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Abstract

Decoupling of heavy quarks at low energies can be described by means of an effective

theory as shown by S. Weinberg in Ref. [1]. We study the decoupling of the charm

quark by lattice simulations. We simulate a model, QCD with two degenerate charm

quarks. In this case the leading order term in the effective theory is a pure gauge theory.

The higher order terms are proportional to inverse powers of the charm quark mass M

starting at M−2. Ratios of hadronic scales are equal to their value in the pure gauge

theory up to power corrections. We show, by precise measurements of ratios of scales

defined from the Wilson flow, that these corrections are very small and that they can be

described by a term proportional to M−2 down to masses in the region of the charm

quark mass.
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1. Introduction

In a field theory which contains light (mass-less) fields and fields of a heavy mass

M , the functional integral over the latter can be performed resulting in an effective

theory for the light fields which was formulated by Weinberg [1]. The action of the

effective theory contains the action of the light fields (without the heavy fields) and

an infinite number of non-renormalizable terms. The latter are suppressed by powers

of E/M at low energies E � M . Moreover, the non-renormalizable couplings do

not contribute to the renormalization group equations of the renormalizable couplings

of the light fields. This property holds for mass-independent renormalization schemes

like the MS scheme as shown in [1]. The heavy fields still affect the value of the

renormalized couplings of the light fields through the decoupling relations, which result

from the matching of the effective and the fundamental theory at low energies.

Assuming the validity of perturbation theory at the matching scale, the decoupling

relations can be computed perturbatively. In the case of QCD and one heavy quark,

such as the charm or the bottom quark, the decoupling relation for the renormalized

strong coupling is known to four loops [1, 2, 3, 4]. The strong coupling of the five-flavor

theory can be extracted in this way from the coupling computed non-perturbatively in

the three-flavor theory using lattice simulations [5]. We remark that the decoupling

relation for the strong coupling can be equivalently expressed as a relation between the

Λ parameters of the effective and the fundamental theory [6].

Simulations of QCD on the lattice are often carried out with three light sea quarks

[7, 8, 9, 10, 11, 12]. The inclusion of a charm sea quark increases significantly the

computational cost and introduces additional tuning to set the bare quark masses on a

line of constant physics. Moreover, in the case of simulations with Wilson fermions,

Symanzik O(a) improvement requires the computation of coefficients which multiplies

terms proportional to the bare quark masses in lattice units am [13, 14]. The contribu-

tion of these terms is significant for the charm quark amc > 0.3 at the affordable lattice

spacings a > 0.05fm. Some of these coefficients, like the one of the gluon action, are

difficult to extract non-perturbatively. Relying on decoupling of the charm quark at low

energies allows to simulate the cheaper and simpler effective theory with three flavors
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only.

The applicability of decoupling for the charm quark has to be justified. In [6] this

was studied in a model, QCD with two heavy mass-degenerate quarks and no light

quarks. The decoupling of the heavy quarks leave a pure gauge theory1 up to power

corrections (which are due to the non-renormalizable interactions) at low energies. The

latter were extracted by computing low energy quantities related to the Wilson flow

[16, 17, 18, 19]. Ratios of two such quantities are insensitive to the matching of the

gauge couplings, and after taking the continuum limit, can be compared to their coun-

terparts in the pure gauge theory. The differences are due to the power corrections. By

interpolating data obtained from simulations at quark masses ranging from 1/8th up to

one half of the charm quark mass with data from simulations of the pure gauge theory,

the size of the power corrections due to one sea charm quark was estimated to be at the

sub-percent level [6].

In [6] it was noted that the simulated masses were not large enough to see the

leading behavior of the power corrections which start at 1/M2 in the effective theory.

Instead a behavior more like 1/M was observed. In this article we study the same

model as in [6] but extend the simulated quark masses to the charm quark mass and

slightly above. Thus we can directly compute the size of the power corrections from

decoupling of the charm quark. Furthermore we perform a non-perturbative test of

the validity of the effective theory of decoupling for the charm quark. Our goal is

to determine whether the leading power corrections in the inverse heavy quark mass

behave in the charm region as 1/M2.

The article is organized as follows. In Sect. 2 we briefly review the theoreti-

cal framework of the effective theory of decoupling for QCD with two heavy mass-

degenerate quarks (in the continuum). Sect. 3 presents the details of the Monte Carlo

simulations of this model formulated on the lattice. The results for the ratios of low en-

ergy quantities are presented in Sect. 4 and their dependence on the heavy quark mass

is compared to the effective theory prediction. The conclusions of our work are drawn

in Sect. 5.

1 Perturbatively the simultaneous decoupling of two heavy quarks is known at three-loop order [15].
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2. Decoupling

To avoid a multi-scale problem, we consider a simplified version of QCD, namely

an SU(3) Yang–Mills theory coupled to two degenerate heavy quarks. This allows

us to perform simulations in relatively small volumes with very small lattice spac-

ings, as we describe in Sect. 3. We briefly review the theoretical framework of de-

coupling specifically for our model. The fundamental theory is QCD with Nf = 2

mass-degenerate quarks. Λ is the Lambda parameter in the MS scheme and M is the

renormalization group invariant (RGI) mass of the heavy quarks.2 After decoupling of

the heavy quarks, what is left is a pure gauge theory. Therefore, the Lagrangian of the

effective theory valid at energies E �M is given by [1, 20]

Ldec = LYM + 1/M2
∑
i

ωiΦi + O(Λ4/M4) . (1)

LYM is the Lagrangian of the SU(3) Yang–Mills (pure gauge) theory. Due to gauge in-

variance there are no fields of mass dimension equal to five. A complete set of fields of

mass dimension equal to six is Φ1 = tr {DµFνρDµFνρ} and Φ2 = tr {DµFµρDνFνρ},

where Fµν is the SU(3) field strength tensor and DµFνρ its covariant derivative.

At leading order the effective theory, eq. (1), is a Yang–Mills theory. It has only one

free parameter, the renormalized gauge coupling. This coupling is fixed by matching

the effective theory to the fundamental theory. Equivalently one can fix the Λ parameter

of the Yang–Mills theory, ΛYM, which becomes a function ΛYM = Λdec(M,Λ), see

[6, 21]. Matching requires that low energy physical observables are the same in the

two theories up to power corrections. Let us denote a low energy observable by mhad

where, for example, it can represent a hadronic scale such as 1/
√
t0 [22] or 1/r0 [23].

After matching

mhad(M) = mhad
YM + O(Λ2/M2) , (2)

where mhad(M) is the hadronic scale in QCD with Nf = 2 heavy quarks of mass M

and mhad
YM is the hadronic scale in the Yang–Mills theory. Note that mhad

YM depends on

2 Throughout this work, the Λ parameter is defined in the MS scheme. For mass-independent schemes

like the MS, there is an exact one-loop relation for the Λ parameters between different schemes. The RGI

mass M is independent of the scheme (for mass-independent schemes).

4



M through the matching, in particular mhad
YM/ΛYM is a pure number independent of

M . Therefore we consider two hadronic scales, mhad,1(M) and mhad,2(M), whose

values in the Yang–Mills theory are mhad,1
YM and mhad,2

YM respectively. An immediate

consequence of eq. (2) is

R(M) =
mhad,1(M)

mhad,2(M)
=
mhad,1

YM

mhad,2
YM

+ O(Λ2/M2) . (3)

The matching of the coupling is irrelevant for the ratios and we have direct access to

the power corrections [24]. The effective theory of decoupling predicts that the ratios

like in eq. (3) are equal to their value R(M = ∞) in the Yang–Mills theory with a

leading power correction in the inverse heavy quark mass given by

R(M) = R(∞) + kΛ2/M2 , (4)

where k is a parameter which depends on the hadronic scales which are taken to form

the ratio. The goal of this work is to verify the behavior in eq. (4) and to establish

whether it applies for masses around the charm quark mass.

3. Monte Carlo simulations

We simulate QCD with two mass-degenerate flavors of quarks (Nf = 2). Wilson’s

plaquette gauge action [25] is employed in the the Yang-Mills sector and a doublet

of quarks is realized either as standard or as twisted mass [26] Wilson quarks. In

both cases a clover term [27, 13] with non-perturbatively determined improvement

coefficient csw [28] is added. It is not needed for the O(a) improvement of the twisted

mass action at maximal twist, but was found to reduce the O(a2) lattice artifacts, see

e.g. [29].

The bare coupling β of the gauge action was chosen such that the lattice spacings

cover the range 0.023 fm . a . 0.066 fm. The lattice spacing is determined from the

hadronic scale L1 [30, 31]. The scale L1/a is defined at vanishing quark mass, where

the standard and twisted mass Wilson quark formulations are equivalent. Therefore,

the lattice spacing for a given bare coupling β is the same for both formulations. In

order to obtain the scale L1 in lattice units at a particular value of β, we fitted the data
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in Table 13 of [31] as it is explained there. The lattice spacing in physical units is

estimated by rescaling the value a = 0.0486 fm at β = 5.5 from [31] by the ratio of

the L1/a values.

In order to resolve the short correlation lengths associated with the large quark

masses that we aim at, we are forced to simulate at very small lattice spacings. Critical

slowing down becomes a major obstacle which we alleviate by the implementation

of open boundary conditions in the time direction [32]. The boundary improvement

coefficients are kept at their tree-level values cG = 1 and cF = 1. The publicly

available openQCD simulation program [33, 34] is used for our simulations.

We used standard O(a) improved Wilson quarks to simulate at quark masses of

approximately a factor 1/8, 1/4 and 1/2 of the charm quark mass. The details of

these simulations are given in [6, 21]. For the present work we also simulated twisted

mass Wilson quarks at these quark masses. In addition, we also simulated directly at

the charm quark mass and at one mass larger than that of the charm quark. In the

simulations of twisted mass Wilson quarks, the hopping parameter κ was set to its

critical value in order to achieve maximal twist. The critical values were obtained from

an interpolation of published data [31, 30, 35]. The twisted mass parameter aµ was

chosen to correspond to certain values of M/Λ listed in Table 1. More precisely, at a

given value of the bare coupling the twisted mass parameter is set by

aµ =
M

Λ
ZP(L1)

m̄(L1)

M
ΛL1

a

L1
. (5)

The pseudo-scalar renormalization constant at renormalization scale L−11 computed in

the Schrödinger Functional scheme ZP(L1) = 0.5184(53) (valid for 5.2 ≤ β ≤ 6.0),

the relation between the running and the RGI mass M/m̄(L1) = 1.308(16) and Λ =

310(20) MeV are known from [31, 36]. We take ΛL1 = 0.649(45) from [37]. Some

of the quantities entering eq. (5) have rather large errors. The dominant error comes

from ΛL1. Note that it is common to all our simulation points and amounts to a change

in the target values of M/Λ. For the charm quark we set Mc/Λ = 4.8700, where we

use the preliminary value Mc = 1510 MeV of [38] which agrees with [39].

In order to determine the power corrections in eq. (3), we also simulate the pure

gauge theory at values of the scales t0/a2 [22], r0/a [23] which are similar or larger.
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Table 1 summarizes our twisted mass and quenched ensembles. At the large quark

masses of our simulations, the system is close to a pure gauge theory, with similar finite

volume effects. Our lattice volumes are such that L/
√
t0 ≥ 8. We explicitly checked

in the pure gauge theory that a volume L/
√
t0 = 8 is large enough to exclude finite

volume effects in the scales derived from the Wilson flow (t0, tc, w0, see Sect. 4). In

fact, we can rule out significant finite volume effects in all data which we use in the

analysis in Sect. 4.

4. Results

On the ensembles generated with two flavors of O(a) improved Wilson fermions

reported in [6, 21] and those generated in the twisted mass simulations at maximal twist

and the pure gauge simulations which are listed in Table 1, we measure the hadronic

scales
√
t0,
√
tc and w0. They are defined from gauge fields smoothed by the Wilson

flow [17, 18, 19] as follows. We denote by E(x, t) the smoothed action density, where

t is the flow time of mass dimension −2, and introduce the dimensionless quantity

E(t) = t2 〈E(x, t)〉 . (6)

At flow times t > 0, E(x, t) is a renormalized quantity [22, 40]. The reference scale

t0 is defined as in Ref. [22] by

E(t0) = 0.3 . (7)

Similarly, the scale tc is defined by

E(tc) = 0.2 . (8)

The numerical solutions to eq. (7) and eq. (8) are found by quadratic interpolation of

the data of E(t). We use the clover (symmetric) definition of the action density E on

the lattice, cf. [22]. The scale w0 is defined as in Ref. [41] by

w2
0E ′(w2

0) = 0.3 , (9)

where E ′(t) = d
dtE(t). The numerical solution to eq. (9) is found by first computing

the symmetric finite differences of t2E(t) on each configuration and then by quadratic
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interpolation of the data. The error analysis is based on the method of Ref. [42] and

takes into account the coupling to slow modes following Ref. [43]. We estimate the

exponential autocorrelation time τexp from the tail of the autocorrelation function of

t0. We use the ensembles at our largest masses, for which we perform simulations

at our finest lattice spacings. As expected with open boundary conditions [32], the

observed critical slowing down is compatible with a τexp ∝ a−2 behavior and from a

least squares fit we obtain τexp = −32(23) + 17.4(2.8) t0/a
2 in molecular dynamics

units (MDUs). The errors of the fit coefficients are given in parantheses. With periodic

boundary conditions the autocorrelation times would be much larger, cf. [43] where an

effective scaling proportional to a−5 was observed.

We compute the ratios of hadronic scales

R =
√
tc/t0 and R =

√
t0/w0 . (10)

In such ratios the bare coupling (or equivalently the lattice spacing) drops out. After

taking the continuum limit we can directly compare the ratios in the Nf = 2 theory to

their value in the pure gauge theory and so determine the size of the 1/M2 effects in

eq. (4).

To determine the values of the ratios in the continuum limit, we fit our data to

R(a,M/Λ,A) = Rcont(M/Λ) + a2

t0
c(M/Λ,A), where A is the action, “W” for Wil-

son, “tm” for twisted mass and “q” for quenched (pure gauge, M = ∞). The func-

tional form is motivated by Symanzik’s effective theory for our actions. For a given

mass M/Λ we have two fit parameters (continuum value and slope) for cases where

the calculation was performed with one action and three parameters (continuum value

and two slopes) for cases with two lattice actions. We apply a cut, a2/t0(M) < 0.32,

to the data to be fitted. The data and the fits for R =
√
tc/t0 and R =

√
t0/w0 are

shown in Fig. 1. The pentagrams represent the twisted mass data, the squares are the

standard Wilson data and the circles are the pure gauge data. The lines represent fits:

the dashed lines are the continuum extrapolations of the twisted mass data and the con-

tinued lines are the continuum extrapolations of the Wilson and of the quenched data.

The asterisks represent the continuum extrapolated values Rcont(M/Λ). The data is

described very well by the fits and the continuum values are very stable under changes
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Figure 1: Combined continuum extrapolations. On the left, the ratio
√
tc/t0. On the right

√
t0/w0. We

show data from twisted mass (pentagrams), standard Wilson (squares) and quenched (circles) simulations.

For the second coarsest quenched lattice we performed a finite volume test and there are two data points

overlapping. The lines represent the continuum extrapolations described in the text and the asterisks are the

obtained continuum values.

in the fitting procedure, such as removing some of the data points, or changes in the

cut in a2/t0(M). Moreover, a global fit that models the M dependence of the slopes

yields compatible values. Although the global fit has less parameters, we prefer the

individual fits since they yield statistically independent continuum values.

M/Λ ∞ 5.7781 4.87 2.50 1.28 0.59√
tc/t0 0.7919(3) 0.7894(9) 0.7888(5) 0.7826(6) 0.7751(9) 0.7643(6)

√
t0/w0 0.9803(6) 0.9774(21) 0.9765(10) 0.9661(13) 0.9532(18) 0.9311(15)

r0/
√
t0 3.013(17) - 3.022(29) 2.988(35) 3.043(71) 3.050(64)

Table 2: The values of various dimensionless ratios in the continuum limit for several values of the quark

mass.

The continuum valuesRcont(M/Λ) obtained from the fit are summarized in Table 2
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Figure 2: The continuum extrapolated values of
√
tc/t0 (left) and

√
t0/w0 (right) from the fit shown in

Fig. 1 plotted against Λ/M . The line in the blue band is the effective theory prediction eq. (4) fitted through

points from M = ∞ down to M/Λ = 2.5000. The line in the green band is instead a fit linear in Λ/M .

For comparison the dashed lines represent the quadratic (blue) and linear (green) fit through points from

M = ∞ down to M/Λ = 1.2800. Also shown by the dashed-dotted red line is a fit in this range adding to

eq. (4) a next-to-leading correction term proportional to Λ4/M4.

and are plotted in Fig. 2 against Λ/M . The relative effect of a single charm quark com-

pared to pure gauge theory can be estimated by 1/2[Rcont(Mc)−Rcont(∞)]/Rcont(∞).

This effect is very small, it is −0.00196(37) for R =
√
tc/t0 and −0.00194(59) for

R =
√
t0/w0. In Fig. 2 the line in the blue band represents the effective theory pre-

diction eq. (4), where the coefficient k of the (Λ/M)2 term is determined by a fit that

includes data down to M/Λ = 2.50. Our data are very well described by eq. (4). A fit

to a behavior of the power corrections linear in M−1 is shown by the line in the green

band. A linear behavior in 1/M was observed in the data for masses smaller than half

of the charm quark mass [6, 21]. While adding the new data for larger masses cannot

exclude the M−1 behavior completely, this fit is far worse than the one with M−2 cor-

rections. The fitted values of the coefficients k and the χ2 values per degree of freedom

of the fits are listed in Table 3 . The second error of k is systematic and is given by the

difference between fits where the lowest mass included in the fit is Mc or Mc/2.
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R fits down to Mc/2 fits down to Mc/4

k χ2
quad/dof χ2

lin/dof χ2
quad/dof χ2

lin/dof√
tc/t0 -0.058(04)(16) 1.75 / 2 9.55 / 2 65.76 / 3 9.61 / 3

√
t0/w0 -0.089(09)(03) 0.02 / 2 8.54 / 2 27.31 / 3 9.54 / 3

r0/
√
t0 -0.14(24)(37) 0.25 / 1 0.42 / 1 0.78 / 2 0.79 / 2

Table 3: The χ2 values of the quadratic eq. (4) and linear fits in Λ/M for different ratios shown in Figure 2

and on the right plot in Figure 3. We perform two types of fits, the first through the M = ∞ and Mc/2 data

points and the second extending down to the Mc/4 data points. For the first type of fits we list the values of

the coefficients k of the (Λ/M)2 term in eq. (4). The first error is statistical and the second is systematic.

In Fig. 2 we also show the fits to the data down to masses corresponding to Mc/4.

They are represented by the dashed lines, blue for the quadratic and green for the linear

fit. While the linear fit is almost unchanged with respect to the linear fit down toMc/2,

the quadratic fit is clearly excluded. Still the quadratic fit to the points down to Mc/2

has much better χ2 values per degree of freedom than the linear fit down to Mc/4, see

Table 3 . These results demonstrate that the linear behavior is disfavored only when

the data for masses smaller than Mc/2 are excluded from the fits. The data then begin

to show the leading quadratic behavior which is expected from the effective theory for

large enough masses. This conclusion is further supported by the dashed-dotted lines

shown in Fig. 2. They represent a fit down to Mc/4 when a next-to-leading correction

term Λ4/M4 (whose coefficient is fitted) is added to the leading behavior of eq. (4).

This fit has very good χ2 values per degree of freedom: 0.49/2 for R =
√
tc/t0 and

0.11/2 for R =
√
t0/w0. It deviates substantially from the fit to the leading behavior

down to Mc/2 only for masses smaller than Mc/2.

In order to appreciate the precision that can be reached with flow quantities, we

also present the corresponding results for the ratioR = r0/
√
t0 including the Sommer-

scale r0 [23] extracted from Wilson loops. For the measurements of Wilson loops we

use the wloop package3 which implements the method of [44]. This amounts to firstly

3 It is available at https://github.com/bjoern-leder/wloop/.

11



0 0.1 0.2 0.3 0.4
2.8

2.85

2.9

2.95

3

3.05

3.1

3.15

3.2

3.25

3.3

0 0.2 0.4 0.6 0.8 1
2.8

2.85

2.9

2.95

3

3.05

3.1

3.15

3.2

3.25

3.3

Figure 3: Combined continuum extrapolations of the ratio r0/
√
t0 (left) and the mass dependence of the

continuum values (right). The symbols and colors are chosen as in Fig. 1 and Fig. 2.

smearing all gauge links (for the temporal links this means a choice of the static action)

and subsequently measuring the Wilson loops where the initial and final line of gauge

links are smeared using up to four levels of spatial HYP smearing [45]. This allows

us to extract the static-quark potential a V (r) very reliably by solving a generalized

eigenvalue problem [46]. The static force F (r) = V ′(r) can then be used to measure

the hadronic scale r0 defined implicitly through [23]

r20F (r0) = 1.65 . (11)

Even a careful state of the art determination of r0 does not yield a precision high enough

to resolve the power corrections we are interested in, as can be seen in Fig. 3. We note

that the coefficient k of the (Λ/M)2 term in eq. (4) depends on the observables used to

form the ratio.

5. Conclusions

In this work we simulated a model, QCD with two heavy mass-degenerate quarks.

At low energies this theory is described by an effective theory which is a pure gauge
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theory up to power corrections in the inverse heavy quark mass. By comparing ratios

of low energy physical quantities computed in both theories and extrapolated to the

continuum limit, we could determine the size of the power corrections. They have

been found to be very small. We are now confident that the effects of neglecting

the charm quark in Nf = 2 + 1 simulations is far below a percent in dimensionless

low-energy quantities. The power corrections are expected for sufficiently large heavy

quark masses to be proportional to the square of the inverse quark mass, see eq. (4).

Our data shown in Fig. 2 follow very well this expectation down to masses equal to half

of the charm quark mass. A behavior linear in the inverse quark mass, which is possible

for masses outside the range of validity of the effective theory, is strongly disfavored

by the data.

In order to achieve a stronger conclusion and find the range of quark masses where

the linear behavior can be completely excluded, the statistics of our simulations should

be increased and larger quark masses up to the bottom quark mass be simulated. The

resources needed to carry this out are beyond our computational budget. We emphasize

that the computational resources used to produce the data for this article amount to a

large scale project already. Simulating with a yet larger statistical precision and heavier

quark masses would require a computational effort which is comparable to simulations

with light sea quarks and are therefore beyond the scope of this model calculation.
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[13] M. Lüscher, S. Sint, R. Sommer, P. Weisz, Chiral symmetry and O(a) improve-

ment in lattice QCD, Nucl. Phys. B478 (1996) 365–400. arXiv:hep-lat/

9605038, doi:10.1016/0550-3213(96)00378-1.

[14] T. Bhattacharya, R. Gupta, W. Lee, S. R. Sharpe, J. M. S. Wu, Improved bilin-

ears in lattice QCD with non-degenerate quarks, Phys. Rev. D73 (2006) 034504.

arXiv:hep-lat/0511014, doi:10.1103/PhysRevD.73.034504.

[15] A. G. Grozin, M. Hoeschele, J. Hoff, M. Steinhauser, M. Hoschele, J. Hoff,

M. Steinhauser, Simultaneous decoupling of bottom and charm quarks, JHEP

09 (2011) 066. arXiv:1107.5970, doi:10.1007/JHEP09(2011)066.

[16] M. F. Atiyah, R. Bott, The Yang-Mills equations over Riemann surfaces, Phil.

Trans. Roy. Soc. Lond. A308 (1982) 523–615.

15

http://arxiv.org/abs/0911.2561
http://dx.doi.org/10.1103/PhysRevD.81.074503
http://dx.doi.org/10.1103/PhysRevD.81.074503
http://arxiv.org/abs/1003.1114
http://dx.doi.org/10.1016/j.physletb.2010.05.067
http://dx.doi.org/10.1016/j.physletb.2010.05.067
http://arxiv.org/abs/1208.4412
http://dx.doi.org/10.1103/PhysRevD.87.094514
http://dx.doi.org/10.1103/PhysRevD.87.094514
http://arxiv.org/abs/1411.3982
http://arxiv.org/abs/1411.3982
http://dx.doi.org/10.1007/JHEP02(2015)043
http://arxiv.org/abs/1606.09039
http://dx.doi.org/10.1103/PhysRevD.94.074501
http://dx.doi.org/10.1103/PhysRevD.94.074501
http://arxiv.org/abs/hep-lat/9605038
http://arxiv.org/abs/hep-lat/9605038
http://dx.doi.org/10.1016/0550-3213(96)00378-1
http://arxiv.org/abs/hep-lat/0511014
http://dx.doi.org/10.1103/PhysRevD.73.034504
http://arxiv.org/abs/1107.5970
http://dx.doi.org/10.1007/JHEP09(2011)066


[17] R. Narayanan, H. Neuberger, Infinite N phase transitions in continuum Wilson

loop operators, JHEP 03 (2006) 064. arXiv:hep-th/0601210, doi:10.

1088/1126-6708/2006/03/064.
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T
a
×
(
L
a

)3
β κ aµ M/Λ r0/a t0/a

2 MDUs

120× 323 5.300 0.136457 0.024505 0.5900 – 4.174(13) 4300

120× 323 5.500 0.1367749 0.018334 0.5900 8.77(15) 7.917(82) 8000

192× 483 5.700 0.136687 0.013713 0.5900 – 14.40(10) 5800

120× 323 5.500 0.1367749 0.039776 1.2800 8.010(62) 6.871(33) 8000

192× 483 5.700 0.136687 0.029751 1.2800 – 12.668(39) 16200

120× 323 5.500 0.1367749 0.077687 2.5000 7.392(62) 5.836(27) 8000

192× 483 5.700 0.136687 0.058108 2.5000 – 10.916(38) 9000

192× 483 5.600 0.136710 0.130949 4.8700 – 6.609(15) 2000

120× 323 5.700 0.136698 0.113200 4.8703 9.123(57) 9.104(36) 17184

192× 483 5.880 0.136509 0.087626 4.8700 11.946(55) 15.622(62) 23088

192× 483 6.000 0.136335 0.072557 4.8700 14.34(10) 22.39(12) 22400

192× 483 5.600 0.136710 0.155367 5.7781 – 6.181(11) 2096

192× 483 5.700 0.136687 0.1343 5.7781 – 8.565(31) 2700

120× 323 5.880 0.136509 0.103965 5.7781 – 14.916(93) 59888

120× 323 6.100 – – ∞ 6.345(13) 4.4329(32) 64000

120× 323 6.340 – – ∞ 9.029(77) 9.034(29) 20080

120× 243 6.340 – – ∞ – 9.002(31) 60920

192× 483 6.672 – – ∞ 14.103(92) 21.924(81) 73920

192× 643 6.900 – – ∞ 18.93(15) 39.41(15) 160200

Table 1: Simulation parameters of our twisted mass and quenched ensembles. The columns show the lattice

sizes, the gauge coupling β = 6/g20 , the hopping parameter (for maximal twist), the twisted mass parameter,

the ratio of the RGI mass to the Λ parameter (∞ for quenched), the scales r0/a (where it is measured) and

t0/a2 and the total statistics in molecular dynamics units.
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