

Radiation damage status of the ATLAS silicon strip detectors (SCT)

Poster at the11th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors (HSTD11), Okinawa, Japan. 10-15 December 2017

Summary

- ATLAS SCT (~60m²) has been working well over 7 years at LHC.
- Radiation received is now up to 3×10^{13} cm⁻² in 1MeV n-eq fluence.
- Steady increase and annealing of leakage current have been observed in good agreements with two models.
- Part of sensors pass the type inversion point. Detailed studies continue.

Operational status

• 98.7% of the SCT elements are active as of Nov. 2017.

The ATLAS SemiConductor Tracker (SCT)

2112 Barrel + 1976 Endcap modules

Barrel cylinder assembly (2005)

- p-on-n 285µm thick Si sensors with 80µm pitch strips, 12cm long
- Total Silicon sensor area ~60m²
- Hamamatsu (88%) and CiS(12%)
- ~ 6M channels of digital readout with 1 fC threshold at every 25ns
- Cooled at -5° C to 6° C by 2-phase C₃F₈

Barrel modules and cooling pipes

• SCT is the central tracking device for the Higgs discovery (2012).

luminosity at LHC Point-1.

modules with CiS sensors

Full Depletion Voltage

• Full depletion voltage V_{FD} depends on the effective doping concentration N_{eff}

- Radiation ϕ creates acceptors and removes donors and N_{eff} changes as [3]
- $N_{eff} = N_{eff}^{0} N_{C}^{0} (1 e^{-c\phi}) g_{C}\phi g_{a}e^{-t/\tau_{a}}\phi g_{Y}(1 \frac{1}{1 + t/\tau_{Y}})\phi$
- Type inversion $n \rightarrow p$ occurs and V_{FD} gets higher due to the anti-annealing effect.

- V_{FD} has been studied using I_{leak} , cluster-size and noise, but no reliable methods are found yet.
- According to Hamburg model, Barrel 3 is type inverted by now and V_{FD} will reach 150V at the 2023 end.

Leakage Current

• Leakage current is proportional to the fluence ϕ ,

 $\boldsymbol{I}_{leak} = \alpha(\boldsymbol{T}, \boldsymbol{t}) \cdot \boldsymbol{V} \cdot \boldsymbol{\phi}$ with temperature-sensitive annealing like

 $\alpha(t) = \alpha_I \cdot \exp(-t/\tau_I) + \alpha_0^* - \beta \cdot \ln(t/t_0)$ Hamburg model[3] $\alpha(t) = a_1 e^{-t/\tau_1} + a_2 e^{-t/\tau_2} + a_3 e^{-t/\tau_3} + a_4 e^{-t/\tau_4} + a_5 e^{-t/\tau_5}$ Sheffield - Harper model [4]

• All modules draw rather uniform HV current as of Oct. 2017

Barrels (Periodic bumps in Barrel 3) due to higher temperature setting in one cooling loop.)

Endcaps (Side-A is higher due to higher temperature. High-eta modules draw higher current as predicted by FLUKA simulation.)

• Using histories of sensor temperatures and delivered luminosities since 2010, the leakage current data are compared with predictions by two annealing models. Excellent agreements are observed.

Full depletion voltage of Barrel 3

Noise and Gain

Evolution of leakage current of 4 barrel layers and model prediction

Taka Kondo (KEK) on behalf of the ATLAS Collaboration Ref: [1] ATL-GEN-2005-001, [2] R. Wunstorf, Thesis NIM A466(2001)308, [3] M. Moll, Thesis DESY(1999), [4] R. Harper, Thesis U of Sheffield(2001)

