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The HL-LHC challenge
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= “Simple” extrapolation of data volume for HL-LHC
® Extract physics results requires to handle/analyze a lot more data!

* Are industry technologies suitable candidates for
user analysis?
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Input for the plot: Technical Proposal for the Phase-1l Upgrade
of the CMS Detector (https://cds.cern.ch/record/202 )
Main assumption: derived data x8 of RAW data

Use 200 PU events scenario for HL-LHC
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https://cds.cern.ch/record/2020886

Physics use case: Search for Dark Matter
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 [f It exists, Dark Matter would be produced in association with visible particles.
® Dark Matter particle(s) would propagate through the detector undetected while visible particles would leave signals in the CMS detector.

* The signature we search for in Dark Matter production at CMS is an energy imbalance, or “missing transverse energy”
associated with detectable particles.
® This signature is commonly referred to as “monoX” where “X” can be a light quark or gluon, a vector boson, or a heavy quark such as a bottom or top quark.

« We focus our search on the "monolop” signature, where the detectable particle is a top quark

2= Fermilab
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Analysis in ROOT - A multi-step process

Recorded and simulated Events centrally

produced Analysis Object Data (MINIAOD)
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 [nteractivity is the key to successtul analysis: “Search for the needle in the haystack”
® Select events, calculate new properties, train neutral nets, etc.

» Collaborations are big, hundreds of physicists are accessing the data

* Current Analysis Workflow

® Touches only a subset of the total data volume, but subset varies from analysis to analysis

® Complicated multi-step workflow because dataset is too large for interactive analysis

® Can take weeks using GRID resources and local batch systems

® Not all time spent is actual CPU, a lot of time is bookkeeping, resubmission of failed jobs, etc.

" [nput:
® Centrally produced output of reconstruction software, reduced content optimized for analysis
e Too big for interactive analysis

= Ntupling:
® Convert into format suited for interactive analysis
 Still too big for interactive analysis

= SKimming & Slimming:
® Reduce number of events and information content
e Analysts can explore data and simulation interactively

2= Fermilab
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Big Data

» New toolkits and systems collectively called "Big Data” technologies have
emerged to support the analysis of PB and EB datasets in industry.

» Our goals applying these technologies INSIGHT J
to HEP analysis challenge: o = )
» Reduce time-to-physics o o ol
® Educate our graduate students and el '
post docs to use Industry-based technologies

* Improves chances on the job market outside academia

* [ncreases the attractiveness of our fielc
® Use tools developed in larger communities reaching outside of our field

* We want to use an active LHC Run 2 analysis, searching for dark matter

with the CMS detector, as a testbed for “Big Data” technologies
® Starting point: Apache Spark

2= Fermilab
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Spark Workflow
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Convert once

* Main goal is to skim (reduce number of events) and slim (reduce

event content).

® Input: *.avro files (equivalent to big group ntuples)
® Qutput: *.parguet files (small size ~1GB) -> useful for analysis:
e Contains only the information needed i.e. SparkWorkflow performs the main analysis

BACON Avro

Scala code
on Spark

Skimming
&
Slimming

<

Parquet

* auto-generated from the bacon ROOT files:

® using the rootconverter package:
* hitps://github.com/diana-hep/rootconverter
* Any complex ROOT file can be converted to its corresponding Avro using the same
package
® auto-generated schema for bacon Avro

* https://github.com/CMSBigDataProject/SparkBaconAnalyzer/blob/master/test/data/
MC_schema.avsc

2= Fermilab
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Spark Workflow - Go functional!
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val mcsample = avrordd("hdfs://path/to/mcsample/*.avro") <= |nput

Two loops over

mcsample.persist()

file entries, .
oarallel jobs in { val mc_sumOfWeights = mcsample.map(_.GenInfo.weight).SUmM g S m of Weights for Simulation

Spark across // Second pass on data in cluster's memor

cluster val result = mcsample.filter(cuts).map (toKItuple(_, mc_sumOfWeights, mC_XSeC)) Main Event

Selection

result.toDF () .write.parquet("hdfs://path/to/mcsample ntuple") Output

Output ntuple is used for analysis e.g: plots, fits, tables

Output contains information of:
ntuple = spark.read.parquet("hdfs://path/to/mcsample ntuple") — < *° Object (e.g. Muon/Jet)
* Event (e.g. Luminosity)
information

ntuple.select("mass").show()

t

Physics plots!
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Infrastructure at Princeton

* 10 node SGI Linux Hadoop

® Intel Xeon CPU E5-2680 v2 @ 2.80GHz CPU processors, 256 GB RAM

® All servers mounted in one rack and interconnected using
switch

= Cloudera distribution of Hadoop configured in

mode using two namenodes
® Spark applications scheduled using YARN

® External shuffle service inside YARN node manager used-

memory-intensive jolbs with larger number of executor cor
® Distributed file system (HDFS)

« Converted Bacon Avro stored on the HDFES

8 Oliver Gutsche et. al. - CHEP 2016 - “Big Data” in HEP: A comprehensive use case study

a 10 Gigabit Ethernet

high-availability

0 Improved stability of

tainers
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Usability tests

9

We are looking at the “physicist” use case, we are
not assuming users to be GRID and HTC experts

 ROOT workflow: Ixplus/Ixbatch cluster at CERN = Spark workflow: Princeton cluster

Multi-pass workflow beta-tested with two users

Analysis requires sums of event weights as input to analysis code

® Complicated, uses a script to generate scripts: very ® Two lines of Scala code
complicated and inefficient. ® Spark/Scala caches ("persists’) a dataset in the first pass in
* [nefficiency could be fixed, but the complexity is a hurdle memory
®First pass executed serially * But: Cache maintained manually
® Second pass submitted in batch mode (Ixbatch) ® Second pass over the same dataset mostly or entirely in-
_ memory
Analysis code
® Analysis code easy to write and maintain ®Scala is a new language
* ROOT/C++ is well known in community * Learning curve
Bookkeeping
® Scripts designed around specific batch systems (could not be ®\ery portable (from Princeton system to Ixplus in no time)
moved easily) ® Partitioning can use automatic or custom facilities within Spark
®Partitioning (“job splitting) handled through sophisticated suite * example: RDD.repartition(numPartitions: Int)

of hand-written shell scripts

* Relies on physical location of data (i.e. files on EOS at
CERN)

2= Fermilab
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Performance tests

* Running both the Spark workflow and ROOT workflow on a single Ixplus node using one

core
® Input files on local disk: 1 GB ROOT file, 2 GB AVRO file; Caveat: ROOT file is compressed, AVRO is not

Spark ROOT

Analysis run without caching 9.4 sec 32.7 Sec
Reading from local disk & Computation 4.3 sec 26.8 secC
Writing to local disk 5.1 sec 5.9 sec

Analysis run with caching 5.0 sec
Reading from memory cache & Computation 0.4 sec

Writing to local disk 5.1 sec

= Conclusion:

® Comparing the performance of the two is not straight forward, more work needs to go into making the
comparison fair

® Spark is not order of magnitudes slower _
aF Fermilab
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Conclusions
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Investigating Big Data technologies to solve the HL-LHC data analysis challenge =» Apache Spark as a starting

point
® Fultills immediately 2 out of 3 goals:
e Educates our community to use industry-based technologies
* Uses tools developed in larger communities reaching outside of our field

In the first pass, we used non-optimized workflows for ROOT and Spark
® We concentrated on book-keeping and non-optimized performance

Spark workflow is more user-friendly; ease of use didn’'t come to a great performance cost (in the limit of the
presented comparison)

Working in parallel on same use case on NERSC resources reading HDFS files, providing an interesting

comparison to presented material
® Will be presented at the Grace Hopper Conference later this month

Now we want to dive deeper into the technology and use all its capabillities =» Restructure workflow and
optimize for respective technology

® Small-scale test for production of bacon Avro from MINIAOD in CMS software framework environment (CMSSW)
 https://github.com/nhanvtran/CMSSWToBigData
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