
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Efficient monitoring of CRAB jobs at CMS
To cite this article: J M D Silva et al 2017 J. Phys.: Conf. Ser. 898 092036

View the article online for updates and enhancements.

Related content
Distributed analysis in ATLAS
A. Dewhurst and F. Legger

-

Using ssh as portal – The CMS CRAB
over glideinWMS experience
S Belforte, I Sfiligoi, J Letts et al.

-

Recent Standard Model results from CMS
Simon de Visscher and CMS collaboration

-

This content was downloaded from IP address 188.184.3.52 on 07/12/2017 at 11:10

https://doi.org/10.1088/1742-6596/898/9/092036
http://iopscience.iop.org/article/10.1088/1742-6596/664/3/032020
http://iopscience.iop.org/article/10.1088/1742-6596/513/3/032006
http://iopscience.iop.org/article/10.1088/1742-6596/513/3/032006
http://iopscience.iop.org/article/10.1088/1742-6596/623/1/012010

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 092036 doi :10.1088/1742-6596/898/9/092036

Efficient monitoring of CRAB jobs at CMS

J M D Silva1, J Balcas2, S Belforte3, D Ciangottini4, M Mascheroni5,
E A Rupeika6, T T Ivanov7, J M Hernandez8, E Vaandering5

1Universidade Estadual Paulista, Sao Paulo, Brazil
2California Institute of Technology, Pasadena, CA, USA
3INFN Sezione di Trieste, 34127 Trieste, Italy
4INFN Sezione di Perugia, 06123 Perugia, Italy
5 Fermi National Accelerator Laboratory, Batavia, IL, USA
6Vilnius University, Lithuania
7University of Sofia ”St. Kliment Ohridski”, Bulgaria
8 CIEMAT, Madrid, Spain

E-mail: marco.mascheroni@cern.ch

Abstract. CRAB is a tool used for distributed analysis of CMS data. Users can submit
sets of jobs with similar requirements (tasks) with a single request. CRAB uses a client-server
architecture, where a lightweight client, a server, and ancillary services work together and are
maintained by CMS operators at CERN.

As with most complex software, good monitoring tools are crucial for efficient use and long-
term maintainability. This work gives an overview of the monitoring tools developed to ensure
the CRAB server and infrastructure are functional, help operators debug user problems, and
minimize overhead and operating cost. This work also illustrates the design choices and gives a
report on our experience with the tools we developed and the external ones we used.

1. Introduction
CRAB [1] is a tool used by more than 1,500 users worldwide for distributed analysis of CMS data
in the high-throughput infrastructure of the Worldwide LHC Computing Grid (WLCG [2]). At
any given time CRAB has processing requests from about 500 different users that submit sets
of Grid jobs with similar requirements (tasks) with a single user request. The typical number of
active tasks in CRAB ranges from a few hundred to a few thousand tasks. The number of jobs
in each task can vary between a few dozen and a few thousand, being the most common values
in the 100-2000 jobs range.

CRAB uses a client-server architecture, where a lightweight client, a server, and ancillary
services work together and are maintained by CMS operators at CERN.

1.1. CRAB Architecture
The CRAB Server provides a REST Interface for the communication with the other components
of the CMS Computing System. Users interact with it via a light client for submission,
monitoring and control of their analysis tasks. The TaskWorker is a queue system responsible
for processing user’s tasks, expanding user-provided configurations into lists of jobs that are
submitted to HTCondor [3] schedulers for execution on the Grid. Information about tasks is

http://creativecommons.org/licenses/by/3.0

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 092036 doi :10.1088/1742-6596/898/9/092036

stored in an Oracle-based database. The High level view of the CRAB architecture is shown in
Figure 1.

Figure 1. CRAB Server Architecture.

Figure 2. Number of Tasks submitted to
CRAB every week, from initial rollout to
fall 2016.

1.2. Monitoring goals
The scope of this paper is to describe the monitoring tools used by developers and operators of
the CRAB service to make sure that the system is performing as expected and to troubleshoot
possible problems. Users have an alternative set of monitoring tools to check their submissions,
but with O(1k) user tasks being processed inside CRAB at any given time, operators need more
aggregate views which still let them drill down to details at the single job level if needed. One of
CRAB operator’s day-to-day responsibilities is debugging user tasks (upon user request). More
than 8000 tasks are currently submitted every week as shown in Figure 2.

The main goals in developing operator monitoring tools were simplicity, functionality and
the connection to more detailed, already existing, monitoring.

2. Monitoring tools
Two complementary tools have been developed for CRAB server operation monitoring, a simple
Kibana [4] dashboard (CRAB dashboard) to visualize the status of the server and rates of work
in and out of the pipelines, and a task-oriented page (CRABMon) to allow quick access to details
of any given task.

2.1. CRABMon
CRABMon is a dedicated javascript-based monitoring page, developed within CMS collaboration
and dedicated to monitoring system operation. It gathers the results from multiple CRAB APIs
exposed via a REST interface. It is used by CRAB operators to monitor the details of submitted
jobs, task status, configuration and parameters, user code, and log files. Links to relevant data
are provided when a problem must be investigated. The software is largely javascript developed
in-house to maximize flexibility and maintainability, although jQuery is also utilized.

CRABMon is available to every CMS user via the central CMS web portal (CMSWeb) which
provides secure authentication based on grid certificates. The CMSWeb portal also provides us
with http proxy capability allowing CRABMon to offer to experts direct access to relevant log
files locally stored on the TaskWorker and/or the schedulers.

3

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 092036 doi :10.1088/1742-6596/898/9/092036

We intentionally kept the CRABMon features limited in order to have a quick and agile tool.
The list of what can be accessed with one mouse click is:

• a summary and a full breakdown of the task information in the task database, avoiding the
need to write SQL queries by hand,

• quick links to the task configuration used in the submission and the log from the client side,

• a detailed view of all task jobs in the CMS Job Dashboard [6], [7] which gives access also
to job log and details of the FTS transfer used to move job output to the user home site,

• links to the view of the input and output datasets in the CMS dataset bookkeeping database.

Figures 3, 4, 5 and 6 provide examples of typical CRABMon views used in daily work.

Figure 3. CRABMon main view providing
some general information about a task
(such as task and job statuses) and links to
external services to complement available
information.

Figure 4. CRABMon provides an easy
way to access the information stored in
the task database (helps avoid writing SQL
queries by hand).

Figure 5. Task worker logs for a specific
task. These logs allow debugging problems
that happen during task submission.

Figure 6. Access to user configuration
files (client configuration, analysis frame-
work configuration, ancillary files).

4

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 092036 doi :10.1088/1742-6596/898/9/092036

Over time, CRABMon has proved itself to be extremely effective in enabling operators to
quickly troubleshoot user problems. The current CRAB client prints on the user screen the URL
for the CRABMon view so that they can use it in reporting issues.

2.2. CRAB dashboard
We collected in one web page a set of Kibana views deployed on the CERN Kibana instance
that helps CRAB operators monitor the core components of the infrastructure (Task worker,
schedulers, etc.) in real time. A simple crontab runs on the TaskWorker every 5min collecting
relevant metrics via a few queries to the Task database (via CMSWeb and CRABServer API)
and a few HTCondor condor q commands. Those metrics are formatted in a JSON file which
is pushed via curl to the CERN monitoring infrastructure where they can be used as targets of
Kibana queries. We used Kibana version 3 in this work.

For monitoring the overall performance of the CRAB Server we decided to display two kind
of metrics:

• ”how many” metrics: time series of snapshots (like in Figures 7, 8 and 10) which indicate
how much load the system is managing at any given time and how large is the queue of
pending work.

• ”how fast” metrics: evolving picture of the rate of change of the load inside TaskWorker,
i.e. the speed at which new requests come in and get out in one of the possible final states
(basically SUBMITTED or FAILED with FAILED broken in various details). One such
view is shown in Figure 9.

We found it particularly useful to have the plot of tasks inside the TaskWorker in the so called
non-final states (see Figure 10). That allows to quickly spot cases where some small fraction of
tasks gets stuck in the internal processing, while simply looking at reported errors in the final
output is not useful.

That simple page was found to be perfectly adequate to the need, and over the course of the
last twelve months the only changes we made were in the list of HTCondor schedd’s to monitor.

Figure 7. Idle jobs in the HTCondor schedd’s used by CRAB server. The system was lightly
loaded at this time. One schedd is set aside to drain for maintenance

5

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 092036 doi :10.1088/1742-6596/898/9/092036

Figure 8. Number of active DAGs in each HTCondor schedd. Each task is managed by one
such DAG. This picture is important to us to verify proper load sharing across the schedd’s
since there is a limit to how many DAGs can be allowed on each machine (currently 175).

Figure 9. Rates of tasks (running average
in last 2h) out of TaskWorker.

Figure 10. Count of tasks known in the
Task database and currently in a non-final
state in TaskWorker state machine.

On the implementation side, the use of Kibana framework turned out to be very cumbersome
for our intended use. Changing the page interactively is inconvenient, and we had to resort
to a script which produces the JSON view of the dashboard, script that over the time became
unmaintainable. While some improvement could be obtained by differently naming the metrics
to make it easier to find them in the queries, we also feel that the refresh time of the page on
the browser is inefficient when you select multiple days.On the implementation side, the use of
Kibana framework turned out to be very cumbersome for our intended use. Changing the page
interactively is inconvenient, and we had to resort to a script which produces the JSON view
of the dashboard, script that over the time became unmaintainable. While some improvement
could be obtained by differently naming the metrics to make it easier to find them in the queries,
we also feel that the refresh time of the page on the browser is inefficient when you select multiple
days.

For the above reasons we are now starting to move this dashboard to Grafana [5]. The
outcome of that work would be the subject of a future report.

6

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 092036 doi :10.1088/1742-6596/898/9/092036

3. Conclusion
The CRAB server for CMS is a service which manages large and critical user analysis workflows.
Timely analysis of CMS data depends on it. We have found that the approach of focusing on
overall pipeline performance metrics (rate in, rate out, length of internal queues) is simple to
implement, yet effective in prompt detection of problems. The tools described in this work
are used in daily operations basis and there is no plan to significantly change them. Only a
few metrics will be added or removed as the architecture of CRAB evolves and we try to use
friendlier graphic generation packages.

References
[1] Cinquilli M et al., 2015 CRAB3: Establishing a new generation of services for distributed analysis at CMS J.

Phys. Conf. Ser. 396 032026
[2] Worldwide LHC Computing Grid, http://wlcg.web.cern.ch/
[3] http://research.cs.wisc.edu/htcondor/
[4] https://www.elastic.co/products/kibana
[5] http://grafana.org/
[6] Karavakis E et al, CMS Dashboard Task Monitoring: a user-centric monitoring view,2010, J. Phys.: Conf.

Ser. 219 072038 doi:10.1088/1742-6596/219/7/072038
[7] Karavakis E et al, User-centric monitoring of the analysis and production activities within the ATLAS and

CMS Virtual Organisations using the Experiment Dashboard system, in proceedings of EGI Community
Forum 2012 / EMI Second Technical Conference, 2012, PoS(EGICF12-EMITC2)110

