
Performance of GeantV EM Physics Models

G Amadio1, A Ananya2, J Apostolakis2, A Aurora2, M
Bandieramonte2, A Bhattacharyya3 C Bianchini1 6, R Brun2, P
Canal4, F Carminati2, G Cosmo2, L Duhem5, D Elvira4, G Folger2, A
Gheata2, M Gheata2 7, I Goulas2, R Iope1, S Y Jun4, G Lima4, A
Mohanty3, T Nikitina2, M Novak2, W Pokorski2, A Ribon2, R
Seghal3 O Shadura2, S Vallecorsa2, S Wenzel2, and Y Zhang2

1Parallel Computing Center at São Paulo State University (UNESP), São Paulo, Brazil
2CERN, EP Department, Geneva, Switzerland
3Bhabha Atomic Research Centre (BARC), Mumbai, India
4Fermilab† , MS234, P.O. Box 500, Batavia, IL, 60510, USA
5Intel Corporation, Santa Clara, CA, 95052, USA
6Mackenzie Presbyterian University, São Paulo, Brazil
7Institute of Space Sciences, Bucharest-Magurele, Romania

E-mail: syjun@fnal.gov

Abstract. The recent progress in parallel hardware architectures with deeper vector pipelines
or many-cores technologies brings opportunities for HEP experiments to take advantage of SIMD
and SIMT computing models. Launched in 2013, the GeantV project studies performance gains
in propagating multiple particles in parallel, improving instruction throughput and data locality
in HEP event simulation on modern parallel hardware architecture. Due to the complexity of
geometry description and physics algorithms of a typical HEP application, performance analysis
is indispensable in identifying factors limiting parallel execution. In this report, we will present
design considerations and preliminary computing performance of GeantV physics models on
coprocessors (Intel Xeon Phi and NVidia GPUs) as well as on mainstream CPUs.

1. Introduction
Recent discoveries in experimental High Energy Physics (HEP) would not be possible without
leveraging advances in scientific computing, especially in the areas of simulation, reconstruction,
and physics analysis for large-scale data sets. For more than two decades, HEP programs have
taken advantage of automatic performance gains coming from increases in processor clock speed
and high throughput computing using either local clusters (Farms) or distributed resources
around the world (GRIDs). However, the hardware landscape has significantly changed toward
parallel computing architecture, but the code developed and used within HEP is not yet utilizing
the increased length of the number of threads or vector processing units [1]. Furthermore,
demands for computing power are ever-increasing for future HEP programs, especially for
High-luminosity LHC experiments. In order to overcome computing challenges ahead of the
community and to benefit from the full processing power of the latest chips, we must improve
our software architecture and increase the amount of work that can be done in parallel within
a similar memory budget.

FERMILAB-CONF-17-045-CD

Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.



Within the HEP software ecosystem, event simulation is one of the most time consuming parts
of the work flow. However, the basis of HEP detector simulation is mostly independent from the
details of individual experiments and thus is easy to share among experiments. Consequently,
any run-time performance improvement in physics event simulation can have a significant impact
on the amount and quality of HEP simulation overall.

Geant4 [2, 3, 4] is the most widely used simulation toolkit in contemporary HEP experiments,
but does not efficiently utilize the vector capability of modern CPUs as it has been designed
for sequential executions. To explore emerging computer technologies in order to significantly
increase run-time performance of detector simulation, the GeantV project [5, 6] was launched
in 2013. The project studies performance gains from propagating multiple tracks from multiple
events in parallel, improving code and data locality in the process. Using code specialized
to take advantage of the hardware specifics, it aims to leverage both the vector pipelines in
modern processors and the availability of coprocessors, including the Xeon Phi and general
purpose GPUs. GeantV, as the next generation simulation toolkit, will provide SIMD (Single
Instruction Multiple Data) and SIMT (Single Instruction Multiple Threads) capable components
of concurrent framework, geometry and navigation, physics and other services for HEP particle
transport working on modern hardware. In this paper we focus on the techniques explored
to enhance the existing electromagnetic (EM) physics models utilizing parallel hardware
architectures.

2. Vectorization of Physics Models
The typical HEP event consists of a set of particles produced by a primary collision and
subsequent secondary interactions or decays. Conventional HEP detector simulation processes
all tracks of an event sequentially even though multiple events can be processed simultaneously
(event-level parallelism) using multiple processors or threads. In contrast, GeantV explores
particle-level parallelism by grouping similar tracks and processing them in a vectorized manner
to maximize locality of both data and instructions. To take full advantage of SIMD or SIMT
architectures, identical operations should be executed on multiple data which requires substantial
re-engineering HEP software and computing models.

Due to the complexity of the geometry and magnetic field description used for general-
purpose collider detectors or many other types of experiments, navigation in geometry usually
consumes a significant fraction of simulation time. VecGeom [7, 8], as the backbone of the
GeantV geometry implementation, has been developed to support multi-particles transport in a
vectorized manner on modern hardware platforms using the concept of backend interfaces and
has already demonstrated significant performance gains on both CPU and coprocessors. The
current status of VecGeom and its performance can be found in detail elsewhere [9]. However, it
is important to note that vectorization of physics is also indispensable to avoid scalar bottlenecks
in GeantV. The pie chart in Figure 1 shows CPU allocation for simulating H → ZZ (Z decays
to all channels) events generated by PYTHIA [10] in pp̄ collisions at the center of mass energy,√
s = 13 TeV using the CMS detector [11] (geometry and the magnetic field map excerpted from

CMS software) and Geant4. Assuming that physics (physics processes, pseudo-random number
generation and math library) accounts for about 40% of the total CPU time for a typical HEP
detector simulation, the maximum performance gain would be less than 2.5 even if the rest of
GeantV components were fully vectorized.

It is very challenging to vectorize physics processes and models as they undergo many
conditional branches and heavily depend upon data. Consequently, vectorization of physics
models requires not only proper algorithm decompositions but also data reorganization in
order to maximize instruction throughput and to minimize memory access. To build coherent
strategies to make efficient use of parallel architectures for specific physics tasks, it is also critical
to understand computing performance of each component quantitatively.



Figure 1. A standalone CMS detector simulation with H → ZZ events from pp̄ collisions at
LHC simulated with Geant4: (left) CPU allocation for linked objects, (right) the fraction of the
average number of steps per event by the particle type.

One of approaches of GeantV physics implementation is to develop a vectorized physics
module by refactoring existing Geant4 physics codes and leveraging vectors and threads,
adopting the same technique used in VecGeom. In Geant4, EM and hadron physics are two major
pillars of the description of particle interactions in the passage through detectors. Although the
general process of how to track EM particles and hadrons is similar, details of the implementation
are significantly different as they undergo different nature of interactions. Since most of the
secondary particles produced by primary particle interactions with matter are electrons or
photons in typical HEP events and their contribution to the fraction of the average number
of steps per event is significant, as shown in the right plot in Figure 1, a set of physics models
simulating EM interactions is a good candidate to be vectorized for GeantV. Furthermore, EM
physics is a self-contained e±, γ cascade processes which facilitates re-grouping similar tasks
and accumulating a large basket of the same particle type, which may be run on coprocessors
efficiently. An example set of EM physics processes and models for high energy electrons and
photons is summarized in Table 1.

Table 1. A list of electromagnetic physics processes and models of electron and photon.

Primary Process Model Secondaries Survivor

Compton Scattering Klein-Nishina e− γ
γ Pair-Production Bethe-Heitler e−e+ –

Photo-Electric Effect Sauter-Gavrila e− –
Ionization Moller-Bhabha e− e−

e− Bremsstrahlung Seltzer-Berger γ e−

Multiple Scattering Goudsmit-Saunderson – e−

e+ Annihilation Heitler γγ –

In this section, we briefly describe EM physics models and sampling techniques suitable for
SIMD and SIMT architectures.



2.1. EM Physics Models
An essential component of particle interactions with matter is the final state analysis described by
a physics model associated with the selected physics process for a given step; the physics process
and the distance before interaction are determined by the mean free path analysis beforehand.
In most EM physics models, the atomic differential cross section of the underlying physics
process plays a central role in updating kinematic states of the primary particle or producing
secondary particles if necessary. For example, if the selected physics is the Compton process
for a given step, the final state of the scattered photon (angle and energy) is sampled based
on the two dimensional probability distribution function (PDF) of the Klein-Nishina differential
cross section [12] for the given energy of the incoming photon. Then, a secondary particle, the
recoil electron, is produced due to the inelastic scattering of the photon on atom. In Geant4,
combined composition and rejection methods [13, 14, 15] are often used to sample variables
following PDFs used in EM physics models as inverse functions of their cumulative distributions
are not analytically calculable in general. However, composition and rejection methods are not
suitable for vectorization due to a loop drawing a random number and testing it until one of
the number is selected. Alternative sampling methods which can be effectively vectorized will
be considered and some examples are described below.

2.2. Sampling Methods
The alias sampling method [16, 17] is similar to the acceptance-rejection method, but it uses an
alias outcome for the rejected case which is thrown away in the traditional acceptance-rejection
method. It recasts the original PDF with N equally probable events, each with likelihood
c = 1/N , but keeps information of the original distribution in the alias table. The alias table
consists of the alias and the non-alias probability. Unlike composition and rejection methods,
the alias method can be effectively vectorized as each sampling procedure follows the same
instructions without a branch or a conditional exit. It is also as accurate as the traditional table
look-up method, which is neither vectorizable nor efficient due to its use of a binary search.
One drawback of the method is that it may introduce a potential bias in the resulting output
distribution if the PDF is significantly non-linear within a bin. Nonetheless, we adopt the alias
method for random samplings used in EM physics models whenever appropriate, especially for
secondary particle productions.

Another popular Monte Carlo technique that can effectively vectorize sampling processes in
conjunction with composition and rejection methods is an iterative shuffling algorithm. It applies
the split operation [18] for accepted trials and repeating sampling only for rejected cases until
all elements are accepted and packed into the output collection. The method is guaranteed to
reproduce the original distribution without any bias. However, there is an irreducible overhead
in each shuffling loop for reorganizing data which may out-weight the gains from vectorization.
The shuffling method is preferable when the sampling efficiency based on the rejection is poor
and there are a large set of vector elements.

The last option is the combination of vector operations and scalar loops, which can be applied
to any sampling algorithm. As the performance of this approach intrinsically suffers from the
Amdahl’s law, it may be only considered when the large portion of sampling procedure can be
directly vectorizable while other methods are inefficient for a given algorithm.

3. Implementation
GeantV has been designed from the start to enable the use of multiple modern hardware
platforms. It is important for the long-term relevance of the project to preserve the option
open to use existing platforms, as well as future hardware or software developments. In this
section, we briefly describe the structure of code implementation for vector physics models.



3.1. Architecture Backends
GeantV uses backends, which are software layers between the generic, platform-independent
simulation code and the hardware-specific details (e.g. SIMD vector registers or GPU threads)
and their software-related constructs like SIMD intrinsics, or CUDA C++ extensions. The main
purpose of the backends is to isolate all the complexity of low-level, high performance details
behind simplified abstractions which are then available for use by carefully designed, generic
kernels. Examples of currently available backends are the scalar, vector, and cuda backends.
The vector backend uses the Vc library [19] or UME::SIMD [20] to promote explicit SIMD
vectorization by the client code in the kernels. Alternatively, both the cuda and scalar backends
use standard types, since the GPU registers are scalar. Detailed descriptions of a backend can
be found elsewhere [21, 22].

3.2. Generic kernels
Kernels are high-performance versions of performance-critical algorithms, developed using
generic programming and based on the data structures defined by the backends. Each physics-
relevant algorithm is coded into a separate kernel so we speak of algorithms and kernels
interchangeably. In order to take full advantage of the performance capabilities of the underlying
hardware, some important choices were made:

• Inlined functions are used extensively, to avoid the overhead due to function calls.

• Virtual function calls inside the kernels are avoided and replaced by static polymorphism.
Kernels themselves are coded in terms of C++ templates, with a specific backend type as the
template parameter. Platform-specific, high-performance kernels are built at compilation
time, based on the generic kernels and the backends, selected by a user request or local
hardware configuration.

• Branching of execution flow is strictly minimized. Kernels can only use conditional
constructs sparingly, preferentially using constant-expression conditions known at
compilation time.

Input data for the algorithms come as kernel arguments, triggering the compile-time instantiation
of the binary objects appropriate for the hardware used.

3.3. Data Organization
The basic flow of data in vector physics models is that a group of particles (a basket of tracks
received from the GeantV scheduler or high level interfaces of physics processes) with similar
properties is processed by the parallel map pattern [18] that applies a function to every element
of collected data in parallel or in a vectorized way. Each track contains a set of elements (data
members) describing the state of the particle during the course of tracking. Position, momentum
or energy of the track are frequently queried and updated throughout the physics process and
should be laid out contiguously in memory for efficient vector or parallel operations. Therefore,
the organization of track data is one of important considerations to achieve efficient memory
accesses for both SIMD and SIMT - SIMT (GPU architect) is distinct from SIMD which requires
the multiple data elements for a single instruction to be strictly aligned in a vector register.

In general, the Structure of Arrays (SoA) is more efficient than the Array of Structures (AoS)
both for SIMD and SIMT [23]. Currently, interfaces to physics processes specialized only for
the vector backend take track data in the SoA format. With SoA tracks, each vector kernel
processes a set of vector instructions on coalesced chunks of SoA track elements for the number
of iterations equivalent to the number of tracks within the basket divided by the corresponding
vector size of SIMD instruction sets (2 for SSE, 4 for AVX, 8 for IMCI(MIC) and AVX512 for
the double precision).



Another consideration for effective vectorization is related to the table look-up used in the
vectorized sampling procedure with alias tables. Sampling using the alias technique involves
scattered memory accesses to get the final state variable in parallel. For example, sampling
outgoing photon energies in the Compton process using the alias table randomly selects target
bins with values that usually are not contiguous in memory. For the vector backend, gather
operations are used to rearrange queried data (scattered in memory) into a contiguous memory
segment so that subsequent instructions can be executed through vector pipelines. The scatter
operation is also required to store the vector of results back into the original track data. Since
a gather operation itself is an additional sequential operation, it introduces an overhead in the
performance of the sampling kernel.

4. Performance
As vectorized EM physics models adopt generic implementations for different architectures, it
is critical to understand the computing performance of physics kernels and to validate results.
Since physics kernels are designed to be architecture-independent, they can be executed in the
exactly same way for different backends, allowing direct comparison of simulation results. To
test the implementation of sampling algorithms, we extended the verification to execute the same
operations using the original Geant4 library. Simulated quantities such as the final energy and
angle of the primary track as well as kinematic distributions of secondary particles have been
compared and verified with respect to results obtained by Geant4. Verification of EM physics
models developed for parallel computing architectures in the GeantV project is described in
detail elsewhere [24, 25].

To have correct and efficient parallel code, performance analysis is an essential part of the
development cycle. As the primary measure of the computing performance, we define the relative
speedup as the ratio between the time taken by a set of kernels with a specific backend (Scalar,
Vector, Cuda and etc) and by the Geant4 code to execute the same task. For the purpose of
performance measurements, input particles are generated according to an exponentially falling
spectrum within a valid energy range for each model - for this paper, the energy range from 2
MeV to 20 MeV where all tested EM models are valid. Even though the relative speedup is
not an absolute measure of the speedup, because the efficiency of sampling varies as a function
of the energy, it can be used as a general guideline for performance comparisons, to identify
potential problems, and to tune models optimized for a specific architecture.

Figure 2 shows preliminary performance results of the alias method tested on IntelR© Xeon
Phi 5110P (Knight Corner, KNC): (left) the relative speedup of the scalar backend for the alias
method with respect to Geant4 composition and rejection methods as a function of number
of tracks, (right) the relative speedup of the vector backend using Vc and the IMCI (MIC)
instruction set (8 vector pipelines for double precision). The alias method for all models
tested except Klein-Nishina (the Compton scattering) performs better than the composition
and rejection method owing to the algorithmic change in sampling shown in the left plot. The
alias method for the Compton scattering is example where memory transaction (alias table
look-up) is computationally more expensive than arithmetic calculations (the composition and
rejection algorithm for the Klein-Nishina distribution). Nevertheless, overall vector gains from
SIMD with respect to the scalar code are about 3.3 to 6.5 on Xeon Phi (KNC) depending on
the number of tracks and EM models shown in the right plot.

Figure 3 shows additional performance results for the new EM models tested on the latest
IntelR© Xeon Phi 7120 (Knight Landing, KNL) using the UME::SIMD vector backend and the
AVX512 instruction set (left), and on NVidia GPU (Kepler K20M) (right) for simulating
interactions and sampling secondary particles using the alias method - the host used for
performance evaluation is IntelR© Xeon E5-2620 for both KNL and GPU. Performance gains by
the UME::SIMD vector backend on KNL is about 2 to 3 for 8-64 tracks - note that performance



Figure 2. Performance results of simulating particles that undergo EM processes using the alias
sampling method tested on IntelR© Xeon Phi 5110P (Knight Corner): (left) the ratio between
the CPU time taken by the alias method and by the Geant4 composition and rejection method
(both scalar codes), (right) the relative speedup of the vector backend using Vc and the IMCI
(MIC) instruction set with respect to the scalar.

of UME::SIMD is underestimated as a vectorized pRNG for UME::SIMD is not implemented
yet. The plot on the right shows that performance potential on GPU is about 30 even without
any optimization for the CUDA backend. However, it requires around 104 tracks per process for
GPU tasks to be efficient as the number of physical cores of K20M is 2496.

Figure 3. Performance results of simulating particles that undergo EM processes using the alias
sampling method: (left) the relative speedup of the vector backend tested on IntelR© Xeon Phi
7120 (Knight Landing) using UME::SIMD and the AVX512 instruction set with respect to the
scalar code, (right) the ratio between the time taken by the cuda code on NVidia GPU (Tesla
K20M) and by the scalar code on Intel Xeon (E5-2620).



5. Conclusion
As the GeantV project assembles the various pieces of the infrastructure: scheduler, geometry,
and physics, we demonstrate feasibility of implementing electromagnetic physics processes and
models for SIMD/SIMT architectures with common source codes and see tantalizing hints
that the goal of significantly improving the performance of physics simulation applications is
achievable. For example, as shown in this paper, vectorizing physics code improves simulation
speed by a factor 2 to 6 depending on the hardware architecture and vector backends tested on
Xeon Phi coprocessors. Further investigation is necessary to verify this result and implement
the same type of improvements to other EM physics models. We must see if they can be
similarly improved and if these improvements carry through when applied within a full GeantV
simulation.

Acknowledgments
† Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with
the United States Department of Energy.

References
[1] Sverre J 2012 Many-core experience with HEP software at CERN openlab J. Phys.: Conf. Series 396 042043
[2] Allison J et al 2006 Geant4 Developments and Applications IEEE Trans. on Nucl. Sci. 53 No. 1 270-278
[3] Agostinelli S et al 2003 Geant4 - A Simulation Toolkit Nucl. Instrum. Methods Phys. Res. A 506 250-303
[4] Ahn S et al 2014 Geant4-MT: bringing multi-threading into Geant4 production Joint International Conference

on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013), 04213
[5] Apostolakis J et al 2014 A concurrent vector-based steering framework for particle transport J. Phys.: Conf.

Series 523 012004
[6] http://git.cern.ch/pub/geant
[7] Apostolakis J et al 2015 J. Phys.: Conf. Series 608 012023
[8] https://gitlab.cern.ch/VecGeom/VecGeom
[9] Wensel S and Zhang Y 2016 Accelerating Navigation in the VecGeom Geometry Modeller Computing in High

Energy Physics 2016
[10] Sjöstrand T, Mrenna S and Skands P 2006 PYTHIA 6.4 Physics and Manual JHEP 0605
[11] CMS Collaboration 1994 CMS, the Compact Muon Solenoid: Technical proposal, CERN-LHCC-94-38,

CERN-LHCC-P-1
[12] Klein O and Nishina Y Z 1929 Physik 52 853
[13] Butcher J C and Messel H 1960 Nucl. Phys. 20 15
[14] Messel H and Crawford D 1970 Electron-Photon shower distribution, Pergamon Press
[15] Ford R and Nelson W 1985 SLAC-265, UC-32
[16] Walker A J 1977 ACM Trans. Math. Software. 3, 3, 253-256
[17] Brown F J, Martin W R, and Calahan D A 1981 Trans. Am. Nucl. Soc. 38 354-355
[18] McCool M, Robison A, and Reinders J 2012 Structured Parallel Programming, Morgan Kaufmann Publishers
[19] Kretz M and Lindenstruth V 2011 Vc: A C++ library for explicit vectorization Software: Practice and

Experience. Online at http://dx.doi.org/10.1002/spe.1149

[20] UME::SIMD A library for explicit simd vectorization. Online at https://github.com/edanor/umesimd

[21] Wenzel S 2014 Towards a high performance geometry library for particle-detector simulation 16th
International workshop on Advanced Computing and Analysis Techniques in physics research (ACAT)

[22] de Fine Licht J 2014 First experience with portable high-performance geometry code on GPU GPU
Computing in High Energy Physics 2014

[23] Canal P et al 2013 High energy electromagnetic particle transportation on the GPU Computing in High
Energy Physics 2014

[24] Amadio G et al 2016 Verification of Electromagnetic Physics Models for Parallel Computing Architectures
in the GeantV project Computing in High Energy Physics 2016

[25] Amadio G 2016 Electromagnetic Physics Models for Parallel Computing Architectures J. Phys.: Conf. Series
762 012014




