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Abstract. RapidIO (http://rapidio.org/) technology is a packet-switched high-performance
fabric, which has been under active development since 1997. Originally meant to be a front
side bus, it developed into a system level interconnect which is today used in all 4G/LTE base
stations world wide. RapidIO is often used in embedded systems that require high reliability,
low latency and scalability in a heterogeneous environment - features that are highly interesting
for several use cases, such as data analytics and data acquisition (DAQ) networks. We will
present the results of evaluating RapidIO in a data analytics environment, from setup to
benchmark. Specifically, we will share the experience of running ROOT and Hadoop on top of
RapidIO. To demonstrate the multi-purpose characteristics of RapidIO, we will also present the
results of investigating RapidIO as a technology for high-speed DAQ networks using a generic
multi-protocol event-building emulation tool. In addition we will present lessons learned from
implementing native ports of CERN applications to RapidIO.

1. Introduction
RapidIO is a high-performance, low pin count, packet-switched system level interconnect
standard, applicable to several domains, see Figure 1. Since its first specification, over 200 million
RapidIO fabric ports have been deployed. The technology is primarily hardware implemented,
guaranteeing low latencies, and error-handling that offloads the CPU. Destination-based routing
and support for heterogeneous technologies, see Figure 2, enable the deployment of any network
topology. These characteristics establish RapidIO as a fast, robust, and flexible technology that
sparks interest in a data center context, where a wide range of technologies and applications
define diverse requirements. In this paper we present an overview of our efforts evaluating the
technology as well as our experience porting applications to the RapidIO software stack.

2. Background
2.1. Previous work
The main reference to RapidIO is the set of specifications released by RapidIO.org [1]. The
volume of academic research around the technology is very limited and focuses on native, on-
chip solutions and embedded applications. Relevant work includes the evaluation of RapidIO
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in systems with high requirements on real time and throughput capabilities [2] as well as
heterogeneous, signal processing systems [3].

Figure 1. Interconnect application domains
where RapidIO is applicable.

Figure 2. RapidIO use in
heterogeneous systems.

With [4] the first investigations in local area networks were done, where work on a data
analysis application, ROOT, and an event-building emulation tool, DAQPIPE, is demonstrated.
The present contribution builds upon this work.

2.2. The protocol
The RapidIO protocol is based on request and response transactions. All transactions are
acknowledged with the use of control symbols. Error handling is done immediately and entirely
in hardware, guaranteeing reliable, in-order delivery.

The protocol specifies the following logical operations, among others.

rDMA Remote Direct Memory Access operations are fast and can carry an arbitrary amount
of data. They are implemented with zero copy, meaning no additional copy takes place
between the user space request and the transfer on the wire. rDMA write operations are
also supported as multicast

CM Channelized Messages use a connection-oriented interface, encapsulate data buffers of up
to 4KB, and lend themselves well for orchestration, such as exchange of memory mapping
information and synchronization of operations

Doorbells Doorbells are RapidIO hardware signals that include the identity of the sender and
are often used as acknowledgments

The majority of the above characteristics are implemented in hardware, off-loading the CPU.
This not only frees processor cycles but also yields lower latency and lower power consumption.

According to the latest protocol specification, which was released in 2016, speeds of up to
25Gbaud per lane can be achieved, enabling the use of a 100Gb/s network.

2.3. Hardware Setup
Our current setup consists of four 2U Quad units with four Intel Xeon L5640@2.27 Ghz nodes,
each with 48GB of RAM, totaling to 16 nodes. Each node is equipped with an IDT Tsi721 PCIe
to RapidIO Bridge, offering a line rate of up to 16Gb/s. Every NIC is connected to a 38-port
Top of Rack (ToR) RapidIO Generation 2 switch box using QSFP+ cables. The switch ports
are configured to 20Gb/s.

The servers are running CERN CentOS release 7.3.1611.
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2.4. Library and Interface
The RapidIO software consists of Linux kernel drivers and the RRMAP libraries, provided by
IDT. The software package is under active development [5, 6]. User space programs access
RapidIO operations through the RRMAP libraries, which interface the underlying drivers.

A considerable change from development versions of the software stack, is that with current
versions, 1.x and forward, it is possible to reserve any amount of physical memory from the OS
and subsequently use it for RapidIO operations. This enables the rDMA buffers to be virtually
any size, limited only by the available physical memory. In order to manage the reserved memory,
we implemented a memory pool that allows for dynamic handling of the available memory.

In addition to the packages mentioned, the Centaurus Computing team has developed a
kernel module that implements a standard TCP/IP interface over the RapidIO fabric. This
enables the use of socket interfaces around RapidIO. These interfaces are called RIOsockets [7].

2.5. Link speeds
The RapidIO Tsi721 Gen2 Bridge Card supports 20Gbaud with a 4x lane configuration. Because
of the 8b/10b encoding scheme used, this number translates to line rates of 16Gb/s for the NIC.
Furthermore, the protocol mappings between PCIe and RapidIO are asymmetric, and require
higher overhead in the transmit direction compared to receive. This leads to higher efficiency
receive operations that reach a theoretical maximum of 14.8Gb/s compared to 13.4Gb/s for the
transmit operations.

To investigate the performance of RIOsockets, we used iperf [8], a commonly used network
testing tool. We evaluated two different communication patterns, one-to-one, Figure 3a, and
many-to-one, Figure 3b.

In the one-to-one scenario, the speed never surpasses 11Gb/s. The reason is that the reported
value for a single client cannot exceed the maximum sending speed. Consequently the transmit
speed caps at 11Gb/s, hinting that the network stack overhead approaches 2.4Gb/s.

In the many-to-one scenario, it is evident that increasing the number of clients allows for
better receive speeds, see Table 1, which peak at 14.95Gb/s. As the receiver is not limited by
the individual client’s transmit speed, it is able to serve at the full receive capacity. This is
due to the fact that with more clients, the server can better utilize the RapidIO receive queues,
yielding even higher speeds.

In both cases we can see that increasing the number of pairs or clients does not affect the
speed, see Table 2, suggesting that the switch is overprovisioned and would allow for further
scaling.

(a) One-to-one. (b) Many-to-one.

Figure 3. Tested iperf communication patterns.
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Table 1. Iperf, many-to-one scenario (Gb/s).

#Clients 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Aggregate 10.80 14.47 14.47 13.27 14.81 14.85 14.70 12.89 14.95 14.91 14.95 13.08 13.85 14.43 13.40

Table 2. Iperf, one-to-one scenario (Gb/s).

Nodes\#Pairs 1 2 3 4 5 6 7 8

rio-q1-a 10.9 10.9 11 11 11 11 11 11
rio-q1-c - 10.7 10.7 10.8 10.7 10.8 10.7 10.7
rio-q2-a - - 10.8 10.9 10.8 10.8 10.8 10.9
rio-q2-c - - - 11 10.9 11 10.9 10.9
rio-q3-a - - - - 10.9 10.9 11 10.9
rio-q3-c - - - - - 10.8 10.9 10.8
rio-q4-a - - - - - - 10.8 10.8
rio-q4-a - - - - - - - 10.8

3. ROOT
ROOT is a data processing framework developed at CERN [9]. Originally targeted at data
analysis and simulations related to high-energy physics, ROOT is now used by numerous teams
around the world in applications ranging from data mining to astronomy.

3.1. Previous work
ROOT was previously extended to use the RapidIO protocol, instead of the TCP/IP stack, for
data transactions [4]. The different operations offered by the RapidIO protocol were individually
evaluated, before exploiting all of them, each for different needs.

3.2. Implementation
3.2.1. Initial work. ROOT is designed to expect a stream-oriented socket interface which is
inherently incompatible with RapidIO’s message based paradigm. To address this the user data
is split into chunks before sending, and reassembled on the other side, thus encapsulating the
RapidIO-specific logic.

Initially, for orchestration and acknowledgments, CM was used. Orchestration, as well
as acknowledgments, require the transfer of information for setting up the connections and
defining various parameters. CM can transfer this kind of information in a convenient way. In
addition, the establishment of a CM socket is a straightforward procedure. For data transactions,
rDMA operations were used, as rDMA is inherently faster and allows for individual buffers of
considerably bigger sizes. At the time of this particular implementation, an rDMA buffer was
restricted to at most 2MB.

In order to evaluate the performance gap between CM and rDMA, a full CM implementation
was explored. Due to the lower measured performance of CM, we subsequently used rDMA for
acknowledgments as well, polling the buffer for incoming data, achieving a slight performance
improvement.

3.2.2. Current State. In order to reduce the time the program spent polling, a circular buffer
design was implemented, see Figure 4. The implemented circular structure consists of several
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buffers that can be used to send or receive data through rDMA operations. This design allows
the sender to post data at will, until the buffer is full, eliminating the need to wait for the
receiver to consume the previous batch. The size and length of the circular buffer are calculated
at runtime depending on the number of active connections the receiver expects, and the available
rDMA-enabled memory.

To further improve the circular buffer extension, the subpar performance of polling rDMA
memory had to be addressed. For this purpose doorbells were used, offering a clean and effective
implementation. Specifically, after a successful rDMA write, a doorbell is sent, carrying the
writer’s identification and the circular buffer position written. The doorbell extension remains
to be thoroughly tested and thus results presented here are based on rDMA memory polling for
acknowledgments.

ROOT is now exploiting the rDMA-enabled memory pool mentioned earlier, which allows for
more flexibility as the memory can be freed and reallocated dynamically.

Figure 4. ROOT Archi-
tecture.

Figure 5. ROOT - half-duplex vs duplex.

3.3. Results
We tested the implementations in two different scenarios. In the first scenario, one node assumes
the role of the server, which will gather data from a number of client nodes. For the second
scenario, pairs of nodes with two-way communication are formed, in order to evaluate the duplex
capabilities of RapidIO. For the former, the results are on par with the iperf tests, with the server
distributing bandwidth and the clients occupying the resources allocated. The results from the
latter scenario are given in Figure 5, showing a speed comparison between half-duplex and
duplex communication patterns for a pair of nodes.

The results indicate optimal performance for medium-sized rDMA buffers, roughly between 30
and 130MB, for a bandwidth of about 8.5 Gb/s. However, compared to the iperf performance
presented above, ROOT shows a consistently poorer performance. This is due to numerous
factors that relate to the complexity of the application. ROOT utilizes its internal bookkeeping,
adding an overhead to our calculations. The poorer performance is exacerbated by the
acknowledgment mechanism which involves active polling of the rDMA data.

4. Hadoop
Hadoop is a framework used for distributed storage and processing of large data sets. The
need for low latencies and high throughput among the nodes of a Hadoop cluster warrants an
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investigation into the RapidIO technology as a transport layer. Hadoop, as the majority of
modern applications, is designed to use the TCP/IP networking stack. Lacking an abstraction
class for the networking layer, the advantages of a Hadoop port to RapidIO would be outweighed
by the effort required.

Consequently, the relevant Hadoop configuration parameters were set so that RIOsocket
interfaces are used in place of the default Ethernet interfaces. This results in the traffic being
routed through the RapidIO fabric in a clean manner, eliminating the need for any porting work.

The validation of the setup was done using Intel’s HiBench suite [10]. The execution of the
suite was successful but proper testing is yet to be done. Next steps involve identifying or
developing fitting benchmarks. This will enable the direct evaluation of RapidIO in terms of
speed and latency, as well as allowing for a comparison to Ethernet.

5. DAQPIPE
LHCb-DAQPIPE [11], DAQ Protocol-Independent Performance Evaluator, is a protocol-
agnostic benchmark application to test network fabrics in preparation for the future upgrade of
the LHCb experiment at CERN.

DAQPIPE emulates the behavior of the event-builder in the DAQ network of LHCb, allowing
for independent evaluation of protocols, topologies and transports. DAQPIPE has already been
ported to several technologies, including Infiniband and 100Gb/s Ethernet [12].

The event-building network is a fully connected network where each node receives a portion
of event data from the detector readout system. Event data is therefore spread in fragments
across the network and needs to be sorted into distinct events, see Figure 6. This setup generates
a bursty many-to-many communication pattern, pushing different parts of the network to their
limits. Using the available configuration parameters, changes can be made to the aggregation
algorithm, the number of parallel requests, the fragment size, and the number of concurrently
handled events (credits). In our work, we have used a pull aggregation scheme where nodes ask
other nodes for event data in sequential order and then focused our benchmarks on the number
of parallel requests, the fragment size, and the number of credits.

5.1. Implementation
5.1.1. Initial work. The RapidIO port of DAQPIPE uses CM for orchestration and rDMA
for data transfers. In the previous description of this work [4], DAQPIPE was ported to an
earlier version of the RapidIO libraries. These libraries constrained the rDMA allocations to
a maximum of 2MB per allocation, with a maximum of 8 allocations. This limits the possible
configurations of DAQPIPE, restricting the number of nodes and credits, as well as the fragment
size.

This led to two different versions of DAQPIPE. In the first, the standard one, a buffer
is allocated per event and readout units use offsets to write fragments to the event builder
units. The second implementation instead allocates one buffer per event fragment, using a
multi-segmented approach. This extension was prompted in order to better utilize the network
capacity, by matching the maximum rDMA buffer size and the fragment size.

As CM operations are blocking, synchronous rDMA operations were used to keep the
implementation simple. Task threads handle send and receive for each open connection.

5.1.2. Current state. The initial update focused on lifting the above limitations, by using the
reserved memory feature made available by the latest library versions. The memory pool allows
to allocate buffers of arbitrary sizes, enabling DAQPIPE to operate without constraints. Any
number of credits or nodes using fragments of any size, is now possible.
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Continued refactoring will involve organizing the task threads through a thread pool, which
will improve resource utilization in possible edge cases. Another planned change is to run credit
processing in lockstep across all nodes, to ensure balanced network activity.

Figure 6. Data aggregation in DAQPIPE
[11]. Fragments of events that are spread
out.

Figure 7. DAQPIPE - Varying buffer sizes
(work in progress).

5.2. Results
The memory pool was evaluated by performing a scan of buffer sizes in a point-to-point scenario,
see Figure 7. As can be seen on the plot, the increase in size now allows for better utilization of
network capacity, resulting in a significant speed increase. In previous results we saw values of up
to 10Gb/s, whereas in this implementation allowing for larger allocation sizes, DAQPIPE peaks
at 12Gb/s, slightly below the theoretical maximum. These results suggest further investigations
into whether larger buffer sizes would increase the speed even more.

Compared to the nominal link speeds reported by iperf, the maximum speed achieved by
DAQPIPE falls in between the one-to-one and many-to-one scenarios. This can partly be
explained by application overhead, as DAQPIPE uses CM for acknowledgments after each data
write which could clearly affect the maximum achievable speed, similarly to ROOT. On the other
hand, the above results concern point-to-point communication, which is limited by transmit
speed, as analyzed before. Conclusively, the overhead introduced by DAQPIPE is significantly
lower than the network stack overhead. Taking into account how DAQPIPE operates, effectively
using many-to-many communication, we should be able to see higher speeds. An additional
improvement would therefore be to use either rDMA or doorbells for acknowledgments.

6. Conclusions
RapidIO is a technology that has been maturing over many years in embedded and on-chip
applications. Our aim is to explore the possibilities of RapidIO in a context outside of its
current setting. The results presented in this paper highlight the interesting aspects of this
endeavor. However, in its current state, its full capabilities are not properly exposed.

Building on previous work on ROOT, we implemented several improvements since its initial
porting. These presented tangible improvements in performance and refined implementations,
and helped evaluating the RapidIO technology in a real-world application. Moreover, ROOT
has since constituted the test bed for classifying the different operations and coupling them with
the functions in which they excel. As ROOT relies on commonly used TCP/IP interfaces, the
need for a standardized API becomes evident.
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DAQPIPE, on the other hand, demonstrated the impact of paradigm correspondence between
application and technology on network utilization. The work done in this paper further supports
this conclusion. From the benchmark results it is clear that RapidIO excels when it comes to
larger data transfers. Furthermore, the appropriate choice of RapidIO operations highly affects
results. Considering the improvements gained by switching from CM to rDMA acknowledgments
for ROOT, we should expect similar improvements if the change is implemented for DAQPIPE.

The introduction of the RIOsocket driver opens up many more possibilities, granting access
to applications using standard TCP/IP interfaces, such as Hadoop and iperf. The features
that RapidIO introduces, such as multicast, could be potentially interesting for alternative uses
of Hadoop. Iperf, on the other hand, enables the evaluation of the network. It provides an
easy interface to explore how the RapidIO fabric responds to different communication patterns,
packet sizes and scaling.

Looking forward, we will assess the use of doorbells in signal exchange between nodes and
scaling up to 16 nodes. Moreover, investigations are needed to study how performance will be
affected by scaling, specifically in terms of switch provisioning and network load. For Hadoop
specifically, efforts will be focused on establishing an appropriate interpretation approach.
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