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Abstract

A search for long-lived particles was performed with data corresponding to an in-
tegrated luminosity of 2.6 fb−1 collected at a center-of-mass energy of 13 TeV by the
CMS experiment in 2015. The analysis exploits two customized topological trigger
algorithms, and uses the multiplicity of displaced jets to search for the presence of
a signal decay occurring at distances between 1 and 1000 mm. The results can be
interpreted in a variety of different models. For pair-produced long-lived particles
decaying to two b quarks and two leptons with equal decay rates between lepton fla-
vors, cross sections larger than 2.5 fb are excluded for proper decay lengths between
70–100 mm for a long-lived particle mass of 1130 GeV at 95% confidence. For a spe-
cific model of pair-produced, long-lived top squarks with R-parity violating decays to
a b quark and a lepton, masses below 550–1130 GeV are excluded at 95% confidence
for equal branching fractions between lepton flavors, depending on the squark decay
length. This mass bound is the most stringent to date for top squark proper decay
lengths greater than 3 mm.
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1 Introduction
The observation of physics beyond the standard model (BSM) is one of the main objectives of
the ATLAS and CMS experiments at the CERN LHC. With no signal yet observed, these exper-
iments have placed stringent bounds on BSM models. The majority of these searches focus on
particles with lab frame decay lengths of cτ < 1 mm and incorporate selection requirements
that reject longer-lived particle decays. This leaves open the possibility that long-lived particles
could be produced but remain undetected. The present analysis exploits information originat-
ing from the CMS calorimeters to reconstruct jets and measure their energies. The information
from reconstructed tracks, in particular the transverse impact parameter, is used to discrimi-
nate the signal of a jet whose origin is displaced with respect to the primary vertex, from the
background of ordinary multijet events. The analysis is performed on data from proton-proton
collisions at

√
s = 13 TeV, collected with the CMS detector in 2015. The data set corresponds

to an integrated luminosity of 2.6 fb−1. Results for similar signatures at
√

s = 8 TeV have been
reported by ATLAS [1–3], CMS [4], and LHCb [5, 6]. In this Letter, we present a new, more
general approach to searching for long-lived particles decaying to combinations of jets and lep-
tons, which is inclusive in event topology and does not require the reconstruction of a displaced
vertex.

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward
calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detec-
tors. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke
outside the solenoid.

The silicon tracker measures charged particles with |η| < 2.5. It consists of silicon pixels and
silicon strip detector modules. The innermost pixel (strip) layer is at a radial distance of 4.3 (44)
cm from the beamline.

The ECAL consists of lead tungstate crystals and provides coverage in |η| < 1.48 in a barrel
region (EB) and 1.48 < |η| < 3.0 in two endcap regions (EE). A preshower detector composed
of two planes of silicon sensors interleaved with a total of 3 radiation lengths of lead is located
in front of the EE. The inner face of the ECAL is at a radial distance of 129 cm from the beamline.

In the region |η| < 1.74, the HCAL cells have widths of 0.087 in pseudorapidity and 0.087 radi-
ans in azimuth (φ). In the η-φ plane, and for |η| < 1.48, the HCAL cells map onto 5× 5 arrays of
ECAL crystals to form calorimeter towers projecting radially outwards from close to the nomi-
nal interaction point. For 1.74 < |η| < 3.00, the coverage of the towers increases progressively
to a maximum of 0.174 in ∆η and ∆φ. Within each tower, the energy deposits in ECAL and
HCAL cells are summed to define the calorimeter tower energies and are subsequently used to
provide the energies of jets. The inner face of the HCAL is at a radial distance of 179 cm from
the beamline.

For each event, jets are clustered from energy deposits in the calorimeters, using the FASTJET [7]
implementation of the anti-kT algorithm [8], with the distance parameter 0.4. Tracks that are
within ∆R =

√
(∆η)2 + (∆φ)2 < 0.4 of a jet are considered to be associated with the jet.

Events of interest are selected using a two-tiered trigger system [9]. The first level, composed
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of custom hardware processors, uses information from the calorimeters and muon detectors to
select events at a rate of around 100 kHz within a time interval of less than 4 µs. The second
level, known as the high-level trigger (HLT), consists of a farm of processors running a version
of the full event reconstruction software optimized for fast processing, and reduces the event
rate to around 1 kHz before data storage.

A more detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, can be found in Ref. [10].

3 Data sets and simulated samples
Events are selected using two dedicated HLT algorithms, designed to identify events with dis-
placed jets. Both algorithms have a requirement on HT, which is defined as the scalar sum of
the transverse momentum pT of the jets in the event, considering only jets with pT > 40 GeV
and |η| < 3.0. The inclusive algorithm accepts events with HT > 500 GeV and at least two
jets, each with pT > 40 GeV, |η| < 2.0, and no more than two associated prompt tracks. Tracks
are classified as prompt if their transverse impact parameter relative to the beam line, IP2D,
is less than 1 mm. The exclusive algorithm requires HT > 350 GeV and at least two jets with
pT > 40 GeV, |η| < 2.0, no more than two associated prompt tracks, and at least one associated
track with IP2D > 5σIP2D , where σIP2D is the calculated uncertainty in IP2D. Data collected by
algorithms with identical HT requirements and no tracking requirements are used to study the
performance of the online selection algorithms.

Events are selected offline by requiring at least two jets with pT > 60 GeV and |η| < 2.0.
Two classes of events are considered: events (i) passing the inclusive online algorithm and
with HT > 650 GeV and (ii) passing the exclusive online algorithm and with HT > 450 GeV.
Combining these two classes of events results in 786 002 unique events. We refer to these events
as passing the event selection or simply “Selection” in the efficiency tables.

The main source of background events originates from multijet production. The properties
of this background process are studied using a simulated multijet sample, generated with
MADGRAPH5 [11] and interfaced with PYTHIA8 [12] for parton showering and hadronization.
The NNPDF 2.3 [13] parton distribution functions (PDFs) are used to model the parton mo-
mentum distribution inside the colliding protons. The event simulation includes the effect of
additional proton-proton collisions in the same bunch crossing and in bunch crossings nearby
in time, referred to as pileup. Simulated samples are reweighted to match the pileup profile
observed in data. The detector response is simulated in detail using GEANT4 [14].

The analysis is interpreted with a set of benchmark signal models. The Jet-Jet model predicts
pair-produced long-lived scalar neutral particles X0, each decaying to a quark-antiquark pair,
where possible pairs include u, d, s, c, and b quarks. The two scalars are produced through
a 2 → 2 scattering process, mediated by a Z∗ propagator, and the decay rate to each flavor is
assumed to be the same. The resonance mass mX0 and average proper decay length cτ0 are var-
ied between 50 and 1500 GeV and between 1 and 2000 mm, respectively. The model resembles
hidden valley models that produce long-lived neutral final states [15]. The trigger efficiencies
for mX0 = 300 GeV and cτ0 = 1, 30, and 1000 mm are 30%, 81%, and 42%, respectively. For
example, the trigger efficiencies are 2%, 14%, and 92% for cτ0 = 30 mm and mX0 = 50, 100,
and 1000 GeV respectively. The trigger efficiency is calculated from the total number of events
passing only the logical OR of the two trigger paths.

The B-Lepton model contains pair-produced long-lived top squarks in R-parity [16] violating
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models of supersymmetry (SUSY) [17]. Each top squark decays to one b quark and a lepton,
with equal decay rates to each of the three lepton flavors. The resonance mass mt̃ and proper
decay length cτ0 are varied between 300 and 1000 GeV and between 1 and 1000 mm, respec-
tively. For example, the trigger efficiencies for mt̃ = 300 GeV and cτ0 = 1, 30, and 1000 mm are
15%, 41%, and 23%, respectively. The trigger efficiencies are 64%, 71%, and 74% for cτ0 = 30
mm and mt̃ = 500, 700, and 1000 GeV, respectively.

Variations of these models with modified branching fractions are also investigated. The Light-
Light model is the Jet-Jet model excluding decays to b quarks (equal decays to lighter quarks)
and the B-Muon, B-Electron, and B-Tau models are derived from the B-Lepton model with 100%
branching fraction to muons, electrons, and τ leptons, respectively. Both leptonic and hadronic
τ lepton decays are included in the B-Tau interpretation. All signal samples are generated with
PYTHIA8, with the same configuration as for the multijet sample.

4 Event selection and inclusive displaced-jet tagger
In general, events contain multiple primary vertex (PV) candidates, corresponding to pileup
collisions occurring in the same proton bunch crossing. The PV reconstruction employs Gaus-
sian constraints on the reconstructed position based on the luminous region, which is evalu-
ated from the reconstructed PVs in many events. A description of the PV reconstruction can
be found in Ref. [18]. The displaced-jet identification variables utilize the PV with the highest
p2

T sum of the constituent tracks. The results of the analysis are found to be insensitive to the
choice of the method used to select the PV, since the uncertainty in the transverse position of
the primary vertex is small relative to the signal model decay lengths.

The analysis utilizes a dedicated tagging algorithm to identify displaced jets. For each jet, the
algorithm takes as input the reconstructed tracks within ∆R < 0.4 of the jet. All tracks with
pT > 1 GeV that are selected by all iterations of track reconstruction are considered. A detailed
list of requirements for the CMS track collection can be found elsewhere [18]. Three variables
are considered for each jet in the event. The first variable quantifies how likely it is that the jet
originates from a given PV. For a given jet, αjet(PV) is defined for each PV as

αjet(PV) =
∑tracks∈PV ptracks

T

∑tracks ptracks
T

, (1)

where the sum in the denominator is over all tracks associated with the jet and the sum in the
numerator is over just the subset of these tracks originating from the given PV. The tagging
variable αmax is the largest value of αjet(PV) for the jet.

The second variable quantifies the significance of the measured transverse displacement for
the jet. For each track associated with the jet, the significance of the track’s transverse impact
parameter, IP2D

sig, is computed as the ratio of the track’s IP2D and its uncertainty. The tagging
variable ÎP2D

sig is the median of the IP2D
sig distribution of all tracks in a jet.

The third variable quantifies the angular difference between the emission angle of a given track
in a jet and the parent particle flight direction. For each track associated with the jet, Θ2D is
computed as the angle between the track ~pT = (px, py) at the track’s innermost hit and the
vector connecting the chosen PV to this hit in the transverse plane. The tagging variable Θ̂2D is
the median of the Θ2D distribution for the tracks associated with the jet.

It should be noted that leptons giving rise to calorimeter energy deposits (tau leptons and elec-
trons) will also be classified as “displaced jets”, if the associated track(s) satisfies the tagging
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Figure 1: Comparison of distributions for the displaced-jet tagging variables αmax (left), ÎP2D
sig

(center), and Θ̂2D (right) in data and simulation. The data distributions (circles) are compared
to the expected background distributions from multijet events (squares) and several Jet-Jet
benchmark models (dotted histograms) of pair-produced long-lived neutral scalar particles
with mX0 = 700 GeV and different values of cτ0. The vertical lines designate the value of the
requirement for the chosen displaced-jet tag. The direction of the arrow indicates the values
included in the requirement. All distributions have unit normalization.

.

criteria, and thus contribute to the search sensitivity. Additionally, by not requiring the recon-
struction of a displaced vertex, the analysis is becomes sensitive to pair-produced long-lived
decays with a single reconstructed track per decay.

Figure 1 shows the distributions of the three tagging variables for data events, simulated mul-
tijet events, and simulated signal events with mX0 = 700 GeV and several values of cτ0. Note
that any mismodeling resulting from the multijet background does not affect the analysis be-
cause the background estimate is derived from data. Simulation of the multijet background
only describes misidentified displaced jets.

The displaced-jet identification criteria are αmax < 0.05, log10(ÎP
2D
sig) > 1.5, and log10(Θ̂2D) >

−1.6. This selection was chosen by selecting parameters that yielded the best discovery sensi-
tivity for the Jet-Jet model across all generated decay lengths and masses.

The average displaced-jet tagging efficiency with no trigger selection applied for mX0 = 700 GeV
is 4% for cτ0 = 1 mm, 57% for cτ0 = 30 mm, and 33% for cτ0 = 1000 mm. For cτ0 > 1000 mm,
the long-lived particles typically decay beyond the tracker. For cτ0 < 3 mm, the experimen-
tal signature for signal events becomes increasingly difficult to distinguish from that of back-
ground b quark jets.

The search is performed by applying the selection criteria described above and by counting
the number of tagged displaced jets, Ntags. In addition to the online and offline requirements
described in Section 3, the analysis signal region requires Ntags ≥ 2. Efficiencies are reported
for the Jet-Jet and B-Lepton models as a function of decay length with fixed mass (Table 1) as
well as a function of mass with fixed decay length (Table 2). Efficiencies for the Light-Light,
B-Tau, B-Electron, and B-Mu models are included in Appendix A as Tables A.1 and A.2.

5 Background prediction
Background events arise from jets containing tracks that are mismeasured as displaced and jets
containing tracks from the weak decays of strange, charm, and bottom hadrons.
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Table 1: Signal efficiencies (in %) for mX0 = mt̃ = 300 GeV for various values of cτ0 for the
Jet-Jet and B-Lepton models. Selection requirements are cumulative from the first row to the
last.

Jet-Jet
cτ0 [mm] 1 10 100 1000
≥2 tags 2.33 ± 0.15 39.49 ± 0.63 54.54 ± 0.74 14.58 ± 0.38
Trigger 2.16 ± 0.15 38.12 ± 0.62 39.32 ± 0.63 8.07 ± 0.28
Selection 2.09 ± 0.14 37.09 ± 0.61 36.53 ± 0.60 6.67 ± 0.26
≥3 tags 0.17 ± 0.04 14.14 ± 0.38 16.72 ± 0.41 1.36 ± 0.12
≥4 tags 0.01 ± 0.01 4.73 ± 0.22 4.71 ± 0.22 0.17 ± 0.04

B-Lepton
cτ0 [mm] 1 10 100 1000
≥2 tags 0.45 ± 0.02 15.82 ± 0.13 31.52 ± 0.19 8.55 ± 0.10
Trigger 0.29 ± 0.02 11.45 ± 0.11 17.08 ± 0.14 3.22 ± 0.06

Selection 0.27 ± 0.02 9.91 ± 0.11 13.33 ± 0.12 2.08 ± 0.05
≥3 tags 0.02 ± 0.01 2.46 ± 0.05 3.81 ± 0.07 0.37 ± 0.02
≥4 tags — 0.30 ± 0.02 0.48 ± 0.02 0.03 ± 0.01

Table 2: Signal efficiencies (in %) for the Jet-Jet and B-Lepton models with cτ0 = 30 mm and for
various values of mass. Selection requirements are cumulative from the first row to the last.

Jet-Jet
mX0 [GeV] 50 100 300 1000 1500
≥2 tags 2.71 ± 0.10 14.80 ± 0.22 54.24 ± 0.74 79.93 ± 0.89 82.55 ± 0.91
Trigger 0.50 ± 0.04 5.39 ± 0.13 46.41 ± 0.68 74.05 ± 0.86 77.65 ± 0.88
Selection 0.30 ± 0.03 3.70 ± 0.11 44.75 ± 0.67 73.99 ± 0.86 77.53 ± 0.88
≥3 tags 0.05 ± 0.01 1.09 ± 0.10 20.87 ± 0.46 49.42 ± 0.70 55.28 ± 0.74
≥4 tags — 0.22 ± 0.03 6.81 ± 0.26 25.45 ± 0.50 32.26 ± 0.57

B-Lepton
mt̃ [GeV] 300 600 800 1000
≥2 tags 31.52 ± 0.19 47.32 ± 0.23 52.53 ± 0.24 55.88 ± 0.35
Trigger 17.08 ± 0.14 35.03 ± 0.20 40.40 ± 0.21 43.14 ± 0.30
Selection 14.70 ± 0.13 32.34 ± 0.19 36.94 ± 0.20 39.26 ± 0.29
≥3 tags 4.11 ± 0.07 10.76 ± 0.11 13.29 ± 0.12 15.00 ± 0.18
≥4 tags 0.55 ± 0.03 1.83 ± 0.05 2.69 ± 0.05 3.09 ± 0.08

To maintain the statistical independence of the events that are used to perform the prediction
and the events in the signal region, the misidentification rate is measured in a control sample
defined as events with Ntags ≤ 1 (as shown in Fig. 2), while the signal region requires Ntags ≥ 2.
Additionally, this control sample definition limits signal contamination. There are 1391 events
in data with Ntags = 1. The size of the bias introduced by only measuring the misidentification
rate in events with Ntags ≤ 1 is quantifiable. For the chosen tag requirement, the effect of
removing events with Ntags > 1 on the predicted number of two tag events is negligible (0.4%)
compared to the statistical uncertainty of the prediction.

Since the proportion of tracks identified as being displaced is small and approximately con-
stant, the likelihood of tagging a nondisplaced jet as a displaced jet decreases approximately
exponentially with the number of tracks associated with the jet, Ntracks. Figure 2 shows the frac-
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Figure 2: The fraction of jets passing the displaced-jet tagging criteria as a function of the num-
ber of tracks associated with the jet. The results are from data events with Ntags ≤ 1, collected
with the displaced-jet triggers and passing the offline selection criteria.

tion of jets that are tagged as displaced jets in data as a function of Ntracks. This function is the
misidentification rate of tagging a prompt jet as displaced (assuming no signal contamination)
and is interpreted as the probability p(Ntracks) of being tagged. This parameterization allows
an event by event estimation of the probability of tagging any multiplicity of displaced jets.

Because of the high jet production cross section, even though the misidentification rate is
small, events with one tagged displaced jet are completely dominated by standard model back-
grounds, and signal contamination can be ignored, even if the associated cross section is large.
This is explicitly verified with signal injection tests, which are discussed below.

The misidentification rate is used to predict the probability P(Ntags) for an event to have Ntags
tagged jets. For instance, for an event m with three jets j1, j2, and j3, there is one jet configuration
with no tags, with a probability:

Pm(Ntags = 0) = (1− p1)(1− p2)(1− p3),

where pi = p(Ntracks(ji)). Similarly, there are three jet configurations for this same event to
have Ntags = 1:

Pm(Ntags = 1) = p1(1− p2)(1− p3) + (1− p1)p2(1− p3) + (1− p1)(1− p2)p3.

The probability of finding Ntags tags in the m event is:

Pm(Ntags) = ∑
jet-configs

∏
i∈tagged

pi ∏
k∈nontagged

(1− pk). (2)

Tagged jets enter the product as pi and nontagged jets enter as (1− pi). Equation (2) is used
to compute Pm(Ntags), under the assumption that the sample does not contain any signal. The
number of events expected for a given value of Ntags is computed as

Nevents(Ntags) = ∑
m

Pm(Ntags), (3)

where m runs only over events with fewer than two tagged jets. The prediction is then com-
pared to the observed Ntags multiplicity in events with two or more tagged jets, to assess the
presence of a signal.
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We validate this procedure in the absence (background-only test) and presence (signal injection
test) of a signal, using simulated events.

The background-only test is performed by predicting the tag multiplicity from the simulated
multijet sample, using the distribution obtained for the misidentification rate. In order to
populate the large-Ntags region of the distribution, a looser version of the displaced-jet tag-
ger is employed in this test. The loose displaced-jet identification criteria are αmax < 0.5,
log10(ÎP

2D
sig) > 0.4, and log10(Θ̂2D) > −1.7. The average misidentification rate of the loose

(chosen) tag definition is 2.6% (0.05%). The loose definition requirements were relaxed until a
minimal number of two tag events were available to perform the background-only test. The full
sample of events passing the event selection is divided into multiple independent samples and
the background prediction validated. The predicted background of Ntags events in simulated
multijet events is found to be consistent with the observed number of events. The associated
pull distributions are found to have mean 0 and variance 1 as expected in the ideal case.

The signal injection test is performed by adding events of pair-produced resonances decaying
to two jets to the multijet sample and repeating the procedure described above. In this case, the
chosen displaced-jet tagger is used. The injected signal has mX0 = 700 GeV and cτ0 = 10 mm
with a cross section varied in the range from 30 fb to 3 pb. The jet probability is computed as
in the data, where no prior knowledge of the nature of the events (signal or background) is
available. In this case, the misidentification rate is derived from the mixed sample itself, in-
cluding the contamination from the injected signal sample. The signal contamination is found
to have a minimal impact on the predicted number of events in the signal region. For ex-
ample, with an injected signal cross section of 30 fb, 19 events are observed with two tags,
while the two tag prediction is consistent with the predictions obtained for zero injected events:
Nevents(Ntags ≥ 2) = 1.3. As another example, with an injection signal cross section of 3 pb,
no three tag events are predicted, while 1520 events with three tags are observed. Given the
insensitivity of the predicted background to large amounts of injected signal, the analysis is
robust to signal contamination of the control region.

6 Systematic uncertainties
6.1 Background systematic uncertainties

There is an uncertainty in the estimated background level associated with the choice of method
used. This uncertainty is evaluated by repeating the background prediction procedure de-
scribed in Section 5 using the looser version of the displaced-jet tagging algorithm. The result
is compared with that obtained using the nominal method and the observed difference of 7.5%
is taken as the systematic uncertainty from this source. This value for the uncertainty is used
also for the three or more tags case.

The statistical uncertainty in the measured misidentification rate as a function of Ntracks is prop-
agated to the predicted Ntags distribution as a systematic uncertainty. This systematic uncer-
tainty is calculated for each tag multiplicity bin. The uncertainty for the two tag bin is 13%.

6.2 Signal systematic uncertainties

All signal systematic uncertainties are calculated individually for each model, for each mass
and decay length point, and for each value of Ntags in the signal region. In cases where the
uncertainty depends on the mass, decay length, and/or decay mode of the long-lived particle, a
range is quoted, referring to the uncertainty for Ntags = 2 events. A summary of the systematic
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Table 3: Summary of the signal systematic uncertainties. When the uncertainty depends on the
specific features of the models (mass, decay length, and decay mode of the long-lived particle)
a range is quoted, which refers to the computed uncertainty for Ntags = 2 events.

Signal systematic uncertainty Effect on yield
HT trigger inefficiency 5%
Jet pT trigger inefficiency 5%
Trigger online tracking modeling 1–35%
Integrated Luminosity 2.3%
Acceptance due to the PDF choice 1–6%
Displaced-jet tag variable modeling 1–30%

uncertainties associated with the signal is given in Table 3.

The uncertainty in the trigger emulation is measured by comparing the predicted efficiency for
simulated multijet events with that measured for data collected with a loose HT trigger. The
observed difference at the offline HT threshold (5%) is taken as an estimate of the uncertainty
in the emulation of the online HT requirement. Similarly, the uncertainty induced by the online
versus offline jet acceptance is obtained from the shift in the trigger efficiency when the offline
minimum jet pT requirement is increased from 60 to 80 GeV (5%).

The systematic uncertainty in the modeling of the online tracking efficiency is obtained by
studying the online regional track reconstruction in data and in simulation. The online values
of IP2D and IP2D

sig are varied by the magnitude of the mismodeling found in events collected by
control sample triggers consisting of only an HT requirement (HT > 425 and HT > 275). The
new values are used to determine if the event would still pass at least one of the trigger paths
and its associated offline HT requirement. The Ntags distribution is recalculated with the values
varied up and down. The relative change in the number of events per Ntags bin is taken as the
systematic uncertainty. For Ntags = 2, this uncertainty varies from 1 to 35%.

The systematic uncertainty in the luminosity is 2.3% [19].

The uncertainty arising from the choice of PDFs for pair-produced particles with masses in
the range of 50–1500 GeV is found to be 1–6%. An ensemble of alternative PDFs is sampled
from the output of the NNPDF fit. Events are reweighted according to the ratio between these
alternative PDF sets and the nominal ones. The distribution of the signal prediction for these
PDF ensembles is used to quantify this uncertainty.

The systematic uncertainty in the modeling of the jet tagging variables in the signal simulation
samples is estimated from the displaced track modeling in multijet events in data and simula-
tion. The mismodeling of the measured value of Θ2D and IP2D

sig for single tracks is propagated
to the final tag distribution by varying the individual measured values in simulation by the
difference in the measured value relative to data (3–10%). The tagging variables are then recal-
culated. The Ntags distribution is recalculated with the new values. The systematic uncertainty
is assigned as the relative change in the number of events for each Ntags bin. For the two tag
bin, this varies from 1 to 30% depending on the mass and decay length. The mismodeling of
αmax is found to have a negligible effect on the signal efficiency, as the requirement is relatively
loose.
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Table 4: The predicted and observed number of events as a function of the number of tagged
displaced jets. The prediction is based on the misidentification rate derived from events with
fewer than two tags. The full event selection is applied. The uncertainty corresponds to the
total background systematic uncertainty.

Ntags Expected Observed
2 1.09± 0.16 1
≥3 (4.9± 1.0)× 10−4 0

7 Results and interpretation
The numerical values for the expected and observed yields are summarized in Table 4. The
observed yields are found to be consistent with the predicted background, within the statistical
and systematic uncertainties. No evidence for a signal at large values of Ntags is observed.

Exclusions for each model are obtained from the predicted and observed event yields in Ta-
ble 4 and the signal efficiencies in Tables 1 and 2 and Tables A.1 and A.2 in Appendix A. All
bounds are derived at 95% confidence level (CL) according to the CLs prescription [20–23] in
the asymptotic approximation. For each limit derivation, we consider events with Ntags ≥ 2,
using independent bins for Ntags = 2 and Ntags ≥ 3. Finer binning of the tag multiplicity for
Ntags > 3 is found to have a negligible effect on the expected limits. Cross section upper limits
are presented as a function of the mass and proper decay length of the parent particle. The
analysis sensitivity is maximal for cτ0 ranging from 10 to 1000 mm. Mass exclusion bounds at
fixed decay length are also derived by comparing the excluded cross section with the values
predicted for the benchmark models described in Section 3. In the case of SUSY models, the
next-to-leading order (NLO) and next-to-leading logarithmic (NLL) t̃ t̃∗ production cross sec-
tion computed in the large-mass limit for all other SUSY particles [24–29] is used as a reference.

Figure 3 shows the excluded pair production cross section for the Jet-Jet and B-Lepton models.
The Light-Light model is shown in Figure A.1 of Appendix A and has nearly identical perfor-
mance to the Jet-Jet model. The B-Lepton sensitivity is similar to that observed for the Jet-Jet
model, although it is less stringent as additional jets give higher efficiency than additional lep-
tons from both the tagging and triggering perspectives. Cross sections larger than 2.5 fb are
excluded at 95% CL, for cτ0 in the range 70–100 mm, which corresponds to the exclusion of
parent masses below 1130 GeV.

The exclusions for the B-Tau, B-Electron and B-Muon models are shown in Figs. A.2, A.3, and
A.4 of Appendix A, respectively. The B-Tau and B-Electron models have similar performance at
high mass with slightly stronger limits for the B-Electron model at lower mass (mt̃ = 300 GeV)
and longer decay length (cτ0 > 10 mm). The highest mass excluded in the B-Electron (B-Tau)
model is mt̃ = 1145 (1150)GeV at cτ0 = 70 mm, corresponding to a cross section of 2.3 (2.2) fb
at 95% CL.

In the case of the B-Muon model, the analysis uses jets reconstructed from calorimetric deposits
and the two muons have small or no associated calorimeter deposits, thus the signal reconstruc-
tion efficiency and the displaced-jet multiplicity are smaller. This results in a weaker exclusion
bound. The highest mass excluded in the B-Muon model is mt̃ = 1085 GeV at cτ0 = 70 mm,
corresponding to a cross section upper limit of 3.5 fb at 95% CL.
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Figure 3: The excluded cross section at 95% CL for the Jet-Jet model (upper left) and the B-
Lepton model (upper right) as a function of the mass and proper decay length of the parent
particle. The B-Lepton plot also shows the expected (observed) exclusion region with one stan-
dard deviation experimental (theoretical) uncertainties, utilizing a NLO+NLL calculation of the
top squark production cross section. The lower plot shows the excluded cross section at 95%
CL for the Jet-Jet model as a function of the proper decay length for three illustrative smaller
values of the mass. The shaded bands in the lower plot represent the one standard deviation
uncertainties in the expected limits.
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8 Summary
A search for long-lived particles has been performed with data corresponding to an integrated
luminosity of 2.6 fb−1 collected at a center-of-mass energy of 13 TeV by the CMS experiment
in 2015. This is the first search for long-lived particles decaying to jet final states in 13 TeV
data and the first search to demonstrate explicit sensitivity to long-lived particles decaying to
τ leptons. The analysis utilizes two customized topological trigger algorithms and an offline
displaced-jet tagging algorithm, where the multiplicity of displaced jets is used to search for the
presence of a signal. As no excess above the predicted background is found, upper limits are
set at 95% confidence level on the production cross section for long-lived resonances decaying
to two jets or to a lepton and b quark. The limits are calculated as a function of the mass and
proper decay length of the long-lived particles. For resonances decaying to a b quark and a
lepton, cross sections larger than 2.5 fb are excluded for proper decay lengths of 70–100 mm.
The cross section limits are also translated into mass exclusion bounds, using a calculation
of the top squark production cross section as a reference. Assuming equal lepton branching
fractions, pair-produced long-lived R-parity violating top squarks lighter than 550–1130 GeV
are excluded, depending on the squark proper decay length. This mass exclusion bound is
currently the most stringent bound available for top squark proper decay lengths greater than
3 mm.
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A Appendix

Table A.1: Signal efficiencies (in %) for cτ0 = 30 mm and various values of mass with mod-
ified branching ratios relative to the Jet-Jet and B-Lepton models. Selection requirements are
cumulative from the first row to the last.

Light-Light
mX0 [GeV] 50 100 300 1000 1500
≥2 tags 2.84 ± 0.12 15.56 ± 0.29 54.87 ± 0.92 80.52 ± 1.11 82.19 ± 1.14
Trigger 0.53 ± 0.05 5.70 ± 0.17 47.14 ± 0.85 74.85 ± 1.07 77.07 ± 1.10
Selection 0.33 ± 0.04 3.90 ± 0.14 45.68 ± 0.84 74.80 ± 1.07 76.96 ± 1.10
≥3 tags 0.05 ± 0.02 1.11 ± 0.08 21.77 ± 0.58 50.04 ± 0.88 55.36 ± 0.93
≥4 tags — 0.23 ± 0.04 7.38 ± 0.34 25.80 ± 0.63 32.47 ± 0.71

B-Electron
mt̃ [GeV] 300 600 800 1000
≥2 tags 39.01 ± 0.65 53.70 ± 0.75 59.62 ± 0.78 62.42 ± 1.11
Trigger 22.95 ± 0.50 38.07 ± 0.63 43.06 ± 0.66 45.21 ± 0.95
Selection 21.59 ± 0.48 37.02 ± 0.62 39.47 ± 0.64 42.20 ± 0.92
≥3 tags 7.86 ± 0.29 14.28 ± 0.38 17.37 ± 0.42 20.39 ± 0.64
≥4 tags 1.37 ± 0.12 3.32 ± 0.19 4.34 ± 0.21 4.69 ± 0.31

B-Tau
mt̃ [GeV] 300 600 800 1000
≥ 2 tags 34.98 ± 0.61 51.42 ± 0.73 57.20 ± 0.76 59.43 ± 1.07
Trigger 20.20 ± 0.46 39.78 ± 0.64 45.46 ± 0.68 47.62 ± 0.96
Selection 17.17 ± 0.43 37.47 ± 0.62 43.64 ± 0.67 44.26 ± 0.92
≥3 tags 5.21 ± 0.24 13.29 ± 0.37 16.15 ± 0.40 19.13 ± 0.61
≥4 tags 0.86 ± 0.10 3.09 ± 0.18 3.68 ± 0.19 4.48 ± 0.29

B-Muon
mt̃ [GeV] 300 600 800 1000
≥ 2 tags 20.09 ± 0.46 35.46 ± 0.60 41.18 ± 0.64 43.13 ± 0.93
Trigger 6.63 ± 0.26 24.73 ± 0.50 31.85 ± 0.56 34.10 ± 0.82
Selection 5.25 ± 0.24 21.40 ± 0.47 27.42 ± 0.52 31.18 ± 0.79
≥ 3 tags 0.34 ± 0.06 3.03 ± 0.18 5.28 ± 0.23 6.08 ± 0.35
≥ 4 tags — 0.12 ± 0.04 0.68 ± 0.08 0.68 ± 0.12
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Table A.2: Signal efficiencies (in %) for mX0 = mt̃ = 300 GeV and for various values of cτ0 with
modified branching ratios relative to the Jet-Jet and B-Lepton models. Selection requirements
are cumulative from the first row to the last.

Light-Light
cτ0 [mm] 1 10 100 1000
≥2 tags 2.20 ± 0.19 40.49 ± 0.80 54.92 ± 0.93 14.55 ± 0.47
Trigger 2.04 ± 0.18 39.16 ± 0.78 39.63 ± 0.79 8.20 ± 0.36
Selection 2.03 ± 0.18 38.41 ± 0.77 36.99 ± 0.76 6.89 ± 0.33
≥3 tags 0.19 ± 0.05 14.77 ± 0.48 16.70 ± 0.51 1.48 ± 0.15
≥4 tags — 5.11 ± 0.28 4.73 ± 0.27 0.22 ± 0.06

B-Electron
cτ0 [mm] 1 10 100 1000
≥2 tags 0.81 ± 0.10 20.51 ± 0.47 39.01 ± 0.65 11.46 ± 0.35
Trigger 0.40 ± 0.07 14.68 ± 0.40 22.95 ± 0.50 5.15 ± 0.23
Selection 0.40 ± 0.07 13.92 ± 0.39 20.34 ± 0.47 3.58 ± 0.19
≥3 tags 0.04 ± 0.02 4.22 ± 0.21 7.21 ± 0.28 0.82 ± 0.09
≥4 tags — 0.73 ± 0.09 1.19 ± 0.11 0.05 ± 0.02

B-Tau
cτ0 [mm] 1 10 100 1000
≥2 tags 0.48 ± 0.07 18.40 ± 0.45 34.98 ± 0.61 9.31 ± 0.32
Trigger 0.44 ± 0.07 14.63 ± 0.40 20.20 ± 0.46 3.81 ± 0.20
Selection 0.41 ± 0.07 12.45 ± 0.37 15.50 ± 0.41 2.37 ± 0.16
≥3 tags 0.02 ± 0.02 3.23 ± 0.19 4.62 ± 0.22 0.44 ± 0.07
≥4 tags — 0.53 ± 0.08 0.66 ± 0.09 0.02 ± 0.02

B-Muon
cτ0 [mm] 1 10 100 1000
≥2 tags 0.13 ± 0.04 8.02 ± 0.29 20.09 ± 0.46 4.03 ± 0.21
Trigger 0.05 ± 0.02 3.97 ± 0.21 6.63 ± 0.26 0.88 ± 0.10
Selection 0.04 ± 0.02 2.92 ± 0.18 4.21 ± 0.21 0.49 ± 0.07
≥3 tags — 0.23 ± 0.05 0.31 ± 0.06 0.03 ± 0.02
≥4 tags — 0.01 ± 0.01 — —
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Figure A.1: The excluded cross section at 95% CL for the Light-Light model as a function of the
mass and proper decay length of the parent particle X0 (left) and as a function of the proper
decay length for three illustrative smaller values of the mass (right). The shaded bands in the
right plot represent the one standard deviation uncertainties in the expected limits.
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Figure A.2: The excluded cross section at 95% CL for the B-Tau model as a function of the mass
and proper decay length of the parent particle t̃ (left) and as a function of the proper decay
length for two values of the mass (right). The left plot also shows the expected (observed)
exclusion region with one standard deviation experimental (theoretical) uncertainties, utilizing
a NLO+NLL calculation of the top squark production cross section. The right plot also shows
the expected left limits with one standard deviation uncertainties as bands. The NLO+NLL
calculation of the top squark production cross section is drawn horizontally in green for four
mass values.
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Figure A.3: The excluded cross section at 95% CL for the B-Electron model as a function of
the mass and proper decay length of the parent particle t̃ (left) and as a function of the proper
decay length for two values of the mass (right). The left plot also shows the expected (observed)
exclusion region with one standard deviation experimental (theoretical) uncertainties, utilizing
a NLO+NLL calculation of the top squark production cross section. The right plot also shows
the expected left limits with one standard deviation uncertainties as bands. The NLO+NLL
calculation of the top squark production cross section is drawn horizontally in green for four
mass values.
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mass and proper decay length of the parent particle t̃ (left) and as a function of the proper
decay length for two values of the mass (right). The left plot also shows the expected (observed)
exclusion region with one standard deviation experimental (theoretical) uncertainties, utilizing
a NLO+NLL calculation of the top squark production cross section. The right plot also shows
the expected left limits with one standard deviation uncertainties as bands. The NLO+NLL
calculation of the top squark production cross section is drawn horizontally in green for four
mass values.
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Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay,
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Bihan, N. Tonon, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules,
CNRS/IN2P3, Villeurbanne, France
S. Gadrat
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M. Bartók20, P. Raics, Z.L. Trocsanyi, B. Ujvari

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri

National Institute of Science Education and Research, Bhubaneswar, India
S. Bahinipati22, S. Bhowmik, P. Mal, K. Mandal, A. Nayak23, D.K. Sahoo22, N. Sahoo, S.K. Swain



23

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, U. Bhawandeep, R. Chawla, N. Dhingra, A.K. Kalsi, A. Kaur,
M. Kaur, R. Kumar, P. Kumari, A. Mehta, J.B. Singh, G. Walia

University of Delhi, Delhi, India
Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B.C. Choudhary, R.B. Garg, S. Keshri,
A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma, V. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj, R. Bhattacharya, S. Bhattacharya, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar,
A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy
Chowdhury, S. Sarkar, M. Sharan, S. Thakur

Indian Institute of Technology Madras, Madras, India
P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty15, P.K. Netrakanti, L.M. Pant,
P. Shukla, A. Topkar

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur, B. Sutar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity24,
G. Majumder, K. Mazumdar, T. Sarkar24, N. Wickramage25

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani26, E. Eskandari Tadavani, S.M. Etesami26, M. Khakzad, M. Mohammadi
Najafabadi, M. Naseri, S. Paktinat Mehdiabadi27, F. Rezaei Hosseinabadi, B. Safarzadeh28,
M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald
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S. Buontempoa, N. Cavalloa ,c, S. Di Guidaa ,d ,15, F. Fabozzia ,c, F. Fiengaa,b, A.O.M. Iorioa ,b,
W.A. Khana, L. Listaa, S. Meolaa,d ,15, P. Paoluccia ,15, C. Sciaccaa,b, F. Thyssena

INFN Sezione di Padova a, Università di Padova b, Padova, Italy, Università di Trento c,
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M. Herndon, A. Hervé, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless,
G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing,
China
3: Also at Universidade Estadual de Campinas, Campinas, Brazil
4: Also at Universidade Federal de Pelotas, Pelotas, Brazil
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