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1 Introduction

Following the observation [1, 2] of a Higgs boson, H, with a mass of approximately 125 GeV [3] by the
ATLAS andCMS collaborations at the LargeHadronCollider (LHC), the properties of its interactionswith
the electroweak gauge bosons have been measured extensively [4–6]. The coupling of the Higgs boson to
leptons has been established through the observation of the H → τ+τ− channel [4, 7, 8], while in the quark
sector indirect evidence is available for the coupling of theHiggs boson to the top-quark [4] and evidence for
the Higgs boson decays into bb̄ has been recently presented [9, 10]. Despite this progress, the Higgs boson
interaction with the fermions of the first and second generations is still to be confirmed experimentally.
In the Standard Model (SM), Higgs boson interactions to fermions are implemented through Yukawa
couplings, while a wealth of beyond-the-SM theories predict substantial modifications. Such scenarios
include the Minimal Flavour Violation framework [11], the Froggatt–Nielsen mechanism [12], the Higgs-
dependent Yukawa couplings model [13], the Randall–Sundrum family of models [14], and the possibility
of the Higgs boson being a composite pseudo-Goldstone boson [15]. An overview of relevant models of
new physics is provided in Ref. [16].

The rare decays of the Higgs boson into a heavy quarkonium state, J/ψ or Υ(nS) with n = 1, 2, 3,
and a photon have been suggested for probing the charm- and bottom-quark couplings to the Higgs
boson [17–20] and have already been searched for by the ATLAS Collaboration [21], resulting in 95%
confidence level (CL) upper limits of 1.5 × 10−3 and (1.3, 1.9, 1.3) × 10−3 on the branching fractions,
respectively. The H → J/ψγ decay mode has also been searched for by the CMS Collaboration [22],
yielding the same upper limit. The corresponding SM predictions for these branching fractions [23] are
B (H → J/ψγ) = (2.95 ± 0.17) × 10−6 and B (H → Υ(nS)γ) =

(
4.6+1.7
−1.2, 2.3

+0.8
−1.0, 2.1

+0.8
−1.1

)
× 10−9. The

prospects for observing and studying exclusive Higgs boson decays into a meson and a photon with an
upgraded High Luminosity LHC [16] or a future hadron collider [24] have also been studied.

Currently, the light (u, d, s) quark couplings to the Higgs boson are loosely constrained by existing data
on the total Higgs boson width, while the large multijet background at the LHC inhibits the study of
such couplings with inclusive H → qq̄ decays. Rare exclusive decays of the Higgs boson into a light
meson, M , and a photon, γ, have been suggested as a probe of the couplings of the Higgs boson to
light quarks and would allow a search for potential deviations from the SM prediction [23, 25, 26].
Specifically, the observation of the Higgs boson decay to a φ or ρ(770) (denoted as ρ in the following)
meson and a photon would provide sensitivity to its couplings to the strange-quark, and the up- and
down-quarks, respectively. The expected SM branching fractions are B (H → φγ) = (2.31± 0.11) × 10−6

and B (H → ργ) = (1.68 ± 0.08) × 10−5 [23]. The decay amplitude receives two main contributions that
interfere destructively. The first is referred to as “direct” and proceeds through the H → qq̄ coupling,
where subsequently a photon is emitted before the qq̄ hadronises exclusively to M . The second is referred
to as “indirect” and proceeds via the H → γγ coupling followed by the fragmentation γ∗ → M . In the
SM, owing to the smallness of the light-quark Yukawa couplings, the latter amplitude dominates, despite
being loop induced. As a result, the expected branching fraction predominantly arises from the “indirect”
process, while the Higgs boson couplings to the light quarks are probed by searching for modifications of
this branching fraction due to changes in the “direct” amplitude.

This paper describes a search for Higgs boson decays into the exclusive final states φγ and ργ. The decay
φ → K+K− is used to reconstruct the φ meson, and the decay ρ → π+π− is used to reconstruct the ρ
meson. The branching fractions of the respective meson decays are well known and are accounted for
when calculating the expected signal yields. The presented search uses approximately 13 times more
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integrated luminosity than the first search for H → φγ decays [27], which led to a 95% CL upper limit
of B (H → φγ) < 1.4 × 10−3, assuming SM production rates of the Higgs boson. Currently, no other
experimental information about the H → ργ decay mode exists.

The searches for the analogous decays of the Z boson into a meson and a photon are also presented
in this paper. These have been theoretically studied [28, 29] as a unique precision test of the SM and
the factorisation approach in quantum chromodynamics (QCD), in an environment where the power
corrections in terms of the QCD energy scale over the vector boson’s mass are small [29]. The large Z
boson production cross section at the LHC means that rare Z boson decays can be probed at branching
fractions much smaller than for Higgs boson decays into the same final states. The SM branching fraction
predictions for the decays considered in this paper are B (Z → φγ) = (1.04 ± 0.12) × 10−8 [28, 29] and
B (Z → ργ) = (4.19±0.47)×10−8 [29]. The first search for Z → φγ decays by the ATLASCollaboration
was presented in Ref. [27] and a 95% CL upper limit of B (Z → φγ) < 8.3 × 10−6 was obtained. So far
no direct experimental information about the decay Z → ργ exists.

2 ATLAS detector

ATLAS [30] is a multi-purpose particle physics detector with a forward-backward symmetric cylindrical
geometry and near 4π coverage in solid angle.1 It consists of an inner tracking detector surrounded by a
thin superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer.

The inner tracking detector (ID) covers the pseudorapidity range |η | < 2.5, and is surrounded by a thin
superconducting solenoid providing a 2 T magnetic field. At small radii, a high-granularity silicon pixel
detector covers the vertex region and typically provides three measurements per track. A new innermost
pixel-detector layer, the insertable B-layer, was added before 13TeV data-taking began in 2015 and
provides an additional measurement at a radius of about 33mm around a new and thinner beam pipe [31].
The pixel detectors are followed by a silicon microstrip tracker, which typically provides four space-point
measurements per track. The silicon detectors are complemented by a gas-filled straw-tube transition
radiation tracker, which enables radially extended track reconstruction up to |η | = 2.0, with typically 35
measurements per track.

The calorimeter system covers the pseudorapidity range |η | < 4.9. A high-granularity lead/liquid-argon
(LAr) sampling electromagnetic calorimeter covers the region |η | < 3.2, with an additional thin LAr
presampler covering |η | < 1.8 to correct for energy losses upstream. The electromagnetic calorimeter is
divided into a barrel section covering |η | < 1.475 and two endcap sections covering 1.375 < |η | < 3.2. For
|η | < 2.5 it is divided into three layers in depth, which are finely segmented in η and φ. A steel/scintillator-
tile calorimeter provides hadronic calorimetry in the range |η | < 1.7. LAr technology, with copper as
absorber, is used for the hadronic calorimeters in the endcap region, 1.5 < |η | < 3.2. The solid-angle
coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules in 3.1 < |η | < 4.9,
optimised for electromagnetic and hadronic measurements, respectively.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The
pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2).
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The muon spectrometer surrounds the calorimeters and comprises separate trigger and high-precision
tracking chambers measuring the deflection of muons in a magnetic field provided by three air-core
superconducting toroids.

A two-level trigger and data acquisition system is used to provide an online selection and record events
for offline analysis [32]. The level-1 trigger is implemented in hardware and uses a subset of detector
information to reduce the event rate to 100 kHz or less from the maximum LHC collision rate of 40MHz.
It is followed by a software-based high-level trigger which filters events using the full detector information
and records events for detailed offline analysis at an average rate of 1 kHz.

3 Data and Monte Carlo simulation

The search is performed with a sample of pp collision data recorded at a centre-of-mass energy
√

s =
13TeV. Events are retained for further analysis only if they were collected under stable LHC beam
conditions and the detector was operating normally. This results in an integrated luminosity of 35.6 and
32.3 fb−1 for the φγ and ργ final states, respectively. The integrated luminosity of the data sample has an
uncertainty of 3.4% derived using the method described in Ref. [33].

The φγ and ργ data samples used in this analysis were each collected with a specifically designed trigger.
Both triggers require an isolated photon with a transverse momentum, pT, greater than 35GeV and an
isolated pair of ID tracks, one of which must have a pT greater than 15GeV, associated with a topological
cluster of calorimeter cells [34] with a transverse energy greater than 25GeV. The photon part of the
trigger follows the same process as the inclusive photon trigger requiring an electromagnetic cluster in the
calorimeter consistent with a photon and is described with more detail in Ref. [32], while requirements
on the ID tracks are applied in the high-level trigger through an appropriately modified version of the
τ-lepton trigger algorithms which are described in more detail in Ref. [35]. The trigger for the φγ final
state was introduced in September 2015. This trigger requires that the invariant mass of the pair of tracks,
under the charged-kaon hypothesis, is in the range 987–1060MeV, consistent with the φ meson mass.
The trigger efficiency for both the Higgs and Z boson signals is approximately 75% with respect to the
offline selection, as described in Section 4. The corresponding trigger for the ργ final state was introduced
in May 2016. This trigger requires the invariant mass of the pair of tracks, under the charged-pion
hypothesis, to be in the range 475–1075MeV to include the bulk of the broad ρ meson mass distribution.
The trigger efficiency for both the Higgs and Z boson signals is approximately 78% with respect to the
offline selection.

Higgs boson production through the gluon–gluon fusion (ggH) and vector-boson fusion (VBF) processes
was modelled up to next-to-leading order (NLO) in αS using the Powheg-Box v2 Monte Carlo (MC)
event generator [36–40] with CT10 parton distribution functions [41]. Powheg-Box was interfaced
with the Pythia 8.186 MC event generator [42, 43] to model the parton shower, hadronisation and
underlying event. The corresponding parameter values were set according to the AZNLO tune [44].
Additional contributions from the associated production of a Higgs boson and a W or Z boson (denoted
by WH and ZH, respectively) are modelled by the Pythia 8.186 MC event generator with NNPDF23LO
parton distribution functions [45] and the A14 tune for hadronisation and the underlying event [46]. The
production rates and kinematic distributions for the SM Higgs boson with mH = 125GeV are assumed
throughout. These were obtained from Ref. [16] and are summarised below. The ggH production rate is
normalised such that it reproduces the total cross section predicted by a next-to-next-to-next-to-leading-
order QCD calculation with NLO electroweak corrections applied [47–50]. The VBF production rate is
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normalised to an approximate NNLO QCD cross section with NLO electroweak corrections applied [51–
53]. The WH and ZH production rates are normalised to cross sections calculated at next-to-next-to-
leading order (NNLO) in QCD with NLO electroweak corrections [54, 55] including the NLO QCD
corrections [56] for gg → ZH. The expected signal yield is corrected to include the 2% contribution
from the production of a Higgs boson in association with a tt̄ or a bb̄ pair.

The Powheg-Box v2 MC event generator with CT10 parton distribution functions was also used to
model inclusive Z boson production. Pythia 8.186 with CTEQ6L1 parton distribution functions [57] and
the AZNLO parameter tune was used to simulate parton showering and hadronisation. The prediction is
normalised to the total cross section obtained from the measurement in Ref. [58], which has an uncertainty
of 2.9%. The Higgs and Z boson decays were simulated as a cascade of two-body decays, respecting
angular momentum conservation. The meson line shapes were simulated by Pythia. The branching
fraction for the decay φ→ K+K− is (48.9± 0.5)% whereas the decay ρ→ π+π− has a branching fraction
close to 100% [59]. The simulated events were passed through the detailed Geant 4 simulation of the
ATLAS detector [60, 61] and processed with the same software used to reconstruct the data. Simulated
pile-up events (additional pp collisions in the same or nearby bunch crossings) are also included and the
distribution of these is matched to the conditions observed in the data.

4 Event selection for φγ → K+K−γ and ργ → π+π−γ final states

The φγ and ργ exclusive final states are very similar. Both final states consist of a pair of oppositely
charged reconstructed ID tracks. The difference is that for the former the mass of the pair, under the
charged-kaon hypothesis for the two tracks, is consistent with the φ meson mass, while for the later, under
the charged-pion hypothesis for the tracks, it is consistent with the ρ meson mass. Events with a pp
interaction vertex reconstructed from at least two ID tracks with pT > 400MeV are considered in the
analysis. Within an event, the primary vertex is defined as the reconstructed vertex with the largest

∑
p2
T

of associated ID tracks.

Photons are reconstructed from clusters of energy in the electromagnetic calorimeter. Clusters without
matching ID tracks are classified as unconverted photon candidates while clusters matched to ID tracks
consistent with the hypothesis of a photon conversion into e+e− are classified as converted photon
candidates [62]. Reconstructed photon candidates are required to have pγT > 35GeV, |ηγ | < 2.37,
excluding the barrel/endcap calorimeter transition region 1.37 < |ηγ | < 1.52, and to satisfy “tight” photon
identification criteria [62]. An isolation requirement is imposed to further suppress contamination from
jets. The sum of the transverse momenta of all tracks within ∆R =

√
(∆φ)2 + (∆η)2 = 0.2 of the photon

direction, excluding those associated with the reconstructed photon, is required to be less than 5% of pγT.
Moreover, the sum of the transverse momenta of all calorimeter energy deposits within ∆R = 0.4 of the
photon direction, excluding those associated with the reconstructed photon, is required to be less than
2.45GeV + 0.022 × pγT. To mitigate the effects of multiple pp interactions in the same or neighbouring
bunch crossings, only ID tracks which originate from the primary vertex are considered in the photon
track-based isolation. For the calorimeter-based isolation the effects of the underlying event and multiple
pp interactions are also accounted for on an event by event basis using an average underlying event energy
density determined from data, as described in Ref. [62].

Charged particles satisfying the requirements detailed below are assumed to be a K± meson in the φγ
analysis and a π± meson in the ργ analysis. No further particle identification requirements are applied.
In the following, when referring to charged particles collectively the term “charged-hadron candidates” is
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used, while when referring to the charged particles relevant to the φγ and the ργ analyses the terms “kaon
candidates” and “pion candidates” are used, respectively, along with the corresponding masses. A pair of
oppositely-charged charged-hadron candidates is referred to collectively as M .

Charged-hadron candidates are reconstructed from ID tracks which are required to have |η | < 2.5,
pT > 15GeV and to satisfy basic quality criteria, including a requirement on the number of hits in the
silicon detectors [63]. The φ→ K+K− and ρ→ π+π− decays are reconstructed from pairs of oppositely
charged-hadron candidates; the candidate with the higher pT, referred to as the leading charged-hadron
candidate, is required to have pT > 20GeV.

Pairs of charged-hadron candidates are selected based on their invariant masses. Those with an invariant
mass, under the charged-kaon hypothesis, mK+K− between 1012MeV and 1028MeV are selected as
φ→ K+K− candidates. Pairs with an invariant mass, under the charged-pion hypothesis, mπ+π− between
635MeV and 915MeV are selected as ρ→ π+π− candidates. The candidates where mK+K− is consistent
with the φ meson mass are rejected from the ργ analysis. This requirement rejects a negligible fraction
of the signal in the ργ analysis. Selected M candidates are required to satisfy an isolation requirement:
the sum of the pT of the reconstructed ID tracks from the primary vertex within ∆R = 0.2 of the leading
charged hadron candidate (excluding the charged-hadron candidates defining the pair) is required to be
less than 10% of the pT of the M candidate.

The M candidates are combined with the photon candidates, to form Mγ candidates. When multiple
combinations are possible, a situation that arises only in a few percent of the events, the combination of
the highest-pT photon and the M candidate with an invariant mass closest to the respective meson mass
is selected. The event is retained for further analysis if the requirement ∆φ(M, γ) > π/2 is satisfied.
The transverse momentum of the M candidates is required to be greater than a threshold that varies as
a function of the invariant mass of the three-body system, mMγ. Thresholds of 40GeV and 47.2GeV
are imposed on pM

T for the regions mMγ < 91GeV and mMγ ≥ 140GeV, respectively. The threshold
is varied from 40GeV to 47.2GeV as a linear function of mMγ in the region 91 ≤ mMγ < 140GeV.
This approach ensures good sensitivity for both the Higgs and Z boson searches, while keeping a single
kinematic selection.

For the φ(→ K+K−) γ final state, the total signal efficiencies (kinematic acceptance, trigger and recon-
struction efficiencies) are 17% and 8% for the Higgs and Z boson decays, respectively. The corresponding
efficiencies for the ργ final state are 10% and 0.4%. The difference in efficiency between the Higgs
and Z boson decays arises primarily from the softer pT distributions of the photon and charged-hadron
candidates associated with the Z → M γ production, as can be seen for the φγ case by comparing Fig-
ures 1(a) and 1(b). The overall lower efficiency in the ργ final state is a result of the lower efficiency of
the mM requirement due to the large ρ-meson natural width and the different kinematics of the ρ decay
products, as presented in Figures 1(c) and 1(d). Meson helicity effects have a relatively small impact for
the φ → K+K− decays, where the kaons carry very little momentum in the φ rest frame. Specifically,
the expected Higgs (Z) boson signal yield in the signal region is 6% larger (9% smaller) than in the
hypothetical scenario where the meson is unpolarised. For the ρ→ π+π− decays the yields are increased
by 33% (decreased by 83%).

The average mMγ resolution is 1.8% for both the Higgs and Z boson decays. The Higgs boson signal
mMγ distribution is modelled with a sum of two Gaussian probability density functions (pdf) with a
common mean value, while the Z boson signal mMγ distribution is modelled with a double Voigtian pdf (a
convolution of relativistic Breit–Wigner and Gaussian pdfs) corrected with a mass-dependent efficiency
factor.
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Figure 1: Generator-level transverse momentum (pT) distributions of the photon and of the charged-hadrons, ordered
in pT, for (a) H → φγ, (b) Z → φγ, (c) H → ργ and (d) Z → ργ simulated signal events, respectively. The hatched
histograms denote the full event selection while the dashed histograms show the events at generator level that fall
within the analysis geometric acceptance (both charged-hadrons are required to have |η | < 2.5 while the photon is
required to have |η | < 2.37, excluding the region 1.37 < |η | < 1.52). The dashed histograms are normalised to
unity, and the relative difference between the two sets of distributions corresponds to the effects of reconstruction,
trigger, and event selection efficiencies. The leading charged-hadron candidate h = K, π is denoted by ph1

T and the
sub-leading candidate by ph2

T .

The mK+K− distribution for the selected φγ candidates, with no mK+K− requirement applied, is shown
in Figure 2(a) exhibiting a visible peak at the φ meson mass. The φ peak is fitted with a Voigtian pdf,
while the background is modelled with a function typically used to describe kinematic thresholds [64].
The experimental resolution in mK+K− is approximately 4MeV, comparable to the 4.3MeV [59] width
of the φ meson. In Figure 2(b), the corresponding distribution for the selected ργ candidates is shown,
where the ρ meson can also be observed. The ρ peak is fitted with a single Breit–Wigner pdf, modified
by a mass-dependent width to match the distribution obtained from Pythia [42]. The background is fitted
with the sum of a combinatoric background, estimated from events containing a same-sign di-track pair,
and other backgrounds determined in the fit using a linear combination of Chebychev polynomials up to
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the second order. Figure 2 only qualitatively illustrates the meson selection in the studied final state, and
is not used any further in this analysis.
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Figure 2: The (a) mK+K− and (b) mπ+π− distributions for φγ and ργ candidates, respectively. The candidates fulfil
the complete event selection (see text), apart from requirements on mK+K− or mπ+π− . These requirements are marked
on the figures with dashed lines topped with arrows indicating the included area. The signal and background models
are discussed in the text.

5 Background

For both the φγ and ργ final states, the main sources of background in the searches are events involving
inclusive photon + jet or multijet processes where an M candidate is reconstructed from ID tracks
originating from a jet.

From the selection criteria discussed earlier, the shape of this background exhibits a turn-on structure in the
mMγ distribution around 100GeV, in the region of the Z boson signal, and a smoothly falling background
in the region of the Higgs boson signal. Given the complex shape of this background, these processes are
modelled in an inclusive fashion with a non-parametric data-driven approach using templates to describe
the relevant distributions. The background normalisation and shape are simultaneously extracted from
a fit to the data. A similar procedure was used in the earlier search for Higgs and Z boson decays into
φγ [27] and the search for Higgs and Z boson decays into J/ψ γ and Υ(nS) γ described in Ref. [21].

5.1 Background modelling

The backgroundmodelling procedure for each final state exploits a sample of approximately 54 000K+K−γ
and 220 000 π+π−γ candidate events in data. These events pass all the kinematic selection requirements
described previously, except that the photon and M candidates are not required to satisfy the nominal
isolation requirements, and a looser pM

T > 35GeV requirement is imposed. This selection defines the
background-dominated “generation region” (GR). From these events, pdfs are constructed to describe the
distributions of the relevant kinematic and isolation variables and their most important correlations. In

8



this way, in the absence of appropriate simulations, pseudocandidate events are generated, from which the
background shape in the discriminating variable is derived.

This ensemble of pseudocandidate events is produced by randomly sampling the distributions of the
relevant kinematic and isolation variables, which are estimated from the data in the GR. Each pseudocan-
didate event is described by M and γ four-momentum vectors and the associated M and photon isolation
variables. The M four-momentum vector is constructed from sampled ηM , φM , mM and pM

T values. For
the γ four-momentum vector, the ηγ and φγ are determined from the sampled ∆φ(M, γ) and ∆η(M, γ)
values whereas pγT is sampled directly.

The most important correlations among these kinematic and isolation variables in background events are
retained in the generation of the pseudocandidates through the following sampling scheme, where the
steps are performed sequentially:

i) Values for ηM , φM , mM and pM
T are drawn randomly and independently according to the correspond-

ing pdfs.

ii) The distribution of pγT values is parameterised in bins of pM
T , and values are drawn from the corres-

ponding bins given the previously generated value of pM
T . The M isolation variable is parameterised

in bins of pM
T (p

γ
T) for the φγ (ργ) model and sampled accordingly. The difference between the two

approaches for the φγ and ργ accounts for the difference in the observed correlations arising in the
different datasets.

iii) The distributions of the values for ∆η(M, γ), photon calorimeter isolation, normalised to pγT, and
their correlations are parameterised in a two-dimensional distribution. For the φγ analysis, several
distributions are produced corresponding to the pM

T bins used earlier to describe the pγT and M isolation
variables, whereas for the ργ final state the two-dimensional distribution is produced inclusively for
all pM

T values.

iv) The photon track isolation, normalised to pγT, and the ∆φ(M, γ) variables are sampled from pdfs
generated in bins of relative photon calorimeter isolation and ∆η(M, γ), respectively, using the values
drawn in step iii).

The nominal selection requirements are imposed on the ensemble, and the surviving pseudocandidates
are used to construct templates for the mMγ distribution, which are then smoothed using Gaussian kernel
density estimation [65]. It was verified through signal injection tests that the shape of the background
model is not affected by potential signal contamination.

5.2 Background validation

Tovalidate the backgroundmodel, themMγ distributions in several validation regions, defined by kinematic
and isolation requirements looser than the nominal signal requirements, are used to compare the prediction
of the background model with the data. Three validation regions are defined, each based on the GR
selection and adding one of the following: the pM

T requirement (VR1), the photon isolation requirements
(VR2), or the meson isolation requirement (VR3). The mMγ distributions in these validation regions are
shown in Figure 3. The background model is found to describe the data in all regions within uncertainties
(see Section 6).
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Figure 3: The distribution of mK+K−γ top (mπ+π−γ bottom) in data compared to the prediction of the background
model for the VR1, VR2 and VR3 validation regions. The background model is normalised to the observed number
of events within the region shown. The uncertainty band corresponds to the uncertainty envelope derived from
variations in the background modelling procedure. The ratio of the data to the background model is shown below
the distributions.

Potential background contributions from Z → ``γ decays and inclusive Higgs decays were studied and
found to be negligible for the selection requirements and dataset used in this analysis.

A further validation of the background modelling is performed using events within a sideband of the M
mass distribution. For the φγ analysis the sideband region is defined by 1.035GeV < mK+K− < 1.051GeV.
For the ργ analysis the sideband region is defined by 950MeV < mπ+π− < 1050MeV. All other selection
requirements and modelling procedures are identical to those used in the signal region. Figures 4(a) and
4(b) show the mMγ distributions for the sideband region. The background model is found to describe the
data within the systematic uncertainties described in Section 6.

10



C
an

di
da

te
s 

/ 2
 G

eV

0

50

100

150

200

250

300

350

400

450
-1 =  13 TeV, 35.6 fbsData 

Background Model

Model Shape Uncertainty 

 Sideband Regionφ

ATLAS

 [GeV]γ-K+Km
50 100 150 200 250 300D

at
a/

M
od

el
   

 

0.5

1.0

1.5

(a)
C

an
di

da
te

s 
/ 2

 G
eV

0

100

200

300

400

500

600
-1 =  13 TeV, 32.3 fbsData 

Background Model

Model Shape Uncertainty 

 Sideband Regionρ

ATLAS

 [GeV]γ-π+πm
50 100 150 200 250 300D

at
a/

M
od

el
   

 

0.5

1.0

1.5

(b)

Figure 4: The distribution ofmMγ for the (a) φγ and (b) ργ selections in the sideband control region. The background
model is normalised to the observed number of events within the region shown. The uncertainty band corresponds
to the uncertainty envelope derived from variations in the background modelling procedure. The ratio of the data to
the background model is shown below the distributions.

6 Systematic uncertainties

Trigger and identification efficiencies for photons are determined from samples enriched with Z → e+e−

events in data [32, 62]. The systematic uncertainty in the expected signal yield associated with the trigger
efficiency is estimated to be 2.0%. The photon identification and isolation uncertainties, for both the
converted and unconverted photons, are estimated to be 2.4% and 2.6% for the Higgs and Z boson signals,
respectively. An uncertainty of 6.0% per M candidate is assigned to the track reconstruction efficiency
and accounts for effects associated with the modelling of ID material and track reconstruction algorithms
if a nearby charged particle is present. This uncertainty is derived conservatively by assuming a 3%
uncertainty in the reconstruction efficiency of each track [66], and further assuming the uncertainty to be
fully correlated between the two tracks of the M candidate.

The systematic uncertainties in the Higgs production cross section are obtained fromRef. [16] as described
in Section 3. The Z boson production cross-section uncertainty is taken from the measurement in
Ref. [58].

The photon energy scale uncertainty, determined from Z → e+e− events and validated using Z → ``γ

events [67], is applied to the simulated signal samples as a function of ηγ and pγT. The impact of the
photon energy scale uncertainty on the Higgs and Z boson mass distributions does not exceed 0.2%. The
uncertainty associated with the photon energy resolution is found to have a negligible impact. Similarly,
the systematic uncertainty associated with the ID track momentum measurement is found to be negligible.
The systematic uncertainties in the expected signal yields are summarised in Table 1.

The shape of the background model is allowed to vary around the nominal shape, and the parameters
controlling these systematic variations are treated as nuisance parameters in the maximum-likelihood fit
used to extract the signal and background yields. Three such shape variations are implemented through
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varying pγT, linear distortions of the shape of the ∆φ(M, γ), and a global tilt of the three-body mass. The
first two variations alter the kinematics of the pseudocandidates that are propagated to the three-body
mass.

Table 1: Summary of the relative systematic uncertainties in the expected signal yields. The magnitude of the effects
are the same for both the φγ and ργ selections.

Source of systematic uncertainty Yield uncertainty
Total H cross section 6.3%
Total Z cross section 2.9%
Integrated luminosity 3.4%
Photon ID efficiency 2.5%
Trigger efficiency 2.0%
Tracking efficiency 6.0%

7 Results

The data are compared to background and signal predictions using an unbinned maximum-likelihood fit
to the mMγ distribution. The parameters of interest are the Higgs and Z boson signal normalisations.
Systematic uncertainties are modelled using additional nuisance parameters in the fit; in particular the
background normalisation is a free parameter in the model. The fit uses the selected events with mMγ <

300GeV. The expected and observed numbers of background events within the mMγ ranges relevant to
the Higgs and Z boson signals are shown in Table 2. The observed yields are consistent with the number
of events expected from the background-only prediction within the systematic and statistical uncertainties.
The results of the background-only fits for the φγ and ργ analyses are shown in Figures 5(a) and 5(b),
respectively.

Table 2: The number of observed events and themean expected background, estimated from themaximum-likelihood
fit and shown with the associated total uncertainty, for the mMγ ranges of interest. The expected Higgs and Z boson
signal yields, along with the total systematic uncertainty, for φγ and ργ, estimated using simulations, are also shown
in parentheses.

Observed yields (Mean expected background) Expected signal yields
Mass range [GeV] H Z

All 81–101 120–130 [B = 10−4] [B = 10−6]
φγ 12051 3364 (3500 ± 30) 1076 (1038 ± 9) 15.6 ± 1.5 83 ± 7
ργ 58702 12583 (12660 ± 60) 5473 (5450 ± 30) 17.0 ± 1.7 7.5 ± 0.6

Upper limits are set on the branching fractions for the Higgs and Z boson decays into M γ using the CLs
modified frequentist formalism [68] with the profile-likelihood-ratio test statistic [69]. For the upper limits
on the branching fractions, the SM production cross section is assumed for the Higgs boson [16], while
the ATLAS measurement of the inclusive Z boson cross section is used for the Z boson signal [58], as
discussed in Section 3. The results are summarised in Table 3. The observed 95% CL upper limits on the
branching fractions for H → φγ and Z → φ γ decays are 208 and 87 times the expected SM branching
fractions, respectively. The corresponding values for the ργ decays are 52 and 597 times the expected SM
branching fractions, respectively. Upper limits at 95% CL on the production cross section times branching
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Figure 5: The (a) mK+K−γ and (b) mπ+π−γ distributions of the selected φγ and ργ candidates, respectively, along with
the results of the maximum-likelihood fits with a background-only model. The Higgs and Z boson contributions
for the branching fraction values corresponding to the observed 95% CL upper limits are also shown. Below the
figures the ratio of the data to the background-only fit is shown.

fraction are also estimated for the Higgs boson decays, yielding 25.3 fb for the H → φγ decay, and 45.5 fb
for the H → ργ decay.

The systematic uncertainties described in Section 6 result in a 14% deterioration of the post-fit expected
95% CL upper limit on the branching fraction in the H → φγ and Z → φγ analyses, compared to the
result including only statistical uncertainties. For the ργ analysis the systematic uncertainties result in a
2.3% increase in the post-fit expected upper limit for the Higgs boson decay, while for the Z boson decay
the upper limit deteriorates by 29%.

Table 3: Expected and observed branching fraction upper limits at 95% CL for the φγ and ργ analyses. The ±1σ
intervals of the expected limits are also given.

Branching Fraction Limit (95% CL) Expected Observed
B (H → φγ) [ 10−4 ] 4.2+1.8

−1.2 4.8

B (Z → φγ) [ 10−6 ] 1.3+0.6
−0.4 0.9

B (H → ργ) [ 10−4 ] 8.4+4.1
−2.4 8.8

B (Z → ργ) [ 10−6 ] 33+13
−9 25

8 Summary

A search for the decays of Higgs and Z bosons into φγ and ργ has been performed with
√

s = 13TeV
pp collision data samples collected with the ATLAS detector at the LHC corresponding to integrated
luminosities of up to 35.6 fb−1. The φ and ρ mesons are reconstructed via their dominant decays into
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the K+K− and π+π− final states, respectively. The background model is derived using a fully data driven
approach and validated in a number of control regions including sidebands in the K+K− and π+π− mass
distributions.

No significant excess of events above the background expectations is observed, as expected from the
SM. The obtained 95% CL upper limits are B (H → φγ) < 4.8 × 10−4, B (Z → φγ) < 0.9 × 10−6

,B (H → ργ) < 8.8 × 10−4 and B (Z → ργ) < 25 × 10−6.
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