

"Big Data" in HEP: A comprehensive use case study

Oliver Gutsche, Matteo Cremonesi,, Bo Jayatilaka, Jim Kowalkowski, Saba Sehrish, Cristina Mantilla Suárez, Nhan Tran - Fermi National Accelerator Laboratory

Peter Elmer, Jim Pivarski, Alexey Svyatkovskiy - Princeton University

22nd International Conference on Computing in High energy and Nuclear Physics, 10.-14. October 2016

The HL-LHC challenge

- "Simple" extrapolation of data volume for HL-LHC
 - Extract physics results requires to handle/analyze a lot more data!
- Are industry technologies suitable candidates for user analysis?

Input for the plot: Technical Proposal for the Phase-II Upgrade of the CMS Detector (https://cds.cern.ch/record/2020880 Main assumption: derived data x8 of RAW data Use 200 PU events scenario for HL-LHC

Physics use case: Search for Dark Matter

- If it exists, Dark Matter would be produced in association with visible particles.
 - Dark Matter particle(s) would propagate through the detector undetected while visible particles would leave signals in the CMS detector.
- The signature we search for in Dark Matter production at CMS is an energy imbalance, or "missing transverse energy" associated with detectable particles.
 - This signature is commonly referred to as "monoX" where "X" can be a light quark or gluon, a vector boson, or a heavy quark such as a bottom or top quark.
- We focus our search on the "monoTop" signature, where the detectable particle is a top quark

Analysis in ROOT - A multi-step process

- Interactivity is the key to successful analysis: "Search for the needle in the haystack"
 - Select events, calculate new properties, train neutral nets, etc.
- Collaborations are big, hundreds of physicists are accessing the data
- Current Analysis Workflow
 - Touches only a subset of the total data volume, but subset varies from analysis to analysis
 - Complicated multi-step workflow because dataset is too large for interactive analysis
 - Can take weeks using GRID resources and local batch systems
 - Not all time spent is actual CPU, a lot of time is bookkeeping, resubmission of failed jobs, etc.

Input:

- Centrally produced output of reconstruction software, reduced content optimized for analysis
 - Too big for interactive analysis

• Ntupling:

- Convert into format suited for interactive analysis
 - Still too big for interactive analysis
- Skimming & Slimming:
 - Reduce number of events and information content
 - Analysts can explore data and simulation interactively

Big Data

- New toolkits and systems collectively called "Big Data" technologies have emerged to support the analysis of PB and EB datasets in industry.
- Our goals applying these technologies to HEP analysis challenge:
 - Reduce time-to-physics
 - Educate our graduate students and post docs to use industry-based technologies
 - Improves chances on the job market outside academia
 - Increases the attractiveness of our field
 - Use tools developed in larger communities reaching outside of our field
- We want to use an active LHC Run 2 analysis, searching for dark matter with the CMS detector, as a testbed for "Big Data" technologies
 - Starting point: Apache Spark

Spark Workflow

- Main goal is to skim (reduce number of events) and slim (reduce event content).
 - Input: *.avro files (equivalent to big group ntuples)
 - Output: *.parquet files (small size ~1GB) -> useful for analysis:
 - Contains only the information needed i.e. SparkWorkflow performs the main analysis

Convert once

Scala code on Spark

- auto-generated from the bacon ROOT files:
 - using the rootconverter package:
 - https://github.com/diana-hep/rootconverter
 - Any complex ROOT file can be converted to its corresponding Avro using the same package
 - auto-generated schema for bacon Avro
 - https://github.com/CMSBigDataProject/SparkBaconAnalyzer/blob/master/test/data/ mc_schema.avsc

Spark Workflow - Go functional!

Two loops over file entries, parallel jobs in Spark across cluster

```
// Reference the whole dataset (not individual files) val mcsample = avrordd("hdfs://path/to/mcsample/*.avro")
                                                                                Input
// First pass (and cache for later)
mcsample.persist()
val mc sumOfWeights = mcsample.map( .GenInfo.weight).sum
                                                                                    Sum of Weights for Simulation
// Second pass on data in cluster's memory val result = mcsample.filter(cuts).map(toNtuple(_, mc_sumOfWeights, mc_xsec))
                                                                                                         Main Event
                                                                                                         Selection
// Save as ntuple
result.toDF().write.parquet("hdfs://path/to/mcsample ntuple")
                                                                                       Output
              Output ntuple is used for analysis e.g: plots, fits, tables
                                                                                      Output contains information of:
# Bring the ntuple in as a DataFrame

    Object (e.g. Muon/Jet)

ntuple = spark.read.parquet("hdfs://path/to/mcsample ntuple")

    Event (e.g. Luminosity)

ntuple.select("mass").show()
                                                                                        information
                   Physics plots!
```


Infrastructure at Princeton

- 10 node SGI Linux Hadoop
 - Intel Xeon CPU E5-2680 v2 @ 2.80GHz CPU processors, 256 GB RAM
 - All servers mounted in one rack and interconnected using a 10 Gigabit Ethernet switch
- Cloudera distribution of Hadoop configured in high-availability mode using two namenodes
 - Spark applications scheduled using YARN
 - External shuffle service inside YARN node manager used to improved stability of memory-intensive jobs with larger number of executor containers
 - Distributed file system (HDFS)
- Converted Bacon Avro stored on the HDFS

Usability tests

We are looking at the "physicist" use case, we are not assuming users to be GRID and HTC experts

ROOT workflow: lxplus/lxbatch cluster at CERN

Spark workflow: Princeton cluster

Multi-pass workflow beta-tested with two users

Analysis requires sums of event weights as input to analysis code

- Complicated, uses a script to generate scripts: very complicated and inefficient.
 - Inefficiency could be fixed, but the complexity is a hurdle
- First pass executed serially
- Second pass submitted in batch mode (Ixbatch)
- Analysis code easy to write and maintain
 - ROOT/C++ is well known in community

- Two lines of Scala code
- Spark/Scala caches ("persists") a dataset in the first pass in memory
 - But: Cache maintained manually
- Second pass over the same dataset mostly or entirely inmemory

Analysis code

- Scala is a new language
 - Learning curve

Bookkeeping

- Scripts designed around specific batch systems (could not be moved easily)
- Partitioning ("job splitting) handled through sophisticated suite of hand-written shell scripts
 - Relies on physical location of data (i.e. files on EOS at CERN)

- Very portable (from Princeton system to Ixplus in no time)
- Partitioning can use automatic or custom facilities within Spark
 - example: RDD.repartition(numPartitions: Int)

Performance tests

- Running both the Spark workflow and ROOT workflow on a single Ixplus node using one core
 - Input files on local disk: 1 GB ROOT file, 2 GB AVRO file; Caveat: ROOT file is compressed, AVRO is not

	Spark	ROOT
Analysis run without caching	9.4 sec	32.7 sec
Reading from local disk & Computation	4.3 sec	26.8 sec
Writing to local disk	5.1 sec	5.9 sec
Analysis run with caching	5.5 sec	
Reading from memory cache & Computation	0.4 sec	
Writing to local disk	5.1 sec	

Conclusion:

- Comparing the performance of the two is not straight forward, more work needs to go into making the comparison fair
- Spark is not order of magnitudes slower

Conclusions

- Investigating Big Data technologies to solve the HL-LHC data analysis challenge → Apache Spark as a starting point
 - Fulfills immediately 2 out of 3 goals:
 - Educates our community to use industry-based technologies
 - Uses tools developed in larger communities reaching outside of our field
- In the first pass, we used non-optimized workflows for ROOT and Spark
 - We concentrated on book-keeping and non-optimized performance
- Spark workflow is more user-friendly; ease of use didn't come to a great performance cost (in the limit of the presented comparison)
- Working in parallel on same use case on NERSC resources reading HDF5 files, providing an interesting comparison to presented material
 - Will be presented at the Grace Hopper Conference later this month
- Now we want to dive deeper into the technology and use all its capabilities → Restructure workflow and optimize for respective technology
 - Small-scale test for production of bacon Avro from MINIAOD in CMS software framework environment (CMSSW)
 - https://github.com/nhanvtran/CMSSWToBigData

