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CMS event processing multi-core efficiency status

C D Jones on behalf of the CMS Collaboration
Fermilab, P.O.Box 500, Batavia, IL 60510-5011, USA 

E-mail: cdj@fnal.gov

Abstract.  In  2015,  CMS  was  the  first  LHC  experiment  to  begin  using  a  multi-threaded 
framework for doing event processing. This new framework utilizes Intel's Thread Building 
Block library to manage concurrency via a task based processing model. During the 2015 LHC 
run period, CMS only ran reconstruction jobs using multiple threads because only those jobs 
were sufficiently thread efficient. Recent work now allows simulation and digitization to be 
thread efficient. In addition, during 2015 the multi-threaded framework could run events in 
parallel  but could only use one thread per event.  Work done in 2016 now allows multiple 
threads to be used while processing one event. In this presentation we will show how these 
recent changes have improved CMS's overall threading and memory efficiency and we will 
discuss work to be done to further increase those efficiencies.

1. Introduction
Since the beginning of the LHC Run 2 era, CMS has been using multiple threads in the offline data 
processing  framework  [1]  when  doing  production  level  work.  The  transition  to  a  multi-threaded 
framework  was  to  allow better  utilization  of  the  resource-constrained  Grid  site  infrastructure,  in 
particular to use sites with limit CPU memory/core as LHC Run 2 processing requires greater memory 
use  per  event.  CMS has  slowly  expanded the  use  of  threading into  the  standard  data  processing 
workflows. The first use was prompt reconstruction of data at the CERN Tier 0 site which used four 
threads [2].  The online high level trigger farm switched to also using multiple threads per job in 
September  of  2015.  Reconstruction of  Monte  Carlo  events  began using four  threads  for  standard 
processing in the Summer of 2016. The simulation itself began using four threads during the Winter of 
2016.

The implementation of the system up until  Fall  of 2016 only supported having one thread per 
concurrent event. In this paper this implementation will be referred to as original. 

The decision to only use four threads per job for offline processing was driven by the following 
concerns. Given the original implementation and the amount of code which had been validated as 
threads safe, four threads gave sufficient CPU efficiency at the time. In addition, using four threads 
was sufficient for staying within the memory limits of the worker nodes. Finally, additional threads 
were not needed to keep the number of simultaneous jobs controlled by the workflow management 
system to a workable limit.

In this paper we will explain the work of the CMS collaboration to increase the efficiency of the 
framework when running with more than four threads,  in particular how to mitigate the effect  of 
processing stalls. Additionally, we will present measurements of the efficiency using the full CMS 
reconstruction code.

http://creativecommons.org/licenses/by/3.0
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2. Mitigating stalls
We use the term stall to refer to the case where the framework still has work to be done but at least one 
processing thread is idle or blocked by a lock. Such stalls are caused by sharing resources concurrently 
across running threads. For the original implementation, there was an event per thread so the shared 
resource was being used by more than one event. Several examples of activities that cause stalls are:
• reads from one ROOT [3] file must be serialized;
• writing to one ROOT file must be serialized (although it is possible to write to different ROOT 

files simultaneously);
• legacy  modules  are  modules are  ones which were developed during LHC Run 1 and are not 

designated as being thread-safe so the framework will only run one such module at a time.
One major reason for stalls in the original implementation was the modules running order for a 

given event  was  fixed.  This  meant  that  if  another  thread (i.e.  another  event)  was  using a  shared 
resource,  the  thread  would  have  to  stall  until  that  resource  became  available.  The  original 
implementation had no way to reschedule modules dynamically.

2.1. Stall demonstration
The following simple configuration can be used to demonstrate stalls:
• read event data from an input file;
• use two legacy modules which cannot run simultaneously;
• use five additional modules which are thread-safe.
Data dependencies between modules constrain the allowed concurrency since modules wait to run 
until all the data they will use has been made available from other modules or from the input file. This 
configuration is shown pictorially in figure 1.

Figure  2  graphically  displays  the  time  progression  of  an  execution  of  the  demonstration 
configuration. In this case, the framework is using four concurrent event loops. Each independent loop 
is referred to as a stream. For the original implementation, each stream can only make use of one 
thread. The green bands on the plot are when a module is running in the stream. The white is when no 
module is running in that stream. The red band is when a ‘stalled’ module, one that stalled at some 
point in the job, is being run. A ‘stalled’ module is shown in red even if it was not part of a stall at that 
particular time in the stream. One can see that a white stall is followed by a red module. In addition, a 
white band on one stream corresponds to a time on another stream when a red module is running. This 

Figure 1. A pictorial representation of the configuration used to demonstrate stalls.  The cylinder 
represents obtaining data from the input file (which must be done serially). The circle represents the 
module  which  is  on  a  sequence  and  is  what  starts  the  processing  chain.  The  squares  represent 
modules which are started when their data is needed. The arrows between modules represent data 
dependencies.
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demonstrates that a module stalls because it cannot run concurrently while another stream is running 
the same module.

2.2. Stall mitigation techniques 
The  new implementation  of  the  CMS threaded  framework  uses  three  techniques  to  mitigate  the 
efficiency loss from stalls: concurrent filter sequences, concurrent prefetching and serial task queues. 
All  of these are meant to provide the framework with a list  of modules which could be run at  a 
particular moment (because their dependent data is available) which gives alternatives to modules 
which would otherwise stall. As CMS uses Intel’s Thread Building Block [4] (TBB) library to handle 
concurrency, the list of modules is handled via spawning many TBB tasks, one task for each module.

One element of a CMS job configuration is sequences of modules which filter events. These filter 
modules inspect a given event and then decide if the event should be kept or rejected. If an event is 
rejected by a filter, all modules which appear later on the same sequence as that filter will not be run. A 
CMS configuration may contain multiple such filter sequences which are independent of each other. 
The  new framework  implementation  will  schedule  to  run  the  first  filter  module  in  all  sequences 
concurrently  when  a  new  event  is  being  processed.  This  allows  sequence  processing  to  happen 
concurrently.

In addition to filtering modules on a filter sequence, modules can also be run ‘on demand’ when the 
event data products they create are needed. Given that a module may need multiple data products from 
the event, the new framework implementation schedules all the prefetching of those data products 
concurrently. That is it  creates and spawns a TBB task per prefetching of data products. This can 
create a very large number of tasks for TBB to schedule which greatly aids concurrency.

The final mitigating technique is to use a serial task queue to protect a shared resource. A module 
which is using a shared resource, such as a module which writes out all events to a file, is run via a 
TBB task. However, instead of having that TBB task spawned directly, the task is placed in a serial 
task queue which is specific for the shared resource. The serial task queue guarantees that there is one 

Figure  2.  A visualization  of  the  work  being  done  by  each  stream  for  the  original  framework 
implementation  running  the  stall  demonstration  configuration.  Green  shows  when  a  module  is 
running on the stream. Red is shown when a module that has stalled at least once in the job is running 
on the stream. White is used when no module is running.

�
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and only one task from the serial task queue being spawned into TBB’s running task system. When a 
task originating from a serial task queue is done executing, its last step is to signal back to the serial 
task queue and cause the next task in the queue to be spawned.

Figure 3 shows the time progression of an execution of the demonstration configuration using the 
new framework implementation and four threads. The blue bars on this graph represent the time a 
stream is running more than one module, where the height of the bar is proportional to the number of 
extra modules running. Given that there are four streams and four threads, we see that a blue bar in 

Figure  3.  Stall  measurements  for  new framework  implementation  using  the  stall  demonstration 
configuration. This run uses only four threads with four streams.

�

Figure  4.  Stall  measurements  for  new framework  implementation  using  the  stall  demonstration 
configuration. This run uses five threads with four streams.
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one stream corresponds to a white bar (that is no running modules) on another stream. Looking at the 
times when a red module has stalled (that is a red bar is preceded by a white bar) we can see they 
correspond to times where another stream is using multiple threads. This shows that the framework 
has successfully scheduled work during the times that the original implementation would have stalled.

Figure 4 is another execution of the demonstration configuration using the new implementation but 
this time using five threads with four streams. The extent of the stream stall times (shown by white 
bars)  is  much less  than  in  Figure  3  and the  job  finishes  in  less  time which  shows that  the  new 
implementation is able to exploit the extra thread, although it is still limited by the available intra-
event concurrency of the configuration.

3. Realistic measurements
We also made measurements of running CMS reconstruction jobs on both the original and the new 
implementation. The measurements were made on a machine with an Intel Westmere-EP [5] L5650 
CPU with six cores and two hyper-threads per core. The reconstruction configuration is made up of 
three ‘output modules’ (modules which write event data to files), 1,780 other modules and 21 filter 
sequences. 

Three different groups of measurements were made:
• using the original implementation with one-thread-per-stream;
• using the new implementation and keeping the number of threads equal to the number of streams;
• using the new implementation and setting the number of threads to 12.

Figure 5 shows a comparison of event throughput as a function of number of streams for the three 
different cases. From this we see that the new implementation always offers greater throughput than 
the original implementation. When the new implementation uses the same number of threads as the 
original implementation it is able to have between 5% and 10% greater event throughput. The new 
implementation is able to increase a jobs event throughput by using more threads than streams as 
demonstrated by the fact that the new implementation using twelve threads always has the greatest 
throughput of all three cases. Investigations of stalls in the new implementation showed that the stalls 
were only caused by one output module when the output module was writing data to the disk and the 
time it took was greater than the average time to process one event. The new implementation was able 
to process all other tasks for an event until the only task left was to run the stalled output module.

Figure 6 shows the memory usage as a function of the number of streams. With just one stream, the 
initial memory needed is fairly high at about 2GBs. However, the memory requirement grows slowly 
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as the number of  streams increased:  about 150 MB/stream. If  the number of  threads is  increased 
instead of the number of streams, there is no appreciable memory change. 

With appropriate choices on the number of streams and threads used by one job as well as the 
number of jobs to run on one computing node, it is possible to maximize the total event throughput 
while staying within a set memory per core limit. This is shown in figure 7, where seven different 
configurations are used but all configurations are constrained to have (number of processes) * (number 
of threads/process) = 12. From the figure we see that we can choose configurations using 2 GB/core, 1 
GB/core or even 0.5 GB/core and still maintain reasonable event throughput.

4. Conclusion
CMS has successfully utilized multi-threaded processing jobs starting with the LHC Run 2 era. All of 
prompt reconstruction run by CMS for Run 2 were run using four threads per process. The transition 
to a multi-threaded framework was to allow better utilization of the resource-constrained Grid site 
infrastructure, in particular CPU memory. This change allows CMS to make full use of the CPU cores 
while processing more memory intensive jobs and to utilize machines with lower memory per core 
limits.

Future threading efficiency is important to CMS as we move towards utilizing more threads per 
job. To that end, the new framework implementation makes better use of available cores by scheduling 
lots of tasks while avoiding co-scheduling tasks which share the same non-concurrent resource.
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