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Abstract. The 2020 upgrade of the LHCb detector will vastly increase the rate of
collisions the Online system needs to process in software, in order to filter events in real
time. 30 million collisions per second will pass through a selection chain, where each step
is executed conditional to its prior acceptance.

The Kalman filter is a fit applied to all reconstructed tracks which, due to its time
characteristics and early execution in the selection chain, consumes 40% of the whole
reconstruction time in the current trigger software. This makes the Kalman filter a
time-critical component as the LHCb trigger evolves into a full software trigger in the
Upgrade.

I present a new Kalman filter algorithm for LHCb that can efficiently make use of any
kind of SIMD processor, and its design is explained in depth. Performance benchmarks
are compared between a variety of hardware architectures, including x86_ 64 and Power8,
and the Intel Xeon Phi accelerator, and the suitability of said architectures to efficiently
perform the LHCb Reconstruction process is determined.

1. Introduction

The LHCb detector will be upgraded in 2020 [1] to acquire data at an instantaneous
luminosity of 2 x 1033cm™2s~! and to collect a dataset of at least 50 fb~!. At the same time
the first stage of filtering in the Data Acquisition process, currently known as hardware
level trigger, will be discontinued in favor of a full software trigger. Consequently the
throughput that the software level trigger will need to sustain in order to maintain a
steady triggering rate will dramatically increase, due to both the increase in rate of events
processed in software, and the influx of larger events.

To be able to cope with the increased data rate, several hardware architectures are
currently being explored. While the current LHCb High Level Trigger farm is composed
solely of Intel Xeon processors, in the last few years many High Performance Computing
sites are adopting other alternative hardware architectures, such as IBM Power X, FPGAs,
or manycore architectures like GPUs or Intel Xeon Phi. This has provoked an interest in
the High Energy Physics community, and more concretely within the LHCb collaboration,
and the question is whether these architectures are suitable for performing the High Level
Trigger in a sustainable way, taking into account the economical, power consumption and
software maintainability aspects.

The Kalman filter [2] is a linear quadratic estimator, which is applied to estimate the
trajectory of the particles as they travel through the LHCb detector. Table 1 shows a time
characterization of the first stage of the LHCb High Level Trigger (HLT1). The Kalman
filter algorithm is the single largest time contributor in the LHCb software chain, taking
about 60 % of the HLT1 reconstruction time.

Following Amdahl’s law [3], the achievable performance gain of an algorithm is bounded
by its parallelizable portion. Due to the nature of the LHCb experiment, many particles



Algorithm Time contribution (%)
Kalman filter 59.80
Hlt1UpgradeForward HPT 22.44
PrVeloHlt 6.38
PrVeloUTHIt 3.25
HltUpgradePV3D 2.96
Hlt1UpgradeTwoTrackMVAUnit 2.82
PrPixelStoreClusters 1.36

Table 1: Time characterization of most time consuming algorithms in the first stage of
LHCb High Level Trigger (HLT1). Only algorithms with a time contribution of more than
1% are shown.

travel through the detector simultaneously and independently, which makes the Kalman
filter a massively parallelizable problem in this context.

In this paper, I present a hardware architecture independent design of a Kalman filter
algorithm, Cross Kalman'. A focus is given to the LHCDb use case, taking advantage
of the fact that many independent particles can be processed simultaneously. I explore
possible performance gains over the current LHCb Reconstruction software, and compare

the speedup obtained over a variety of architectures.

2. The LHCb Kalman filter

The Kalman filter algorithm is typically implemented following a two-stage design,
consisting of a Predict and an Update stage, performed sequentially. The Predict stage
uses the built trajectory to extrapolate where the particle is expected to be on the next
timestamp. Update uses the detector information (a hit in the detector) to correct the
forming trajectory.

In the LHCb use case, a Kalman filter is applied to a particle trajectory throughout the
detector, correcting it along the way using the detected hits of the particle. In hindsight,
reconstructing one particle trajectory consists in applying repeatedly Predict and Update
sequentially, hit after hit. A schematic of this process is shown in Figure 1.

Furthermore, in LHCD the trajectory reconstruction for a particle is performed in three
steps: First, a Forward Kalman filter is performed, in the upstream direction of the detector
(right in figure 1). Then, a Backward Kalman filter is performed, in the downstream
direction of the detector. Finally, a smoothed trajectory, consisting of the average of the
Forward and Backward trajectory, is calculated by the Smoother component.

Due to the sequential nature of the Kalman filter process, there is no room for
parallelization of the reconstruction of a single particle trajectory. However, O(100)
particles are reconstructed within each collision independently. This fact poses the
motivation for the algorithm design.

3. Cross Kalman algorithm design

The design of the Cross Kalman algorithm has been carried out with a Single Instruction
Multiple Data (SIMD) architecture in mind, focusing on three design aspects: the control
flow, the underlying data structures and a fine-grained optimization of the most time-
consuming parts.

3.1. Control flow
As mentioned above, particles are processed hit by hit in the Forward direction, followed by
the Backward direction and the Smoother. Conceptually, the processing of hits of different

! https://gitlab.cern.ch/dcampora/cross_kalman.
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Figure 1: Schematic of LHCb Kalman filter process. Two particles collide inside the VELO
subdetector (in red). Two particles are reconstructed (in blue), leaving signal nodes in the
VELO, TT and tracking stations. Reference nodes are placed at certain points in the
trajectory to trigger state calculations for posterior usage in the reconstruction.

particles is independent, and so the Kalman filter can be parallelized horizontally, which is
envisioned in three stages as well: Forward, Backward and Smoother. In each of the stages,
the hits of different particles can be processed in parallel. Given that different particles
may have a different number of hits, a static scheduler is needed to guarantee a maximum
resource utilization in each computation step.

The scheduler accepts a width parameter to decide how many hits are to be processed in
one step of the computation. The width of the scheduler should fit with the SIMD width,
and the choice of the most performant width depends on the architecture. Furthermore,
the design of the algorithm is not tied to a particular precision, but rather it accepts a
configurable precision length to choose the according floating point standard at compilation
time. These two factors will determine how many elements are executed in parallel at each
computation step: For a CPU supporting Advanced Vector Extensions (AVX) and choosing
double floating point precision, up to four elements will be processable at a time, whereas
for a CPU supporting AVX-512 and single precision, up to sixteen elements would be
processable at a time.

Since particle trajectories contain varying number of hits, some steps will not fully fill
the requested scheduler width. In order to minimize the number of steps, the particles are
preordered by decreasing number of hits.

When considering the type of scheduler to implement, static and dynamic schedulers
were considered. A static scheduler determines its order of execution prior to start
executing iterations. On the other hand, a dynamic scheduler chooses the elements to
execute on-the-fly. The results of the Forward and the Backward stages will be used by
the Smoother. If one were to use a dynamic scheduler, the output of the first two stages
would not be guaranteed to be aligned, and in order for the Smoother to produce the
correct output, it would have to construct aligned data structures, requiring additional
memory copy operations. The static scheduler circumvents this by design: the scheduler is
calculated once, iterated to process the Forward, and iterated in reverse for the Backward.
That way, the Smoother will not require any additional memory operations.

Figure 2 depicts some iterations computed with the described scheduler, with a width
set to four. The last column depicts the particle-hit being processed at the moment. This
scheduler can be iterated forwards or backwards, maintaining the sequentiality enforced by
the Kalman filter process. Due to its flexible design, execution can be optimized on multi
and manycore SIMD architectures, with varying vector widths.



it in out act vector (#particle-#hit)

#540: 0000 0001 1111 112-9 80-11 81-11 113-10 }
#541: 0001 1110 1111 112-10 80-12 81-12 79-3 }
#542: 1110 0000 1111 107-2 109-1 108-2 79-4
#543: 0000 0000 1111 107-3 109-2 108-3 79-
#544: 0000 0000 1111 107-4 109-3 108-4 7
#545: 0000 0000 1111 107-5 109-4 108-5 7
#546: 0000 0000 1111 107-6 109-5 108-6 7
#547: 0000 0000 1111 107-7 109-6 108-7 7
#548: 0000 0000 1111 107-8 109-7 108-8 79-10 }
#549: 0000 0000 1111 107-9 109-8 108-9 79-11 }
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Figure 2: Static scheduler iterations. The first column shows the iteration number. The
second and third show the input and output mask, used to notify a change of particle.
The fourth column is the action mask. The last column shows the hits being processed in
parallel. This scheduler was run with a width of four.

3.2. Data structures

In order to improve the arithmetic intensity? of the algorithm, the data is structured
following an AOSOA (Array of Structures of Arrays) design. For instance, for each step of
the Forward and Backward Kalman filter, a state, covariance and y? fit are calculated. For

. . ... . q .
a single particle position, a state is a five-element vector (HU y tx ly 5) , a covariance o

is a 15-element matrix (5x 5 symmetric matrix), and the x? is a single element [4]. Figure 3
shows the AOSOA data structure for a scheduler with width four.
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Figure 3: AOSOA data structure for scheduler with width four.

These kind of data structures are highly efficient for SIMD processors, as they exploit
locality, minimizing cache misses, and allow for horizontal parallelization in a natural way.
In the presented algorithm, these data structures are generated with the execution of the
scheduler, and the data are directly populated in them, avoiding extra memory copies. In
addition, the data structure is allocated aligned to the required memory alignment by the
specific architecture under execution.

3.3. Fine-grained optimization
In order to target specific Instruction Set Architectures (ISAs) of various architectures, the
arithmetic bulk of the Kalman filter is written using a layer of abstraction, provided by a

2 The arithmetic intensity of an application is a metric of how many arithmetic operations are performed

. . . . - . . FLOP
per required byte transfer. We are interested in the FLOP arithmetic intensity, measured in Bute
yte




vectorization library. Bindings to VCL [5] and UMESIMD [6] are provided, leaving it to
the library provider to add compatibility for new architectures.

Furthermore, there is no conceptual imposition in the SIMD abstraction used. For
instance, it would be possible to develop an OpenCL implementation taking advantage of
the aforementioned control flow and data abstractions, targetting an arbitrary width and
a manycore architecture or an FPGA.

Finally, a scalar implementation is also provided, in case the architecture under study
does not support any SIMD extensions.

4. Results

Figure 4 shows the performance gain across architectures, using the here presented
Kalman filter implementation. The figure of merit to compare the results is the combined
throughput of the Forward and Backward Kalman filter and the Smoother:

#Forward + #Backward + #Smoother
time
All the tests were run under the following settings:

(1)

The program was compiled with gce 6.2.0, with options -02 -march=native.
Turbo Boost was on, where applicable.

KNL was using flat memory mode, and pinned against the MCDRAM.

One process was spawned per Non-Uniform Memory Access (NUMA) domain,
with as many TBB threads as cores in domain and pinned to its memory.
Ran 500000 events, each event is a Threading Building Blocks (TBB) task.
Used Monte Carlo events from the LHCb Upgrade.

Double precision results are validated. Single precision results show

a deviation in 1% of the results.
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Figure 4: Speedup across several architectures and precisions.

The original implementation is shown as the leftmost bar. It is used as a baseline against
which to compare performance. Using the same precision, the Xeon machine shows a 2.01x



speedup. It is worth noting that moving to the Intel Knights Landing (Xeon Phi) is cost-
effective, when taking into consideration the difference in cost and performance versus the
baseline under study.

Transitioning to single precision has a variable impact on performance, depending on
the architecture under analysis, as shown in Table 2. It is particularly effective on current
HLT hardware, where a performance boost of 1.68x is observed.

Hardware architecture ‘ Effect of moving to single precision
Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz 1.68%
PowerNV 8335-GCA (Power8) 1.5x%
Intel(R) Xeon Phi(TM) 7210 @ 1.30 GHz 1.27x

Table 2: Effect of moving to single precision across architectures.

The scalability of the application under various architectures is shown in the following.
The Xeon architecture processor under analysis does not scale with the number of tasks
in flight, as illustrated in Figure 5. This is partially due to Turbo Boost increasing the
frequency of the processor for fewer core counts, which the vendor announces as 2.40 GHz
base frequency versus 3.20 GHz max turbo frequency. Additionally, the memory footprint
of Cross Kalman with higher core counts is quite large. There is no gain in using additional
Hyper Threads per core on this processor.
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"lab21" Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz, double precision, vectorised
- "lab21" Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz, single precision, vectorised
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Figure 5: Scalability of Kalman filter for Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40 GHz.

The Knights Landing architecture scales better, as shown on the left in Figure 6. This
machine has 64 physical cores, and the scalability until that point is almost linear. Using
two Hyper Threads per core a marginal gain is observed, but the performance flattens out
when using three or four Hyper Threads per core. It is interesting to note the throughput
of the MCDRAM is not a bottleneck, regardless of the number of tasks in flight. The
Power8 architecture under analysis also shows a good scaling, as shown on the right in
Figure 6. Enabling Simultaneous Multi Threading (SMT) did not improve performance.

Figure 7 depicts a Roofline model |7] for an Intel Haswell processor. A Roofline model
relates the arithmetic intensity of an application and its performance, with the capability
of the specific hardware platform under consideration. The figure shows the arithmetic
intensity of two particular processes of the Kalman filter. In order to increase the arithmetic
intensity of the application, the Predict and Update steps (cf. Section 2) were combined
into a single step called fit, in green in the plot. The smooth corresponds with the Smoother
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Figure 6: Left: Scalability of Kalman filter for Intel(R) Xeon Phi(TM) 7210 @ 1.30 GHz.
Right: Scalability of Kalman filter for PowerNV 8335-GCA (Power8).

component, in blue in the plot. As the figure shows, the program is close to saturating
the DDR RAM Bandwidth the CPU can support. Given the arithmetic intensity of this
implementation of the Kalman filter, there is not much more performance one can extract
out of this processor.
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Figure 7: Roofline model for Intel(R) Xeon(R) E5-2683 v3 @ 2.00 GHz.

5. Conclusions and outlook
I have briefly discussed the requirements of software throughput for the upcoming upgrade
of the LHCD trigger. In order to cope with its stringent real-time requirements, a new
Kalman filter algorithm has been designed, and several hardware architectures and their
amenability to processing a substantial portion of the LHCb reconstruction have been
explored.

These studies suggest the Intel Knights Landing architecture will be a strong contender
in the choice of a hardware architecture for the Upgrade of LHCb, due to its familiar
programmability and the strong scaling it shows for a higher number of cores. When



porting reconstruction software to these architectures however, one should take into
consideration that there will be a software framework behind the scenes that will impact
the performance and possibly change memory requirements. To this end, the Cross Kalman
algorithm is being integrated with the framework, and a follow up study should relate the
results obtained here with what the framework delivers in the final product.

It would be interesting to explore other architectures, such as ARM64, GPUs or FPGAs.
As the literature in the field suggests, single precision may have even a deeper impact on
these architectures. Even though precision can be configured at compile time in Cross
Kalman, integration with the framework will be costly in terms of development time, and
validation of these results will require a dedicated study. Nevertheless, the results suggest
that there would be a high impact in terms of performance if a transition to single precision
is successfully made.
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