
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

A comparison of different database technologies
for the CMS AsyncStageOut transfer database
To cite this article: D Ciangottini et al 2017 J. Phys.: Conf. Ser. 898 042048

View the article online for updates and enhancements.

Related content
FTS3: Quantitative Monitoring
H Riahi, M Salichos, O Keeble et al.

-

Resilient FTS3 service at GridKa
T. Hartmann, J. Bubeliene, B. Hoeft et al.

-

CMS users data management service
integration and first experiences with its
NoSQL data storage
H Riahi, D Spiga, T Boccali et al.

-

This content was downloaded from IP address 188.184.3.52 on 13/12/2017 at 09:44

https://doi.org/10.1088/1742-6596/898/4/042048
http://iopscience.iop.org/article/10.1088/1742-6596/664/6/062051
http://iopscience.iop.org/article/10.1088/1742-6596/664/6/062019
http://iopscience.iop.org/article/10.1088/1742-6596/513/3/032079
http://iopscience.iop.org/article/10.1088/1742-6596/513/3/032079
http://iopscience.iop.org/article/10.1088/1742-6596/513/3/032079

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 042048 doi :10.1088/1742-6596/898/4/042048

A comparison of different database technologies for

the CMS AsyncStageOut transfer database

D Ciangottini4, J Balcas2, M Mascheroni5, E A Rupeika6, E
Vaandering5, H Riahi8, J M D Silva1, J M Hernandez9, S Belforte3, T
T Ivanov7

1Universidade Estadual Paulista, Sao Paulo, Brazil
2California Institute of Technology, Pasadena, CA, USA
3INFN Sezione di Trieste, 34127 Trieste, Italy
4INFN Sezione di Perugia, 06123 Perugia, Italy
5Fermi National Accelerator Laboratory, Batavia, IL, USA
6Vilnius University, Lithuania
7University of Sofia ”St. Kliment Ohridski”, Bulgaria
8CERN, Geneva, Switzerland
9CIEMAT,Madrid, Spain

E-mail: marco.mascheroni@cern.ch

Abstract. AsyncStageOut (ASO) is the component of the CMS distributed data analysis
system (CRAB) that manages users transfers in a centrally controlled way using the File Transfer
System (FTS3) at CERN. It addresses a major weakness of the previous, decentralized model,
namely that the transfer of the user’s output data to a single remote site was part of the job
execution, resulting in inefficient use of job slots and an unacceptable failure rate.

Currently ASO manages up to 600k files of various sizes per day from more than 500 users
per month, spread over more than 100 sites. ASO uses a NoSQL database (CouchDB) as internal
bookkeeping and as way to communicate with other CRAB components. Since ASO/CRAB
were put in production in 2014, the number of transfers constantly increased up to a point
where the pressure to the central CouchDB instance became critical, creating new challenges
for the system scalability, performance, and monitoring. This forced a re-engineering of the
ASO application to increase its scalability and lowering its operational effort.

In this contribution we present a comparison of the performance of the current NoSQL
implementation and a new SQL implementation, and how their different strengths and features
influenced the design choices and operational experience. We also discuss other architectural
changes introduced in the system to handle the increasing load and latency in delivering output
to the user.

1. Introduction
The Compact Muon Solenoid (CMS) experiment at CERN is one of the four major experiments
of the Large Hadron Collider (LHC) [1]. It gathers more than 2000 physicists from all over
the world. Collected data are stored, processed and analyzed in over 60 data centers on the
Worldwide LHC Computing Grid [2]. The data processing activities can be classified into two
categories: organized processing performed by a central operations team, and data analysis
performed by individual users. Data analyses, performed with a tool called CRAB[3], produce

http://creativecommons.org/licenses/by/3.0

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 042048 doi :10.1088/1742-6596/898/4/042048

output files that have to be transfered to a final destination storage, a data center chosen by the
user.

Data transfers are an important part of the workflow. Their timely completion is a critical
step. Originally, transfers were part of the job execution, i.e., the outputs were copied directly
from the worker node producing the data to the destination storage. This model proved to be
quite inefficient, causing a significant failure rate and a loss of CPU time in the worker nodes
sitting idle while waiting for the transfers to complete. The large number of unmanaged transfers
periodically overloaded destination storage sites, particularly those with low bandwidth.

The AsyncStageOut service (ASO) [4] was introduced to solve these issues by centrally
managing transfers asynchronously to job execution. ASO has been in production since 2014.
Upon job completion, job outputs are copied from the worker node to a temporary area at the
same site, called local storage. This file transfer happens quickly since the worker node and the
storage are close and usually on a local network. The delivery of outputs to the destination
storage is then performed in a second stage by ASO. The bookkeeping of those transfers is
performed using a central NoSQL CouchDB database [5]. In this paper we discuss why this
central database became a bottleneck in the ASO system, necessitating a migration to an SQL
Oracle database.

The rest of the paper is organized as follows: section 2 describes the architecture of the
AsyncStageOut tool, section 3 elaborates on the interactions between various CRAB/ASO
components and the CouchDB database, highlighting major challenges encountered as the
number of file transfers increased, and section 4 summarizes strategies explored to address the
database scalability problem.

2. Architecture
The ASO-CRAB architecture is shown in figure 1.

Figure 1. The AsyncStageOut architecture. In green are shown external components used
by ASO, in blue ASO components. The ASO CouchDB includes the database itself, a REST
interface to access data and a real time monitor used by operators. The core components
perform operations on file requests acquired by the database like submission of transfers to
FTS, reporting transfer results and cleanup.

The AsyncStageOut architecture consists of two main parts: a series of services that run
on a server, called the ASO backend, and a central database. This database contains analysis
job metadata specifying how files should be transferred from one site to another as well as the
transfer state.

An ASO service called the submitter daemon periodically reads new database entries and
creates a transfer job that is injected into the File Transfer Service (FTS) [6]. The submitter

3

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 042048 doi :10.1088/1742-6596/898/4/042048

daemon then updates the database entries, marking the transfer as acquired. The reporter
component monitors the status of transfers, and updates the central database as either Done
or Failed. Another ASO component is responsible for retry management of transfer failures.
For successful transfers, ASO publishes file information in the CMS dataset bookkeeping system
(DBS [7]) and updates the publication state. The design of CouchDB requires creation of a new
document for each status update.

After each analysis job, a process called the postjob is started on the scheduler. The postjob
pushes transfer data needed by ASO, and is responsible for monitoring the transfer state so it
can be reported to the user. This polling produces additional requests to the CouchDB.

3. Database scalability
Owing to the many components that need to interact with the database, scalability is a critical
feature in the CRAB/ASO system. The number of transfers has continuously increased since
ASO was put into production in 2014, and today the load frequently exceeds the initial design
requirements of 400k files managed by ASO per day [8] (see figure 2).

Figure 2. ASO file transfers per day in January and February of 2017. The expected average
number of transfers per day in the initial design (400k) is shown as a black horizontal line for
reference.

The most critical challenges for ASO are related to the large number of database requests
and the frequent document changes. This is exacerbated by the fact that user analysis jobs
frequently produce many small files.

The original database technology chosen for ASO was CouchDB. The native REST of the
CouchDB interface was flexible and made it easy to use ASO with new clients and workload
management systems. The schema-less model of a noSQL database was preferred because it
allowed for rapid incorporation of new types of data. However, CouchDB is not well suited for
data which change frequently. By design, it creates a copy of the document each time a change
happens, and deleted documents are stored internally until a compaction is triggered. For ASO
that means a new document each time the transfer state changes (as described above). Moreover,

4

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 042048 doi :10.1088/1742-6596/898/4/042048

documents are accessed through a set of so-called views that cache information. Caches are also
based on the principle that old documents are not removed until a view compaction occurs. To
purge the database of old replicas and deleted documents, compaction processes run periodically.

Figure 3. CPU load during compaction time on the machine hosting the CouchDB instance.

For large databases, compaction processes can increase resource consumption on the host
machine significantly (see figure 3), which reduces the capacity for normal operations. Moreover,
if a burst of requests arrive during that period, they will be processed slowly, resulting in a
backlog. This can create a negative feedback loop where a compaction will never complete
before the next one is due to start, and the growing cache will rapidly exhaust the available disk
space.

Figure 4. Number of files in states new and acquired in the CouchDB database
.

figure 4 shows an example of how a peak in new requests is associated with an increase of
files in state new. This is expected because ASO cannot keep up with processing and CouchDB
cannot keep up with indexing the large number of new documents. The indexing of a large
number of documents is still running when the view compaction begins. The database response
slows down and eventually times out as it is not able to simultaneously compact and keep up
with incoming documents. The compaction takes longer than usual under these circumstances
and eventually the database size increases out of control due to the backlog of documents in
state new. At this point recovery is impossible and operators are forced to delete all documents
in the backlog to restore the system. This results67 in significant loss of user work.

As ASO approached a constant load of more than 700,000 documents per day and the
frequency of incidents such as the one described above increased, it became critical to identify
a solution.

5

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 042048 doi :10.1088/1742-6596/898/4/042048

4. Explored solutions
To address the scalability challenges, two possibilities were considered: to increase the number
of nodes running the Couch database instances, or to switch to another database technology
that better suits the use case.

4.1. Horizontal scalability
ASO is structured to be horizontally scalable. The initial deployment consisted of a single
CouchDB instance served by an ASO backend. However, CRAB can be configured to partition
transfer requests over multiple sets of CouchDB instances and their corresponding ASO
backends.

This was the strategy initially adopted to tackle the scalability issue, but it proved inadequate.
CouchDB instances have demanding I/O requirements and need special hardware that is not a
standard offering of the CERN IT Agile Infrastructure and difficult to obtain. Moreover, adding
CouchDB instances and ASO backends proportionally increases the time required by operators
to perform maintenance work like periodic rotation of machine databases.

Furthermore, CouchDB has been chosen for historical reasons, but ASO never profited from
the map/reduce paradigm typical of CouchDB and other noSQL databases. For these reasons
we started exploring other solutions which could decrease the load on CMS operators while
increasing the scalability of the system.

4.2. Oracle database
Oracle is one of the most ubiquitous database management systems. Two factors proved to
be decisive in the choice of this technology: it is among the services offered by CERN IT,
and other pieces of the CMS offline and computing software stack already use Oracle and have
demonstrated it to be a robust solution. The fact that it is a CERN IT service lowered the
maintenance effort required of CMS operators, and because it is well established in other parts
of the software stack meant reduced development effort because knowledge and code could be
recycled. This had an additional benefit of increasing homogeneity in the CMS offline and
computing software stack.

Required modifications to the ASO backend software, the job wrapper that inserts the transfer
request into the database, and other parts of the workload management system (CRAB) have
been completed. As shown in figures 5 and 6, early scale tests at production rates look promising.

Figure 5. Production rate of 300 jobs /
minute.

Figure 6. Scale test rate of 1,500 jobs /
minute.

As of February 2017 the transfer database is being migrated from couchDB to Oracle, with
a small number of jobs reporting to the latter. The plan is to steadily increase the proportion
of Oracle jobs until couchDB is completely phased out.

5. Conclusions
In this paper we have presented the improved performance of the ASO component of CRAB
achieved by replacing its CouchDB NoSQL database by an Oracle relational database. CouchDB

6

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 042048 doi :10.1088/1742-6596/898/4/042048

is a great tool, however, it not best-suited to our use case because data is changing at a high rate,
and even the simplest change requires the creation of a new document. New documents needed
eventually to be created faster than CouchDB internal compaction and cache refresh (View
Build) could deal with them, leading to spiraling up load and even complete system meltdown.
Moreover, we never profited from features provided by CouchDB, and the operational issues we
encountered led us to move to Oracle, a technology that better suits our needs and is better
supported at CERN.

Currently CMS is using both CouchDB and Oracle simultaneously to ensure that functionally
all corner cases and potential bugs have been addressed in case they are missed by the integration
test suite. The plan is to transparently increase the Oracle share over time until CouchDB is
eventually switched off.

References
[1] The CMS Collaboration. The cms experiment at the cern lhc. Journal of Instrumentation, 3(08):S08004,

2008.
[2] I Bird et al. LHC computing grid. technical design report. Technical Report CERN-LHCC-2005-024, 2005.
[3] M Cinquilli, D Spiga, C Grandi, J M Hernandez, P Konstantinov, M Mascheroni, H Riahi, and E Vaandering.

Crab3: Establishing a new generation of services for distributed analysis at cms. Journal of Physics:
Conference Series, 396(3):032026, 2012.

[4] M Cinquilli, H Riahi, D Spiga, C Grandi, V Mancinelli, M Mascheroni, F Pepe, and E Vaandering. A glite
fts based solution for managing user output in cms. Journal of Physics: Conference Series, 396(3):032025,
2012.

[5] Apache couchdb database, http://couchdb.apache.org.
[6] A A Ayllon, M Salichos, M K Simon, and O Keeble. Fts3: New data movement service for wlcg. Journal of

Physics: Conference Series, 513(3):032081, 2014.
[7] M Giffels, Y Guo, and D Riley. Data bookkeeping service 3: Providing event metadata in cms. Journal of

Physics: Conference Series, 513(4):042022, 2014.
[8] H Riahi, T Wildish, D D Ciangottini, J M Hernandez, J Andreeva, J Balcas, E Karavakis, M Mascheroni, A J

Tanasijczuk, and E W Vaandering. AsyncStageOut: distributed user data management for CMS Analysis.
J. Phys. Conf. Ser., 664(6):062052, 2015.

