
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Visualization of historical data for the ATLAS
detector controls - DDV
To cite this article: J Maciejewski and S Schlenker 2017 J. Phys.: Conf. Ser. 898 032045

View the article online for updates and enhancements.

Related content
Dcs Data Viewer, an Application that
Accesses ATLAS DCS Historical Data
C Tsarouchas, S Schlenker, G Dimitrov et
al.

-

External access to ALICE controls
conditions data
J Jadlovský, A Jadlovská, J Sarnovský et
al.

-

The detector control system of the ATLAS
experiment
A Barriuso Poy, H Boterenbrood, H J
Burckhart et al.

-

This content was downloaded from IP address 188.184.3.52 on 14/12/2017 at 09:58

https://doi.org/10.1088/1742-6596/898/3/032045
http://iopscience.iop.org/article/10.1088/1742-6596/513/3/032097
http://iopscience.iop.org/article/10.1088/1742-6596/513/3/032097
http://iopscience.iop.org/article/10.1088/1742-6596/513/1/012015
http://iopscience.iop.org/article/10.1088/1742-6596/513/1/012015
http://iopscience.iop.org/article/10.1088/1748-0221/3/05/P05006
http://iopscience.iop.org/article/10.1088/1748-0221/3/05/P05006

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 032045 doi :10.1088/1742-6596/898/3/032045

Visualization of historical data for the ATLAS detector
controls - DDV

J Maciejewski1 and S Schlenker1

1 CERN, Geneva, Switzerland

E-mail: {Julian.maciejewski, Stefan.Schlenker}@cern.ch

Abstract. The ATLAS experiment is one of four detectors located on the Large Hardon Collider
(LHC) based at CERN. Its detector control system (DCS) stores the slow control data acquired
within the back-end of distributed WinCC OA applications, which enables the data to be
retrieved for future analysis, debugging and detector development in an Oracle relational
database. The ATLAS DCS Data Viewer (DDV) is a client-server application providing access
to the historical data outside of the experiment network. The server builds optimized SQL
queries, retrieves the data from the database and serves it to the clients via HTTP connections.
The server also implements protection methods to prevent malicious use of the database.
The client is an AJAX-type web application based on the Vaadin (framework build around the
Google Web Toolkit (GWT)) which gives users the possibility to access the data with ease. The
DCS metadata can be selected using a column-tree navigation or a search engine supporting
regular expressions. The data is visualized by a selection of output modules such as a java script
value-over time plots or a lazy loading table widget. Additional plugins give the users the
possibility to retrieve the data in ROOT format or as an ASCII file. Control system alarms can
also be visualized in a dedicated table if necessary. Python mock-up scripts can be generated by
the client, allowing the user to query the pythonic DDV server directly, such that the users can
embed the scripts into more complex analysis programs. Users are also able to store searches
and output configurations as XML on the server to share with others via URL or to embed in
HTML.

1. Introduction
The ATLAS Detector Control System (DCS) is a SCADA based in WinCC OA which is responsible for
safe detector operation. DCS supervises all sensors, monitors all operational parameters, delivers
information about online state and abnormal behavior and can also execute operator commands. All
ATLAS DCS systems archive the detector parameters within the online database, while at the same time
they can present a historical view of these parameters serving online monitoring needs. The database
structure is defined by the proprietary schema of the WinCC OA RDB archiver application. For security
and performance reasons, the online database is accessible only to systems within the ATLAS Control
Network (ATCN). Nevertheless, a backup database - a complete replica of the online database - is in
place to serve users within the CERN General Public Network (GPN). DDV[1] is connected to the
backup database and aims to cover the needs for offline access of operational data worldwide. This

mailto:Stefan.Schlenker%7D@cern.ch
http://creativecommons.org/licenses/by/3.0

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 032045 doi :10.1088/1742-6596/898/3/032045

backup database uses the Oracle Active Data Guard (ADG) mechanism and prevents data loss and
downtime simply and economically by maintaining a synchronized physical replica (backup database)
of a production database (online database) without impacting database performance. ADG uses a
gateway between the ATCN and GPN to create a copy of the database. DDV accesses data by
performing SQL queries to the backup database.

Figure 1. DDV data flow.

2. Project architecture
Figure 2 illustrates the different building blocks that DDV is composed of. A SQlite[3] database is used
at the server side and caches all the DCS metadata updated daily from the Oracle database. Furthermore,
SQLite is configured in memory mode which means instead of hard disk files, information can be stored
in memory file objects, optimizing the response time of the requests. At the other end, the user’s web
browser represents the DDV client which fetches the data from the DDV server via HTTP requests. The
client has been developed using Vaadin[4] - a Java web application framework for creating rich and
interactive web applications running on a Tomcat web server and supporting all common web browsers.
The aim of the selection component is to allow easy navigation among the metadata (e.g. column tree
view widget or search panel) as well as constructing metadata requests to the server. The core component
is responsible for building proper data requests to the server acquiring data and sending it to the chosen
output. Those requests combine selected metadata and time periods. Due to its flexible interface and its
generic and modular approach, DDV could be easily used in any control system which uses the
WinCCOA RDB Archiver.

Figure 2. DDV architecture.

3

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 032045 doi :10.1088/1742-6596/898/3/032045

3. Server
The DDV server was written in the Python programming language and it was chosen for its readability
and long term maintainability. Besides that, Python has a huge standard library especially useful for data
manipulation. For data retrieval, cx_Oracle[5] was chosen which is a module that enables access to
Oracle databases and conforms to the Python database API specification. The SQL queries are prepared
as simple strings. There is no framework in use for mapping an object-oriented domain model to a
relational database. This allows for better control of the query and enables easy optimization. The
ROOT[8] Python library is used to prepare and serve data as ROOT files on request. CherryPy[6] – a
pythonic, object-oriented HTTP framework – is used to serve data to any client within the CERN
network.

3.1. SQLite DB metadata cache
The metadata consists of unique identifiers for each data point element (DPE) of the control system
along with an alias and a description. These metadata values may change over time, e.g. when cabling
changes the mapping of power supply channels to detector elements, and these changes are reflected by
intervals of validity of the metadata entries. When a client queries for metadata or data, the evolution is
automatically taken into account based on the requested time period and selected type of identifier.

Once per day, all metadata stored in the Oracle database is copied to the SQLite database cache inside
the DDV server along with its evolution, i.e. also deleted identifiers are stored. The aim of the metadata
cache is to reduce the number of queries to the database for this rather static data as well as accelerating
the response time for client requests.

3.2. DB protection mechanism
Intending to serve a high number of users, DDV aims to be more than an interface to the database data.
DDV validates and certifies each request with a minimum-response-time cost and finally propagates it
to the DB. This protection mechanism is organized in three levels (diamonds in Fig. 3). Firstly, the total
number of data point elements is limited. The second protection mechanism performs a light test-request
with a time period significantly shorter than the one requested. The number of returned rows is
extrapolated to the full query time and a decision is made on whether this request is acceptable – if not
the query is canceled. In the third condition, the maximum duration of the query is limited to two
minutes, beyond that the query is again canceled. In both cases the user is asked to change the query
parameters (i.e. decrease query time, quantity of selected DPEs). The decision parameters were chosen
empirically based on users’ queries and database performance limits. Users who are not satisfied with
the constraints can write their own scripts which split the query on parts and question the server directly.
According to our observations, these are very rare cases.

Figure 3. Database protection mechanism.

Connection pools of permanently active database connections are used to balance performance and

resources for database queries on the server. Thus when a client ends a session, its assigned connection
is not closed but only returned to the pool and can be reused for the next session.

4

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 032045 doi :10.1088/1742-6596/898/3/032045

4. Client
The main DDV user interface (see Fig. 4) is a web application accessible world-wide – the DDV client.
It is implemented using Vaadin – a Java web application framework designed to facilitate the creation
of high quality web-based user interfaces. Vaadin delivers a set of easily customizable user interface
components/widgets and themes for controlling the appearance. It additionally hides asynchronous
communication between the user browser and server. From the available features we profit from URL
routing, calendar widgets, and Java indexed container mapping to table widgets.

Figure 4. Client web interface.

The Model View Presenter (MVP) architecture has been used as software developing patterns. The

pattern binds data (the Model) to the chosen view and it contains all the methods (Presenter) called when
a user interacts with the view.

4.1. Selection
Navigation within the metadata is done by a column tree widget. This choice directly corresponds to the
hierarchical naming conventions used for the parameter identifiers and minimizes the display latencies
for searches within the metadata. To find and select specific DPEs, users can use a search engine widget
implementing wildcard or regular expression matching.

5

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 032045 doi :10.1088/1742-6596/898/3/032045

4.2. Metadata evolution
The evolution of metadata is visualized in a graphical timeline or table showing the intervals of validity
of the respective parameter mappings between identifier types (DPE=element, description, or alias), as
shown in Fig. 5.

Figure 5. Metadata evolution shown on the timeline.

4.3. Client- or server-based configuration
DDV offers the possibility to save the current configuration of selected metadata and output settings to
an XML file. The file is stored on the server in either the user folder, a shared folder within a given
subdetector or the global folder available for every user. The configuration file can then be downloaded
when required or the user can share it as a URL. By accessing the URL, the configuration will be loaded
and stored data queries are executed. Such URLs could then for example be embedded in inline frames
(iframe) of HTML pages. The interactive control elements of DDV can be hidden on demand using
additional URL parameters, e.g. to show only the resulting plot or table.

4.4. Quick history reload
The query history is stored for each user on the server and can be quickly reloaded to avoid repetitive
configuration and selection tasks.

4.5. Insert rate evaluation
The calculation and table representation of database insert rates of all parameters for each subsystem
was implemented to quickly spot parameters with excessive insert rate and simplify subsequent
investigation.

4.6. Outputs
To satisfy the needs of users, DDV provides five different outputs. The default output of DDV Client is
a JavaScript Plot implemented using the JsPlot library[7]. The user can customize plot settings like
colors, axes and line types and then store those settings in the aforementioned configuration file.

The second output type is the Lazy Loading Filter Table. This widget provided by Vaadin stores all
the data on the client’s server side and loads only the chunk visible on the screen. It has filter fields on
each column such that a user can quickly filter on output data such as time periods or parameter names.
Apart from the web browser outputs, DDV also offers the possibility to download ROOT-structured
output. Further, simple ASCII file format is available including information of the archived parameter,
its timestamp and its recorded value.

Finally, the user can download a basic python script which includes direct queries to the server and
a mock-up loop over the query period. The aim is to give the user hints on how to develop their own
scripts and fetch more data over a longer period when used inside the CERN network.

6

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 032045 doi :10.1088/1742-6596/898/3/032045

Since the output module has a rather thin interface to the other DDV client modules, other output
types can be added easily in the future according to user requirements.

5. Summary
The deliberately modular design of the tool in the initial phase of the development has paid back well
in accomplishing stable service operation while continuing the development. Further, the strict
separation of server-based database access within the CERN network and the user interface provided as
web application client proved to be a good choice. The client provides easy navigation amongst the
control system metadata and its evolution and presents requested data with a set of output plugins
meeting most user requirements. The selected data representation can be accessed and shared easily
worldwide. Stable service operation and maintainability of the client and server are achieved with proper
software management tools, e.g. the project is hosted on a Gitlab[9] server instance exploiting its
continuous integration solution to automatically generate deployment packages. Finally, building on the
WinCCOA RDB Archiver database schema, DDV could be easily adapted to other WinCCOA-based
control systems.

References
[1] The ATLAS Collaboration 2008, JINST 3, S08003
[2] Schlenker S et al ICALEPCS 2011 MOBAUST02
[3] SQLite, http://sqlite.org
[4] Vaadin, https://vaadin.com
[5] cx_Oracle, http://cx-oracle.sourceforge.net/
[6] CherryPy, http://cherrypy.org
[7] JsPlot, http://jsplot.sourceforge.net/
[8] Root, http://root.cern.ch
[9] Gitlab, http://gitlab.com

	3.1. SQLite DB metadata cache
	3.2. DB protection mechanism
	4.1. Selection
	4.2. Metadata evolution
	4.3. Client- or server-based configuration
	4.4. Quick history reload
	4.5. Insert rate evaluation
	4.6. Outputs

