
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

DPM evolution: a disk operations management
engine for DPM
To cite this article: A Manzi et al 2017 J. Phys.: Conf. Ser. 898 062011

View the article online for updates and enhancements.

Related content
Direct data access protocols
benchmarking on DPM
Fabrizio Furano, Adrien Devresse, Oliver
Keeble et al.

-

Towards an HTTP Ecosystem for HEP
Data Access
Fabrizio Furano, Adrien Devresse, Oliver
Keeble et al.

-

Towards more stable operation of the
Tokyo Tier2 center
T Nakamura, T Mashimo, N Matsui et al.

-

This content was downloaded from IP address 188.184.3.52 on 12/12/2017 at 08:44

https://doi.org/10.1088/1742-6596/898/6/062011
http://iopscience.iop.org/article/10.1088/1742-6596/664/4/042018
http://iopscience.iop.org/article/10.1088/1742-6596/664/4/042018
http://iopscience.iop.org/article/10.1088/1742-6596/513/3/032034
http://iopscience.iop.org/article/10.1088/1742-6596/513/3/032034
http://iopscience.iop.org/article/10.1088/1742-6596/513/6/062035
http://iopscience.iop.org/article/10.1088/1742-6596/513/6/062035

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 062011 doi :10.1088/1742-6596/898/6/062011

DPM evolution: a disk operations management

engine for DPM

A Manzi, F Furano, O Keeble and G Bitzes

CERN IT

E-mail: amanzi@cern.ch, furano@cern.ch, okeeble@cern.ch, georgios.bitzes@cern.ch

Abstract. The DPM (Disk Pool Manager) project is the most widely deployed solution
for storage of large data repositories on Grid sites, and is completing the most important
upgrade in its history, with the aim of bringing important new features, performance and
easier long term maintainability. Work has been done to make the so-called ”legacy stack”
optional, and substitute it with an advanced implementation that is based on the fastCGI and
RESTful technologies. Beside the obvious gain in making optional several legacy components
that are difficult to maintain, this step brings important features together with performance
enhancements. Among the most important features we can cite the simplification of the
configuration, the possibility of working in a totally SRM-free mode, the implementation of
quotas, free/used space on directories, and the implementation of volatile pools that can pull files
from external sources, which can be used to deploy data caches. Moreover, the communication
with the new core, called DOME (Disk Operations Management Engine) now happens through
secure HTTPS channels through an extensively documented, industry-compliant protocol. For
this leap, referred to with the codename ”DPM Evolution”, the help of the DPM collaboration
has been very important in the beta testing phases, and here we report about the technical
choices.

http://creativecommons.org/licenses/by/3.0

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 062011 doi :10.1088/1742-6596/898/6/062011

1. Introduction
The Disk Pool Manager (DPM) is a lightweight solution for grid enabled disk storage
management. Operated at around 150 sites, it has the widest distribution of all grid storage
solutions in the WLCG infrastructure, and in total it manages around 70PB of data. DPM
provides an easy way to manage and configure disk pools, and exposes multiple interfaces for
data access (xrootd [2], GridFTP and HTTP/WebDAV) and control (SRM).
The development direction of the last years has been towards simplifying the system, while
supporting all the advanced features that are needed by the Grid computing and helping sites
to incrementally renew their setups. This effort is also dictated by the difficulty of maintaining
software libraries that have been written in the 80s and 90s [8], over which the oldest core
components of DPM are based.
Work had been done in the last years to create the dmlite [3] framework and a set of plugins
that started complementing the core features of DPM by giving support for the more recent
data access protocols used by HEP (HTTP with multi-range requests and xrootd), while keeping
the older core components as an internal coordination layer that includes support for the SRM
protocols.
The development cycle that ended in Q4/2016 has successfully removed this functional
dependency, making the usage of the older components optional, and linked to the foreseen
phase-out of the usage of the SRM protocol in the Grid. This was accomplished by writing a
brand new core component that acts as coordination layer and can coexist with the older one
in various ways.

2. DOME
DOME (Disk operations Management Engine) is a robust, high performance server that manages
the operations of a DPM cluster. DOME is built on the FastCGI [5] technology, and uses
HTTP and JSON to communicate with clients. The adoption of DOME aims at augmenting
the Disk Pool Manager (DPM) system so that its core coordination functions and inter-cluster
communication paths are implemented through open components, and following contemporary
development approaches headed to performance, scalability and maintainability. We can
summarize the main goals of DOME as:

• Making optional all the so-called legacy components that are provided by the lcg-dm code
tree, namely libshift [8], rfiod, dpm(daemon), dpnsdaemon, CSec and others.

• provide a software infrastructure where adding new coordination features is easier than with
the historical one

• provide full support for asynchronous calculation of file checksums of multiple types

• provide support for checking the consistency of replicas through their checksums

• provide structure, hooks and callouts that allow the usage of DPM disk pools as large file
caches

• having a unified configuration file that is readable and synthetic, as opposed to the previous
approach of having several sparse configuration files, all with differently over-simplified
syntax rules (or no syntax at all, e.g. /etc/NSCONFIG)

The DOME component has the shape of a fastCGI daemon, and has to be triggered by
the Apache instances running in the DPM head node and in all the DPM disk servers. A
configuration option defines whether it is running as head node or disk server.

Architecturally speaking, DOME is primarily a service provider for the dmlite framework,
through a new dmlite plugin called DOMEAdapter.

3

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 062011 doi :10.1088/1742-6596/898/6/062011

3. DOME: Main features
DOME has two modalities: headnode and disknode, which respectively represent simplified
evolutions of the dpm daemon and of rfiod, together with libshift and Csec. The functionalities
are roughly as follows:

• headnode: general coordination function
spreads load (PUT, GET, checksums) towards the available disk nodes
keeps an in-memory status of the DPM disk/pool topology with disk sizes and free

space
keeps an in-memory status of the ongoing asynchronous checksum calculations
keeps an in-memory status of the ongoing asynchronous file callouts
queues and dispatches to disk nodes the requests for asynchronous checksum

calculations that have to be delayed for load balancing reasons
queues and dispatches to disk nodes the requests for asynchronous file callouts that

have to be delayed for load balancing reasons

• disknode: local disk and space-related services
Allows the stat of individual physical files and directories
Allows the statfs of the filesystems to get used and free space
Allows the local submission of checksum calculations
Allows the local submission of file callouts

The historical data tunnelling feature provided by the rfio infrastructure (and used by gridftp
in some boundary scenarios) [7] is implemented by DOMEAdapter directly on the top of HTTPS,
hence it does not use the DOME server.

The main difference from the legacy components is that DOME does not apply user
authorization again for individual internal transactions, as the task of authenticating/authorizing
remote users is already accomplished by the dmlite frontends. DOME instead checks that the
sender of a request (e.g. a disk server) is authorized to send requests. DOME applies strong,
industry standard authentication protocols to this task.
Authentication in DOME is zero-config for the regular cases (one head node and multiple disk
servers), and flexible enough to add arbitrary identities that will be allowed to send commands
to it.
The activity of DOME is not linked to any particular data access protocol. Its concepts of logical
file name and physical file name are not linked to a particular data/metadata transfer protocol.

3.1. From spacetokens to quota tokens
Historically, DPM manages space accounting through a set of individual named space reserva-
tions that are associated to pools. This follows the philosophy of the SRM specification [6].
Semantically, SRM space reservations are named reservations of a part of the space of a disk pool.
When writing data in workflows that involve SRM, requests to write a replica specify a pool
that has to host the replica, hence ultimately the replica will be subject to the space reservations.

One of the weakest points in this schema is that the remote client willing to write a file has
to know the name of a suitable space reservation in the destination system, to be able to write
and be properly accounted for. This information represents a technical detail of the destination
storage, and it can also be provided wrongly, for example accounting a file into the wrong space-
token (e.g. ”scratch” versus ”production”).

Another related, historical weak point of this workflow is that calculating precise results for
the space occupancies can be a challenging exercise, especially if the structure of the pools has

4

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 062011 doi :10.1088/1742-6596/898/6/062011

been modified in the years, following additions of new storage space or even failures.
DOME models an evolution of this mechanism towards subdirectory-based space accounting, in-
stead than pool-based, in a way that is compatible with the older one and can coexist with it.

When considering subdirectory-based space accounting, every subdirectory at less than N
levels from the root is kept updated with the total size of the replicas of files that reside in that
directory subtree. This subdirectory size together with the information on free/used space in
the pools associated to these subdirectory tree can then be used to compute the needed space
occupancy numbers.

DOME uses the records describing spacetokens that are kept in the head node DB with min-
imal modification. Their meaning is slightly changed, into semantically representing a quota on
one and only one directory subtree. From this point on, we will refer to them as quotatokens,
whose behavior is similar to that of an old spacetoken associated to a directory.

A quotatoken attached to a directory subtree overrides others that may be attached to
its parents.
If a directory content (counting all the replicas) exceeds the quota specified by the quotatoken
that influences it, then new PUT requests on that directory will be denied.

As a summary, the meaning of a quotatoken specifying a quota of N terabytes on pool X,
associated to directory ”/dir1” is use pool X as space for hosting the files that will be written
into dir1. Do not allow more than N terabytes to be hosted there.

3.2. Open checksumming
DOME supports requests for checksums of arbitrary kind. It can:

• return the corresponding checksum that is stored in the name space

• choose an appropriate replica of the file and tell to the disk node managing it to calculate
its checksum

• force the recalculation of the checksum and store it into the name space

The checksum calculation requests are queued in the head node, in memory. The architecture
of the queue is designed to be self-healing in the case the checksum calculations do not end
correctly, or some machines are restarted, including the head node itself.

4. Architecture
Figure 1 shows the main components of DOME that are in action in a disk server.
Requests come through Apache already authenticated and referring to the two possible paths
that are associated either to the filesystems or to the dome command path which starts with
/domedisk. Another detail that characterizes a disk server for DOME is the ability to execute
tasks like checksum calculations and file pulls from external sources. These tasks, following a
logic that is based on time, report their status to the head node, which uses this information to
keep its queues updated.

A DOME head node is slightly more complex than a disk server, and its internal structure
is visible in Figure 2.
Requests come through Apache already authenticated and referring to the two possible paths

5

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 062011 doi :10.1088/1742-6596/898/6/062011

�������	

���

��������	�
���

����������
�������
�����

�������������

��������	�
�

�����	������
�

����

�����
���������

��� !�

"�#�����
�����

$�������

����%���&'�
��#������
&��()����*���
�����'�

������ �������
+�����&*�(�����,� ���-�'�

�����
.����

"�#���������
/����

�����

��-�����������(�������
/��%��(�01������ �203�4�������	�����(�
��*�5������"6���

Figure 1. Simplified diagram of DOME in a disk node

that refer either to the logical name space (/dpm) or to the dome command path which starts
with /domehead. A head node can contact external systems to get information about remote
files, and queues in memory the requests for checksum calculations and remote file pulling.

4.1. Checksum queuer
DOME internally queues and schedules checksum calculation requests in the head node. We can
summarize the applied behaviour as:

• No more than L checksums will be run per disk server

• No more than M checksums will be run in total

• No more than N checksums will be run per disk mount

Checksum requests are queued in memory and dispatched to suitable disk nodes that become
available with respect to the aforementioned criteria. The disk node instances constantly update
the head node about the running checksums, hence the system will self-heal on restarts of the
head node.
When finished calculating a checksum, a disk node will notify the head node and pass the result
(or failure).

6

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 062011 doi :10.1088/1742-6596/898/6/062011

�������	

���

����������
���

��������7�
������
����������

������������

������������

�������

-�+�.�

����

� �����
#�����

6��������
#�����

�����
���������

��� !�

"�#�����
�����

$�������

����+���	8�
��#������
	��()����*���
�����8�

�����
.����

"�#���������
�
+�����7����

Figure 2. Simplified diagram of DOME in a head node

4.2. File pull queuer
DOME allows the DPM to be configured as a data cache. When absent data is requested,
DOME on the head node queues and schedules requests for file pulls from external locations.
We can summarize the applied behaviour as:

• No more than L pulls will be run per disk server

• No more than M pulls will be run in total

• No more than N pulls will be run per disk mount

The file pull itself is implemented as a simple callout in the disk server, that can invoke
any file movement mechanism. The pull callout in the disk server is complemented by a stat
callout, which is able to get information from an external system for the presence of an offline file.

Pull requests are queued in memory and dispatched to disk nodes that match the request and
become available. The disk nodes instances constantly update the head node on the running
callouts, and the system will self-heal on restarts of the head node. When finished pulling a file,
a disk node will notify the head node and pass the result (or failure).

5. Transitioning steps
As we remarked, the new components are totally compatible with the older ones and can coexist
with them, if properly configured. This was an important design decision.

7

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 062011 doi :10.1088/1742-6596/898/6/062011

Care has been taken to allow sites to schedule the activation of DOME at their convenience,
decoupled both from the deployment of the relevant update (DOME can remain dormant) and
from synchronising with experiments.

The transition steps enumerated below each represent a working system which could be
maintained indefinitely.

• Starting with the release of DPM 1.9 (which includes DOME) in Q4 2016, the sites can
start upgrading head nodes and disk servers at the pace that they prefer. This allows
deployment, in a dormant state, of DOME.

• Dome can be configured, while disabled, giving access to a more powerful dmlite-shell
administration utility.

• The space reporting counters can now be primed. From this moment on, the site will
precisely keep track of the disk space used (not the free space yet).

• The dmlite-shell can be used to associate each of the existing spacetokens to a suitable
directory in the logical name space of the Virtual Organization they belong to.

• DOME can now be fully enabled. The system is running both the historical software stack
and the new one, at the same time. All the recent features are enabled, including the ability
of producing sophisticated per-directory free/used space reports. The older stack is used
only for SRM services.

• Once the SRM services are no longer used, the system administrator can safely choose to
uninstall the older components.

6. Conclusion
The introduction of DOME represents the final component in DPM’s definitive architecture.
The project’s platform for the future has now reached its final form and foresees just component
consolidations. With a fully modernised, maintainable stack, scaleable architecture and rich
protocol support, DPM is able to protect the investment of the large number of sites who
have entrusted their data to it and can expect to absorb future data volumes without major
architectural modifications.

References
[1] Furano F, Hanushevsky A 2010 Scalla/xrootd WAN globalization tools: Where we are J. Phys.: Conf. Ser.

219 072005 http://iopscience.iop.org/1742-6596/219/7/072005/

[2] The xrootd.org homepage http://www.xrootd.org

[3] Alvarez Ayllon A, Beche A, Furano F, Hellmich M, Keeble O and Brito Da Rocha R DPM: Future Proof
Storage CHEP2012

[4] Alvarez Ayllon A, Beche A, Furano F, Hellmich M, Keeble O, Brito Da Rocha RWeb enabled data management
with DPM & LFC CHEP2012

[5] Heinlein P November 1998 FastCGI Linux J. 1998, 55es, Article 1
[6] Storage Resource Management (SRM) Working Group https://sdm.lbl.gov/srm-wg/

[7] Kalmady R, Tierney B 2001 A comparison of GSIFTP and RFIO on a WAN Proceedings of CHEP’01,
September 3-7, Beijing, China,

[8] Baud J-P et al. 1991 SHIFT, the Scalable Heterogeneous Integrated Facility Proc. of the Int. Conf. on
CHEP’91, Univ. Acad. Press, Tokyo 571-82

