms. A run manager is the module allowing to implement a given
run configuration and simulation parameters. The run manager controls also the event loop and
the workflow, injection of generated events in the system, concurrency parameters such as work
stealing, or run termination.

As prerequisite for running GeantV simulation, the user will need to create a configuration,
which can be tuned using different set of parameters such as event buffer size, vector size or
several GeantV-specific concurrency options. GeantV allows steering a fixed number of co-

3

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 042026 doi :10.1088/1742-6596/898/4/042026

operating working threads managed by ”propagators”, having as objective to increase data and
processing locality while reducing contention. GeantV can use both threads or tasks, cluster
threads on the same processor in NUMA-aware sub-clusters and use knowledge of the hardware
topology to configure the partitioning of resources.

Our handles for tuning are configurations of jobs to be run on nodes providing a matrix of
tunable parameters, based on data provided by HPC scheduler and nodes characteristics that
could be evaluated through aggregated matrix of fitness functions (Figure 2).

A further improvement could be introduced in terms of event management, based on
evolutionary algorithm parametric tuning of simulations configurations and event dispatching
parameters (Figure 1). Using event balancing policies in a multi-node environment can be a
strategy helping to reduce the expensive ”tails” of miss-scheduled jobs on less efficient processing
nodes.

Figure 1: Event distribution schema Figure 2: Data collection for tuning

3. Genetic optimization and multi-variate analysis (MVA) operators
The genetic algorithm (GA) method is one of the widely used evolutionary methods for various
optimization problems. The theory of genetic algorithms was a wide subject of research for
the last decades. The most basic model that allows accurate mathematical formulation of the
genetic algorithm is the so-called ”Simple model of Genetic Algorithm” (SGA)[7] that could be
used as a prototype for an evolutionary system. This model describes the genetic algorithm as
a dynamical system with accurate mathematical definitions, well studied in the literature.

In the modeling of GA as a Markov chain, the states of the evolutionary system are
populations, while state transitions are handled by genetic operators: selection, crossover and
mutation [8]. Mutation ensures that the Markov chain is connected, therefore there is an unique
equilibrium distribution over populations. The probability to produce a particular population in
one generation depends only on the previous generation and external influencing factors. This
randomized process is described by a Markov chain, characterized by a transition matrix T �q,�p

from the population �p to the population �q, where in the population vector

{�p = (p1, p2, ..., pm)t, 0 ≤ pα ≤ 1,
m∑

α=1

pα = 1},

component pα is the probability of occurrence α-th individual in the population. We have a
population of m different types of individuals in the sample space Ω.

Dynamical systems describe the evolution of individuals in the space of finite dimension of
possible populations of fixed size m, where m is number of measurements during the experiment.
While rethinking the genetic algorithms as a discrete dynamical system, many interesting
mathematical objects like fixed points could be found. These objects are apparently not only
generic for simple genetic algorithms, but also general for optimization problems.

4

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 042026 doi :10.1088/1742-6596/898/4/042026

Let’s briefly recall the results presented in [7] and establish the possible links with the task of
optimizing our parameters. The genetic operators (selection, crossover and mutation) are acting
in the space Λ = (p1, p2, ..., pm)t of the population vectors which can consider as a (m − 1)-
dimensional simplex (a hyper-tetrahedron).

The full genetic operator Gα(�p) is a certain probability of producing individual α in the
next generation if the previous population was �p and define map G : Λ → Λ, where
G(�p) =

∏
α∈Ω Gα(�p), and G(�p) ∈ Λ could be considered as heuristic function. G(�p) is GA

procedure on �p ∈ Λ and the map G is actually the composition of three different maps: selection,
mutation and crossover.

Let define genetic selection operator F̂ : Λ → Λ, where F(�p) =
∏

α∈Ω Fα(�p) and the α-th
component, Fα(�p), represents the probability of the appearance of an individual of type α if
the selection is applied to �p ∈ Λ. A selection operator chooses individuals from the current
population using the cost function vector, �f = {fα} ∈ Rm, where fα = f(α), α ∈ Ω. This
generic type of selection collects elements with probability proportional to their fitness. This
corresponds to a heuristic function

F(�p) = diag (f) · �p
�f t · �p

,

where diag (�f) is the matrix with entries from �f along the diagonal and zeros elsewhere.

The mutation operator Û : Λ → Λ is an m × m real valued matrix with (α, β)-th entry
uα,β > 0 for all α, β, and uα,β represents the probability that individual β ∈ Ω mutates into

α ∈ Ω. Then (Û · �p)α is the appearance of an individual of type α after applying a mutation to
the population �p.

Crossover operator Ĉ is defined as: Λ→ Λ,

C(�p) = (�pt · Ĉ1 · �p, ..., �pt · Ĉm · �p)

where Ĉ1, ..., Ĉm is a sequence of symmetric non-negative N × N real-valued matrices. Here
Ĉα(�p) represents the probability that an individual α is generated by applying the crossover to
population �p.

Combining the selection, mutation and crossover maps we obtain the complete operator Ĝ
for the genetic algorithm (GA map)

Ĝ : Λ→ Λ, Ĝ(�p) = Ĉ ◦ Û ◦ F(�p). (1)

If we know the heuristic function G, we can write the transition matrix which is stochastic
and based on the probability of transforming the population �p into the population �q:

T �q,�p = m̄!
∏
α∈Ω

(Gα(�p))m̄qα

(m̄qα)!
(2)

where Gα(�p) is probability of producing individual α in the next generation and M̄qα is the
number of copies of individuals α in the population �q, m̄ is the size of the population.

The convergence properties of the simple genetic algorithm evolution schema was properly
explored in [9]. [10] has shown that the convergence rate of the genetic algorithm is determined
by the second largest eigenvalue of the transition matrix (2). The details of the proof was
performed for diagonalizable transition matrices and transferred to matrices in Jordan normal
form.

5

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 042026 doi :10.1088/1742-6596/898/4/042026

For the optimization of the GeantV simulation, we identify a set of optimization parameters
important for the performance of particle transport simulations (e.g. the size of vector of particles
to be transported or other significant design features) and build the data matrix of size m× n

X̂ = {Xα,i} = {(�xα)i} = {�xα}, (3)

which contains the values of these parameters. In this matrix index i enumerates the tuning
parameters (i = 1, ..., n) and index α enumerates the number of measurements of the parameters
(α = 1, ...,m for m measurements), while in terms of GA the matrix are described through m-
samples of data from an n-dimensional space. In the last case m is the number of individuals in
the generation and n is the size of the individual (n is the dimension of vector of genes �x = {xi})
and the population vector is constituted by (�x1, �x2, ..., �xm).

In the data matrix representation we can associate the vector based on the measurements
of the i-th parameter �x ′

i = {(�x ′
i)α} = {(�x ′

i)1, (�x
′
i)2, ..., (�x

′
i)m}, where the component (�x ′

i)α
corresponds to the value of the i-th parameter in the α-th measurement with the population
vector (�x ′

1, �x
′
2, ..., �x

′
n). In the probabilistic sample representation we can define the normalized

probability distribution function Pi(x) of the measurements of the i-th parameter which define
the components (�pi)α of the population vector

�pi = {(�pi)1, (�pi)2, ..., (�pi)m},

as the probability to measure of the i-th parameter value (�x ′
i)α in the α-th measurement.

Then using the previous strategy we can associate the population vector (�p1, �p2, ..., �pn) with
(�x ′

1, �x
′
2, ..., �x

′
n).

One of the challenges of a Markov chain is to determine the evolution of the components along
an appropriate direction for faster convergence to equilibrium. Using Principal Component
Analysis (PCA) allows to check the genetic algorithm parameter sensitivity and the possible
correlation between parameters. For this we introduce an operator that will be based on PCA
and inverse PCA noise reduction operation for a genetic algorithm’s optimization of the set of
parameters. Comparing classic and ”uncentered” version of PCA [11], the second one had been
shown ability of efficient noise cleanup in highly constrained data sets.

The main object of the ”uncentered” PCA is the matrix of non-central second moments

T̂ =
1

m
X̂ t · X̂ . (4)

Vectors �wj are eigenvectors of this matrix with the corresponding eigenvalues tj

T̂ · �wj = tj �wj , �w t
i · �wj = δi,j , 1 ≤ i, j ≤ n. (5)

We define matrix Wi,j = {�wj} = (wi)j that which diagonalizes T̂ matrix

Ŵ t · T̂ · Ŵ = Δ̂, Δi,j = tiδi,j , Ŵ t · Ŵ = Î . (6)

The �θj = {(θj)α} = {�x t
α · �wj} (α = 1, ...,m) is j-th ”uncentered” principal component

and define the matrix Θα,j = {�θj} = {(θj)α}, below and after the repeating indexes denote
summation:

Θα,j = Xα,iWi,j , Θ t
i,αΘα,j = mΔi,j = mtiδi,j , 1 ≤ α ≤ m, (7)

For the variance of j-th ”uncentered” principal component we obtain

σ2
θ,j =

1

m

m∑
α=1

[
n∑

i=1

(Xα,i − μi)Wi,j

]2
= tj − �μ2 cos2(�μ, �wj), μi =

1

m

m∑
α=1

Xα,i.

6

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 042026 doi :10.1088/1742-6596/898/4/042026

For case of uncentered data matrix X̂ we do not have a simple relationship between the
eigenvalues tj and the variance j-th ”uncentered” principal component (σθ,j)

2 as for the centered
case. However, this property is not essential for the usage of the PCA method for the GA and
in this case it is convenient to apply the ”eigenvalue control parameter” approximation. The
idea is to use the PCA method for the Singular Value decomposition (SVD) representation of
the uncentered data matrix.

We define the matrix Θ̃α,j

Θα,j =
√
m Θ̃α,iΔ

1/2
i,j , Δ

1/2
i,j = t

1/2
i δi,j , Θ̃ t

i,αΘ̃α,j = δi,j . (8)

From (7) we obtain the SVD representation for the uncentered data matrix

Xα,i =
√
m Θ̃α,k Δ

1/2
k,j W

t
j,i. (9)

If the matrix of non-central second moments T̂ has (n− q) smallest eigenvalues tj � 1, q + 1 ≤
j ≤ n we can use the ”eigenvalue control parameter” approximation and get the output data
matrix X̃α,j of rang q

X̃α,i =
√
m Θ̃α,k Δ̃

1/2
k,j W

t
j,i =

√
m

(
t
1/2
1 Θ̃α,1W

t
1,i + ...+ t1/2q Θ̃α,qW

t
q,i

)
, (10)

where the eigenvalue matrix Δ̃k,j has rang q (tq+1 = tq+2 = ... = tn = 0). Then we approximate

Xα,i with rank n by the matrix X̃α,i which has rank q. This is the analog of the Hotelling
transformation.

Using the SVD representation we can estimate the mean square error ηq for this
approximation:

ηq =
1

mn

m∑
α=1

n∑
i=1

(Xα,i − X̃α,i)
2 =

1

n

n∑
k=q+1

tk.

The minimum error is obtained in the case if the matrix of non-central second moments T̂
has (n− q) smallest eigenvalues tj , q + 1 ≤ j ≤ n.

The second case we can get this approximation using a projector P̂ (1,q) , which projects
the data matrix X̂ onto the subspace spanned by the principal axes with largest eigenvalues
tj , 1 ≤ j ≤ q. Let define matrix W̃i,k′ = {�wk′} = (wk′)i (1 ≤ k′ ≤ q) of the size n × q ({�wk′}
are the first q largest eigenvectors (5)). The projector P̂ (1,q) is defined the following way

P̂
(1,q)
i,j = W̃i,k′W̃

t
k′,j , P̂ (1,q) · P̂ (1,q) = P̂ (1,q).

Then the approximation X̃α,i in (10) can be written using the projector P̂ (1,q)

X̃α,j = Xα,iP̂
(1,q)
i,j = Θα,1W

t
1,j + ...+Θα,qW

t
q,j .

We considered a possibility to improve the convergence rate by adding to a standard set of
GA operator’s: selection, mutation, crossing in (1) a new operator P̂ performing ”uncentered”

PCA (UPCA) on the GA populations. UPCA-based genetic operator ĜP(�p) = P̂ ◦ Ĉ ◦ Û ◦ F(�p)
allows to check the genetic algorithms parameter sensitivity and the possible correlation between
parameters. We will analyze the result of the implementation of the operator on the uncentered
data matrix on standard GA performance benchmarks. From the experimental output we
see that as in the SGA case [10], the convergence rate of genetic algorithm depends on the

eigenvalues following the highest one, and for this reason the proposed operator P̂ was applied
on them. This approach was validated in the previous phase of research[12] and had been showed
interesting results. Optimization of simulations by using genetic algorithm with UPCA operator
is efficient in case non-heterogeneous cluster, but didn’t take in consideration the specifications
and architectural differences of computing nodes.

7

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 042026 doi :10.1088/1742-6596/898/4/042026

Figure 3: Multi-layer graph of HPC layer of GeantV

4. Multi-layer HPC graph in GeantV
For heterogeneous clusters, the optimization task becomes more complex, including separation of
the set of nodes in sub regions with the same specification or type for independent evolutionary
optimization. Taking in to account the efficiency of big data correct representation, we can
use multi-graphs that provide suitable representation of the HPC system in terms of processing
events. They provide opportunities to represent data more precisely and to create advance
structure of data to be clustered as a next step of algorithm. Clustering algorithms try to
partition a graph into several subgraphs, so that the nodes of a cluster are relatively well
connected compared to the rest of the graph, while the number of edges between these clusters
is limited.

The HPC system can be seen as a ”social” network where nodes are communicating with
others while being exposed to events. We can define a multi-graph with edges defining the
distribution of events between nodes during one genetic algorithm generation. One layer of
multigraph of our system is set of batch jobs processing event files submitted to the available HPC
resources (Figure 1), defined by a tensor-based computational framework based on a topology of
networks with {node type (1D)} ∗ {matrix of in tunable parameters (2D)} ∗ {matrix or response
functions (2D)} - 5D data set, with edges defined as an event ratio distributed by dispatchers
to event servers and with graph nodes defined as a computing nodes types (Figure 3).

In case of complex heterogeneous HPC system, we are proposing to use a tensor-based
computational framework to identify clusters in multiple weighted networks and using the
procedure of spectral clustering, while easily separate nodes into sub-clusters using the adjacency
matrix between layers.[13]

5. Results
Using methods described in section 3, we define simulation tuning parameters indexed by
i = 1, ..., n, while index α enumerates the number of measurements of the parameters,
α = 1, ...,m where m is a size of genetic generation. The set of parameters is defined by
various performance tuning hooks available for GeantV simulation.

In Figures 4a, 4b, 4c, we stochastically tuned GeantV parameters on Core i7 machines, and
we were able to attain 18% speedup of batch of job compared to the initial set. Meanwhile
the results obtained for Intel(R) Xeon(R) CPU E5-2695 (Figures 5 and 6) show that by tuning
these parameters we were able to achieve a reduction of the fraction of CPU usage up to 34%,
providing stable memory usage and reducing the run time of the batch job up to 27%. The
results achieved during this study are the proof of concept for optimizing GeantV performance
using evolutionary computation tuning. The same method could be implemented for GeantV-
based applications running on supercomputers and HPC clusters. The next phase of our research
is to be able to tune massively parallel job sets processed in heterogeneous environment and to
achieve scalability in HPC environments.

8

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 042026 doi :10.1088/1742-6596/898/4/042026

(a) (b) (c)

Figure 4: Performance tuning plots for Intel Core i7. In (a) and (c) are
represented performance tuning comparison for set of parameters, while in (b)
is shown batch run time ratio between not tuned and optimized simulations

Figure 5: Perf tuning on Intel Ivy Bridge Figure 6: Primaries per time - Intel Ivy Bridge

References
[1] Apostolakis, J and al., Adaptive track scheduling to optimize concurrency and vectorization in GeantV,

Journal of Physics: Conference Series, 608, 1, 012003, 2015
[2] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, ”A fast and elitist multiobjective genetic algorithm: NSGA-

II,” in IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, Apr 2002.
[3] K. Deb and H. Jain, ”An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based

Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints,” in IEEE Transactions
on Evolutionary Computation, vol. 18, no. 4, pp. 577-601, Aug. 2014, doi: 10.1109/TEVC.2013.2281535

[4] S. Agostinelli and al., Geant4a simulation toolkit, Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 506, Issue 3, 1 July
2003, Pages 250-303, ISSN 0168-9002

[5] Apostolakis, J and al., Towards a high performance geometry library for particle-detector simulations,Journal
of Physics: Conference Series, 608, 1, 012023, 2015

[6] S. Jarp, A. Lazzaro, J. Leduc and A. Nowak, Many-core experience with HEP software at CERN openlab, J.
Phys. Conf. Ser. 396, 042043 (2012), doi:10.1088/1742-6596/396/4/042043

[7] Vose, Michael D., The Simple Genetic Algorithm: Foundations and Theory, MIT Press, Cambridge, USA,
1999, 251p.

[8] J. E. Rowe. Genetic algorithm theory, Proceedings of the 14th Annual Conference Companion on Genetic and
Evolutionary Computation, GECCO12, p. 917-940, New York, NY, USA, 2012. ACM.

[9] G. Rudolph. Convergence properties of evolutionary algorithms. Kovac, Hamburg, 1997.
[10] Florian Schmitt and Franz Rothlauf. On the Importance of the Second Largest Eigenvalue on the Convergence

Rate of Genetic Algorithms, Proceedings of the 14th Symposium on Reliable Distributed Systems, 2001
[11] Paul Honeine, ”An eigenanalysis of data centering in machine learning”, preprint ArXiV ID: 1407.2904, 14p.,

2014.
[12] O. Shadura, F. Carminati, Stochastic Performance Tuning of Complex Simulation Applications Using

Unsupervised Machine Learning, 2016 IEEE Symposium Series on Computational Intelligence.
[13] Xiaowen Dong and Pascal Frossard and Pierre Vandergheynst and Nikolai Nefedov, Clustering with Multi-

Layer Graphs: A Spectral Perspective, CoRR, abs/1106.2233, 2011, http://arxiv.org/abs/1106.2233

