
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

CMS readiness for multi-core workload scheduling
To cite this article: A Perez-Calero Yzquierdo et al 2017 J. Phys.: Conf. Ser. 898 052030

View the article online for updates and enhancements.

Related content
Workload analyse of assembling process
L D Ghenghea

-

GridPP - Preparing for LHC Run 2 and the
Wider Context
Jeremy Coles

-

Spanish ATLAS Tier-2: facing up to LHC
Run 2
S González de la Hoz, J Del Peso, F Fassi
et al.

-

This content was downloaded from IP address 188.184.3.52 on 12/12/2017 at 13:16

https://doi.org/10.1088/1742-6596/898/5/052030
http://iopscience.iop.org/article/10.1088/1757-899X/95/1/012136
http://iopscience.iop.org/article/10.1088/1742-6596/664/5/052006
http://iopscience.iop.org/article/10.1088/1742-6596/664/5/052006
http://iopscience.iop.org/article/10.1088/1742-6596/664/5/052016
http://iopscience.iop.org/article/10.1088/1742-6596/664/5/052016

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 052030 doi :10.1088/1742-6596/898/5/052030

CMS readiness for multi-core workload scheduling

A Perez-Calero Yzquierdo1,2, J Balcas3, J Hernandez2, F Aftab
Khan4, J Letts5, D Mason6, V Verguilov7

1 Port d’Informacio Cientifica, Barcelona, Spain
2 Centro de Investigaciones Energéeticas, Medioambientales y Tecnológicas, CIEMAT,
Madrid, Spain
3 California Institute of Technology, Pasadena, CA, USA
4 National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
5 University of California San Diego, CA, USA
6 Fermi National Accelerator Laboratory, Batavia, IL, USA
7 Bulgarian Academy of Sciences, Sofia, Bulgaria

E-mail: aperez@pic.es

Abstract. In the present run of the LHC, CMS data reconstruction and simulation algorithms
benefit greatly from being executed as multiple threads running on several processor cores. The
complexity of the Run 2 events requires parallelization of the code to reduce the memory-per-
core footprint constraining serial execution programs, thus optimizing the exploitation of present
multi-core processor architectures. The allocation of computing resources for multi-core tasks,
however, becomes a complex problem in itself. The CMS workload submission infrastructure
employs multi-slot partitionable pilots, built on HTCondor and GlideinWMS native features,
to enable scheduling of single and multi-core jobs simultaneously. This provides a solution for
the scheduling problem in a uniform way across grid sites running a diversity of gateways to
compute resources and batch system technologies. This paper presents this strategy and the
tools on which it has been implemented. The experience of managing multi-core resources at
the Tier-0 and Tier-1 sites during 2015, along with the deployment phase to Tier-2 sites during
early 2016 is reported. The process of performance monitoring and optimization to achieve
efficient and flexible use of the resources is also described.

1. Multi-core jobs for the LHC Run 2
CMS has been moving towards employing multi-threaded algorithms for the processing of
experimental and simulated data since the start of the LHC Run 2 in 2015 [1]. This trend
is motivated by the evolution of the LHC experimental conditions towards higher luminosities,
resulting in increasing data volumes and event complexity derived from the higher number of
concurrent collisions per event (pile-up), as well as industry trends.

Continuing to run single-threaded applications would not be the best way to exploit current
multi-core CPU architectures, as the application memory footprint would exceed the available
RAM-per-core in most CPU resources pledged to CMS across the Worldwide LHC Computing
Grid (WLCG) [2]. In addition, execution time per event would grow in such a way that the
reconstruction of an entire luminosity section, the dataset unit for data processing, would result
in excessively long running jobs, not suited to being executed in commonly shared multi-
VO WLCG sites. As an added advantage, the use of multi-core jobs reduces the number of

http://creativecommons.org/licenses/by/3.0

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 052030 doi :10.1088/1742-6596/898/5/052030

Figure 1. Schematic view of the CMS global pool including its main components.

simultaneous jobs that need to be controlled by the workflow management infrastructure down
to workable limits.

In general, the preferred mode of operation for the majority of multi-threaded tasks CMS
ran during 2015 and 2016 has been to employ 4 threads per job. This choice ensures high CPU
usage efficiency relative to sequential execution, while it is sufficient to staying within hardware
memory limitations, due to the available memory being shared by multiple threads [1].

2. CMS global pool and multi-core pilot model
The CMS Submission Infrastructure Global Pool is a single HTCondor [3] pool aggregating
CPU resources accessible to CMS (pledged and opportunistic) and handling both centralized
production workflows and analysis tasks. As outlined in Figure 1, a GlideinWMS [4, 5] layer
manages a transient pool of computing resources by means of pilot job submission to execute
nodes matching job resource requests. The HTCondor Negotiator then connects the submit
nodes (schedds) to matching pilots running at execute nodes (startds).

The CMS computing infrastructure needs tools to allocate multi-core jobs to its CPU
resources. However, diverse single-core and multi-core jobs must coexist during LHC Run 2,
therefore the ability to continue scheduling both types of jobs is mandatory.

The main ingredient to enabling the common allocation of single and multi-core jobs has
been the adoption of multi-core pilots with internal dynamic partitioning of resources, which
employ the HTCondor native concept of partitionable slot. As summarized in Figure 2, and
described in more detail in previous reports [6, 7, 8], multi-core pilots dynamically rearrange
their internal distribution of resources into fractional slots, capable of matching diverse resource
requests simultaneously. The fragmentation of the pilot internal resources by single-core jobs
limits the pilot’s ability to continue pulling new multi-core jobs. However, the renewal of the
finite-lifetime pilots provides a mechanism that supplies the pool with non-fragmented pilots
continuously [7].

The CMS model for job to resource allocation therefore relies on multi-core pilot jobs
exclusively. The objectives of this model are, as described, enabling the successful scheduling
of multi-core and single-core jobs, together with high efficiency in CPU usage by means of
minimizing any inefficiencies deriving from the scheduling of payload jobs.

The main advantage of the fully multi-core partitionable pilot model is that it allows CMS
control of the scheduling of diverse jobs types (single-core, multi-core, high-memory, etc) without
requiring the intervention from the grid sites (e.g. no specialized queues are required, no

3

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 052030 doi :10.1088/1742-6596/898/5/052030

Figure 2. Multicore partitionable pilot running multiple payloads of diverse core count.

production versus analysis quotas are needed). Also, compared to using a combination of single
and multi-core pilots, it removes unwanted single-core and multi-core pilot types competition
for resources at the sites and for matching to jobs once running. A reduced number of pilots is
then required to manage the whole CMS global pool, which contributes to the scalability of the
submission infrastructure.

There are however disadvantages of employing multi-core partitionable pilots. There are
causes of inefficiency in the internal scheduling of payload jobs to pilots, which are otherwise
external to the VO, but detected and accounted for at the sites batch system. A more complex
monitoring and accounting of allocated and used resources is required in comparison to a single
payload per pilot model. Finally, a slower ramp-up of remote resource allocation is observed
when compared to single core pilots in multi-VO sites, as the local site resources may need to
be drained and de-fragmented in order to allocate CMS multi-core pilots. This is mitigated
however by employing a common core count size with ATLAS in those sites which are shared
between the two experiments, namely pilots from both VOs currently request 8 CPU cores.

3. Multi-core pilot deployment to CMS sites
The CMS priority before the beginning of the LHC Run 2 was to have multi-core job allocation
enabled at Tier-1 resources by 2015, hence the first phase of deployment focused on such sites.
The first tests were performed in 2014, while the full deployment was achieved along 2015, as the
submission of single-core pilots to Tier-1s ceased by late 2015. Figure 3 shows the increasing use
of multi-core pilots during 2015 and 2016, nearly doubling its capacity in this period. Monthly
average values for allocated cores depend on the level of activity, and by the second half of 2016
over 30,000 CPU cores were regularly employed, with peaks of up to 40,000 CPU cores observed.

The second deployment phase, focused on the majority of CMS pledged CPUs at the Tier-2
sites, continued in Spring 2016. This required the integration in the model of resources managed
by a wide variety of CE and batch system technologies (see Table 1), which was performed thanks
to the close collaboration with CMS supporting sites and GlideinWMS Factory Operations team.
Building from the experience gained in the Tier-1 deployment phase, a total of 26 Tier-2 sites
were reconfigured to accept the new pilot model in a period of two months. Whenever possible,
in most cases, a standard pilot size definition was configured, requesting 8 CPU cores, 16 GB of
minimum memory and up to 48h of pilot running wall-clock time.

Figure 4 presents the evolution of the global pool composition during 2016. Once the
deployment to the major Tier-2 sites was finished by April, close to 90% of the total global
pool resources was on average being managed by multi-core pilots. A multi-core global pool was
built, whose capacity continued growing and by late 2016 comprised on average around 140,000
CPU cores.

4

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 052030 doi :10.1088/1742-6596/898/5/052030

Figure 3. Aggregated number of CPU cores allocated to multicore pilots running at all CMS
Tier-1 sites (monthly averages 2015 and 2016).

Table 1. Compute Element and batch system technologies of CMS supporting sites where
multicore pilot submission has been enabled.

Compute Element Batch system Example sites (CMS naming convention)

CREAM PBS T1 ES PIC, T1 RU JINR, T2 ES CIEMAT
CREAM Grid Engine T1 DE KIT, T1 FR CCIN2P3, T2 UK London IC
CREAM LSF T1 IT CNAF, T2 IT Pisa, T2 CH CERN
CREAM HTCondor T2 IT Bari, T2 FR GRIF LLR
ARC SLURM T2 CH CSCS, T2 EE Estonia
ARC HTCondor T1 UK RAL, T2 FR GRIF IRFU
HTCondor HTCondor T1 US FNAL, T2 CH CERN, T2 US Nebraska
HTCondor PBS T2 US Florida, T2 US Purdue
HTCondor SLURM T2 US Vanderbilt

4. Results and performance
4.1. Running multi-threaded jobs
Multi-threaded applications were first used in the execution of Tier-0 prompt data reconstruction
at the beginning of LHC Run 2 [9]. Proton-proton data reconstruction jobs have run on 4 CPU
cores during the 2015 and 2016 data taking periods, while 6 and 8-core jobs were employed on
heavy-ion collision runs for the reconstruction of such events at the end of 2015 [6].

Since late 2015, CMS has been successfully employing multi-threaded jobs for standard work
in certain tasks, such as data and Monte Carlo (MC) reconstruction running at Tier-1 and Tier-2
sites. Still, the majority of the workload executed by CMS in 2016 has been run in single-core
mode, for MC generation and analysis jobs. Figure 5 shows the weekly average number of cores
allocated to running jobs at Tier-1 and Tier-2 sites during 2016, as a function of the number of
cores requested per job. It can clearly be observed that multi-core workload has been steadily
increasing during 2016.

Once 2016 the data taking was ended, the full accumulated dataset was re-reconstructed in

5

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 052030 doi :10.1088/1742-6596/898/5/052030

Figure 4. Aggregated number of CPU cores allocated to running CMS global pool pilots as a
function of pilot type (single core or multicore) and site tier level (monthly averages in 2016).

Figure 5. Weekly average number of CPU cores employed by CMS running jobs at Tier-1 and
Tier-2 sites as a function of core count during 2016.

approximately one month, starting in late September 2016, with contributions from all multi-
core enabled sites (including the HLT farm used as opportunistic resource [10]). Following that,
MC datasets were produced in the later months of 2016 and into early 2017. Peaks of 100,000
CPU cores dedicated to these 4-core tasks have been observed during these periods of intense
activity, when the global pool resources were mostly being successfully employed to execute
multi-core tasks.

6

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 052030 doi :10.1088/1742-6596/898/5/052030

Figure 6. Wastage in CPU usage due to multicore pilot draining after it stops accepting any
new payloads (retire mode).

4.2. Observed Scheduling Performance
During these months of operation, the main sources of scheduling inefficiency of this multi-core
pilot model have been identified. Inherent to multi-core pilots internally executing single-core
payloads is the inefficiency related to draining glideins in retire mode. After a fraction of
their maximum allowed lifetime, pilots stop accepting new jobs to avoid the pilot itself, and
subsequently all the running payloads, being killed by the local batch system due to exceeding
running time limitations. As payloads finish, unused cores are observed while the pilot completes
its draining, see Figure 6. This effect has been quantified to correspond to approximately 5% of
the total pool cores.

Another source of CPU inefficiency comes from memory constrained slots. As partitionable
slots, and upon payload request, pilots may create internal slots with higher than average
assigned memory. This flexibility in resource allocation may result however in remaining
available CPU cores idling, as they can not be used by regular average jobs due to their
insufficient memory (typically below 2GB). This has been determined not in general an issue,
except for some particular periods of time and at some sites, when, for example, a fraction of
the resources were dedicated to running heavy-ion collision data reconstruction jobs.

Finally, a third category has been identified, corresponding to usable but unmatched slots.
The effect of certain slots not being matched to any payload is caused by a variety of reasons,
such as decreasing workload and restrictive site white-listing, which results in a lack of payloads
which request these resources. The slow response from the job-submit components may also
cause this starvation of workload capable of running in these empty slots. Finally, when the
pool is saturating all its available resources, some scaling limitations may be observed, linked to
slow slot status updates and long negotiation cycles, which also prevent these empty slots from
being discovered and matched by suitable payloads. All of these effects combined correspond to
an average additional wastage of approximately 5% of the pool cores.

Some of the causes of CPU usage inefficiency from the third group were also affecting the
former single-core pilot model, still present for the remaining 10% of the CMS Global Pool
resources managed by single-core pilots. For example, an idle single-core pilot will remain alive
for a certain amount of time (an adjustable parameter usually set at 20 minutes) before returning
the allocated slot, in order to allow the negotiator to run several matchmaking cycles looking for
a suitable payload. The net effect is very small, with CPU wastage for single-core pilots being
below 5% of the total managed cores on average.

7

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 052030 doi :10.1088/1742-6596/898/5/052030

5. Scheduling efficiency optimization
As described in the previous section, CMS has transitioned to using multi-core pilots for resource
allocation. As Figure 5 shows, the overall CMS workload during 2016 has been still dominated
by single-core jobs, although multi-threaded workflows are now employed for centralized data
and MC reprocessing. In addition, centralized MC production and potentially a fraction of
analysis jobs will be also run in multi-core mode in 2017. This means that the fraction of the
total load being run as single-core is decreasing, which will help in reducing the draining wastage
effect.

The wastage in usable but unclaimed cores is being reduced by means of continuously
evolving to a more efficient and faster job-to-pilot matchmaking. This comes from incremental
improvements on the CMS Global Pool central manager and schedd performance, removing
previous scalability limitations, as a result of the Submission Infrastructure team being in close
contact with HTCondor and GlideinWMS developer teams [11]. Improved workflow management
and job-submit components, as well as further automation of the system in order to reduce the
need for human intervention, are contributing to produce a more continuous flow of requests
being injected to the pool, which produces more reliable and efficient usage of the global pool
slots. Moreover, overloaded and unresponsive submit-nodes, which cause increasing negotiation
cycle times, are now being detected and automatically reconfigured or removed from the pool.

An improved management of pilot pressure on sites can be achieved by better tuning resource-
based response to workload pressure from the GlideinWMS frontend and factories, which is work
in progress together with the GlideinWMS developers team. Removal of out-of-synchronization
excess pilots (due to late job-pilot binding) before they start to run, during irregular workload
submission phases, can potentially reduce the amount of unused CPU cores.

A more efficient matchmaking to running pilots is possible by implementing a depth-wise
filling of the resources, opposed to breadth-wise filling pattern employed by HTCondor negotiator
by default. This has been worked on in close collaboration with the HTCondor developers team,
and there is currently a prototype deployed in the global pool testbed. The introduction of
resource requests expressions now allowing for the possibility of running re-sizable jobs, which
can be allocated a variable number of CPU cores, and could for example take all idle cores in the
matching pilot (prototype in global pool test-bed), hence also contributing to increased CPU
allocation and usage efficiency. Finally, a proposal for the removal of pilots in a long draining
stage, profiting from automated job resubmission, has been discussed. An active pruning of the
retiring pilot pool could also lead to improved overall CPU usage results.

6. Conclusions
The CMS experience with multi-core pilots goes back to 2014, when they were introduced to
Tier-1 sites. Since then, the multi-core pilot model has been fully expanded to the majority of
CMS CPU resources at its supporting Tier-1 and Tier-2 sites, forming multi-core pilot Global
Pool. Multi-threaded job submission has been demonstrated to work successfully along 2016,
as many centralized production tasks have been switched to be executed as multi-core jobs. A
number of causes of CPU allocation inefficiency have been identified and understood. Work is
currently ongoing in order to mitigate them from multiple fronts.

Acknowledgments
The present work is partially funded under grants from the U.S. Department of Energy
and National Science Foundation and Spain Ministry of Economy and Competitiveness grant
FPA2013-48082-C2-1/2-R. The Port d’Informació Cient́ıfica (PIC) is maintained through a
collaboration between the Generalitat de Catalunya, CIEMAT, IFAE and the Universitat
Autonoma de Barcelona.

8

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 052030 doi :10.1088/1742-6596/898/5/052030

References
[1] Jones C et al, CMS Event Processing Multi-core Efficiency Status, to be published in these proceedings
[2] Worldwide LHC Computing Grid http://wlcg.web.cern.ch/

[3] http://research.cs.wisc.edu/htcondor/

[4] http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/doc.prd/

[5] Sfiligoi I et al, The pilot way to Grid resources using glideinWMS, Proc. WRI World Congress on Computer
Science and Information Engineering vol. 2 pp. 428-432

[6] Perez-Calero Yzquierdo A et al, Exploiting multicore compute resources in the CMS experiment, J. Phys.
Conf. Ser. 762 (2016) 012018

[7] Perez-Calero Yzquierdo A et al, Evolution of CMS workload management towards multicore job support, J.
Phys. Conf. Ser. 664 (2015) 062046

[8] Perez-Calero Yzquierdo A et al, CMS multicore scheduling strategy, J. Phys. Conf. Ser. 513 (2014) 032074
[9] Hufnagel D et al, The CMS Tier0 goes Cloud and Grid for LHC Run 2, J. Phys. Conf. Ser. 664 (2015) 032014

[10] Colling D et al, Using the CMS High Level Trigger as a Cloud Resource J. Phys. Conf. Ser. 513 (2014) 032019
[11] Balcas J et al, Stability and scalability of the CMS Global Pool: pushing HTCondor and GlideinWMS to

new limits, to be published in these proceedings

