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We compute the decay rates for the processes Z → V þ γ, where Z is the Z-boson, γ is the photon,
and V is one of the vector quarkonia J=ψ or ϒðnSÞ, with n ¼ 1, 2, or 3. Our computations include
corrections through relative orders αs and v2 and resummations of logarithms of m2

Z=m
2
Q, to all orders

in αs, at next-to-leading-logarithmic accuracy. (v is the velocity of the heavy quark Q or the heavy
antiquark Q̄ in the quarkonium rest frame, and mZ and mQ are the masses of Z and Q, respectively.)
Our calculations are the first to include both the order-αs correction to the light-cone distributions
amplitude and the resummation of logarithms of m2

Z=m
2
Q and are the first calculations for the ϒð2SÞ

and ϒð3SÞ final states. The resummations of logarithms of m2
Z=m

2
Q that are associated with the order-

αs and order-v2 corrections are carried out by making use of the Abel-Padé method. We confirm the
analytic result for the order-v2 correction that was presented in a previous publication, and we correct
the relative sign of the direct and indirect amplitudes and some choices of scales in that publication.
Our branching fractions for Z → J=ψ þ γ and Z → ϒð1SÞ þ γ differ by 2.0σ and −4.0σ, respectively,
from the branching fractions that are given in the most recent publication on this topic (in units of the
uncertainties that are given in that publication). However, we argue that the uncertainties in the rates
are underestimated in that publication.

DOI: 10.1103/PhysRevD.97.016009

I. INTRODUCTION

The rare decays of the Higgs boson (H) to a vector
quarkonium (V) and a photon (γ) have been proposed as
processes with which to measure the Higgs-boson cou-
plings to the charm and bottom quarks [1]. Even at a high-
luminosity LHC, observations of these decay processes
would be challenging. It has been pointed out in Refs. [2,3]
that the decays of the Z boson Z → V þ γ could provide
means to calibrate the experimental techniques that might
be used to measure the H → V þ γ decay rates.
As was emphasized in Ref. [1], in the decays

H → V þ γ, two processes give important contributions
to the amplitude: (1) a direct process, in which the Higgs
boson decays to a heavy-quark-antiquark pair (QQ̄),
which emits a photon and evolves into a quarkonium;
(2) an indirect process, in which the Higgs boson decays

through a virtual heavy-quark or W-boson loop into a
photon and a virtual photon, with the virtual photon
decaying into a heavy quarkonium. In the case of the
decays H → V þ γ, the indirect process is enhanced for
massive particles in the virtual loop because the Higgs-
boson coupling to the loop particle is proportional to the
mass of the particle.
In a classic paper [4], analytic expressions were given for

the direct amplitudes and the corresponding decay rates for
Z-boson decays to a photon plus an S-wave or a P-wave
quarkonium. These expressions were calculated at leading
order (LO) in αs, the QCD running coupling, and at LO in
v2, where v is the velocity of the heavy quark (Q) or the
heavy antiquark (Q̄) in the heavy-quarkonium rest frame.
Calculations of exclusive quarkonium production proc-

esses can be simplified by making use of the light-cone
approach [5,6], which yields a systematic expansion in
powers of mV=mhard, where mV is the quarkonium mass
and mhard is the hard-scattering scale, which is of order the
Z-boson mass mZ in the present case. In the light-cone
approach, nonperturbative effects in the quarkonium sys-
tem are parametrized in terms of the quarkonium light-cone
distribution amplitudes (LCDAs). A heavy-quarkonium
LCDA can, by virtue of nonrelativistic QCD (NRQCD)
factorization [7], be written as a sum of products of short-
distance coefficients times NRQCD long-distance matrix
elements (LDMEs) [8].
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In Ref. [9], calculations of the rates for Z-boson decays
to a photon plus ηc, J=ψ , χc0, χc1, χc2, or hc were presented.
These calculations were based on the direct amplitude and
were carried out at LO in αs and v2 in both the NRQCD and
light-cone formalisms.
In Ref. [2], the decay rates for the processes Z → V þ γ,

where V is the J=ψ or the ϒð1SÞ, were computed in the
leading-power light-cone approximation, which is valid up
to corrections of order m2

V=m
2
Z. The calculations were

carried out at next-to-leading order (NLO) in αs and v2.
Reference [2] also gave the first result for the short-distance
coefficient of the order-v2 (relativistic) corrections. The
calculations in Ref. [2] included contributions from the
indirect production process. These contributions were
found to be small, producing effects of less than 1% on
the rates, because, in contrast with the Higgs-boson indirect
amplitude, the Z-boson indirect amplitude is not propor-
tional to the mass of the loop particle. The calculation in
Ref. [2] did not include the effects of resummation of large
logarithms of the ratio m2

Z=m
2
Q, where mQ is the heavy-

quark mass. This resummation was estimated in Ref. [2] to
produce a 1.5% effect in the rate for Z → J=ψ þ γ.
In Ref. [3], the decay rates for the processes Z → V þ γ,

where V is the J=ψ or theϒð1SÞ, were also computed in the
leading-power light-cone approximation at NLO in v2 and
at LO in αs. Logarithms of m2

Z=m
2
Q were resummed to all

orders in αs at leading logarithmic (LL) accuracy. In the case
of the order-v2 correction, the resummation of logarithms of
m2

Z=m
2
Q was carried out by introducing a model for the

LCDAwhose second moment in the light-cone momentum
fraction x (in the narrow-width approximation) matches the
second x moment of the order-v2 term in the nonrelativistic
expansion of the LCDA. It was found in Ref. [3] that the
resummation effects are much larger than the 1.5% estimate
that was given in Ref. [2].
In principle, one can carry out the resummation of

logarithms of m2
Z=m

2
Q for the order-v2 and order-αs correc-

tions to the LCDA directly, avoiding the unknown uncer-
tainties that are associated with the introduction of a model
LCDA. However, as was pointed out in Refs. [10,11], the
standard approach for such calculations, namely, expansion
in a series in the LO evolution eigenvectors (Gegenbauer
polynomials), fails because the eigenvector series diverges,
even though the evolved LCDA itself is well defined. This
divergence can be traced to the fact that the order-v2 and
order-αs corrections to the LCDA contain distributions
(generalized functions) [11]. A general solution to this
problem was given in Ref. [11], where it was shown that
the evolved LCDA can be obtained by using the so-called
Abel-Padé method to sum the divergent eigenvector series.
The Abel-Padé method allows one to compute the resum-
mation of logarithms of m2

Z=m
2
Q for the order-v2 and order-

αs corrections to the LCDA from first principles.
In the present paper, we compute the decay rates for the

processes Z → V þ γ, where V is one of the four states J=ψ

and ϒðnSÞ, with n ¼ 1, 2, or 3. Our computation is carried
out at leading power in the light-cone formalism and
through orders αs and v2. Logarithms of m2

Z=m
2
Q are

resummed in the direct amplitude at next-to-leading-log-
arithmic (NLL) accuracy. The computations of the rates for
Z → V þ γ in this paper are the first to include both the
order-αs corrections to the LCDA and the resummation of
logarithms of m2

Z=m
2
Q. The calculation includes the effects

of the indirect process, as well as the effects of the direct
process.
In comparison with the central values in Ref. [2], our

branching fraction for Z → J=ψ þ γ is shifted by about
−10%, which is −0.5σ in the uncertainties of Ref. [2], and
our branching fraction for Z → ϒð1SÞ þ γ is shifted by
about −3%, which is −0.3σ in the uncertainties of Ref. [2].
In comparison with the central values in Ref. [3], our

branching fraction for Z → J=ψ þ γ is shifted by about
þ12%, which is þ2.0σ in the uncertainties of Ref. [3], and
our branching fraction for Z → ϒð1SÞ þ γ is shifted by
about −11%, which is −4.0σ in the uncertainties of
Ref. [3]. We argue that the uncertainties in the rates are
underestimated in Ref. [3].
We have also confirmed the result in Ref. [2] for the

short-distance coefficient of the order-v2 correction. Our
result for the relative sign between the direct and indirect
amplitudes differs from that in Ref. [2], resulting in positive
(negative) interference for the J=ψ þ γ [ϒðnSÞ þ γ] final
state. As the indirect amplitude is small relative to the direct
amplitude, the effect of this sign change is much less than
the uncertainties in the calculation. We have also corrected
some choices of scales in the calculation in Ref. [2]. The
effects of these corrections tend to cancel the effects of the
resummations of logarithms of m2

Z=m
2
Q, which are not

included in Ref. [2].
The remainder of this paper is organized as follows. In

Sec. II we give the expression for the direct amplitude, and
in Sec. III we discuss the resummation of logarithms of
m2

Z=m
2
Q in the direct amplitude. In Sec. IV we give the

expression for the indirect amplitude. Section V contains a
discussion of the numerical calculation of the rates and the
uncertainties in that calculation. In Sec. VI, we present our
numerical results and compare them with results from
previous computations. Finally, in Sec. VII, we summarize
and discuss our results.

II. LIGHT-CONE AMPLITUDE FOR THE
DIRECT PROCESS

The light-cone amplitude for the direct process of
Z → V þ γ is given, up to corrections of relative order
m2

V=m
2
Z, by

iMLC
dir ðZ → V þ γÞ ¼ iAdirϵξμνρϵ

ξ
Zϵ

�μ
γ ϵ�νV pρ

γ ; ð1aÞ

where
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iAdir ¼ −
eeQgZg

Q
AmV

m2
Z

f∥V

Z
1

0

dxTHðx; μÞϕ∥
Vðx; μÞ: ð1bÞ

Here, eð>0Þ is the electric charge at momentum scale zero,
eQ is the fractional charge of the heavy quark Q, f∥V is the
decay constant of the longitudinally polarized vector
quarkonium V, ϵZ is the Z-boson polarization, ϵV is the
quarkonium polarization, ϵγ and pγ are the photon polari-
zation and momentum, respectively, μ is the renormaliza-
tion scale, x is the Q momentum fraction of V, which runs
from 0 to 1, and gZ and gA are defined by

gZ ¼ 2ð
ffiffiffi
2

p
GFÞ1=2mZ;

gQA ¼ 1

2
ðTQ

3 ÞL: ð2Þ

Here, GF is the Fermi constant, and ðTf
3ÞL is the eigenvalue

of the weak isospin of the left-handed fermion f, whose
value is þ1=2 for f ¼ u, c, t, νe, νμ, ντ, and −1=2 for
f ¼ d, s, b, e, μ, τ. We use the convention ϵ0123 ¼ −1.
The longitudinally polarized LCDA ϕ∥

V is defined in
Refs. [12,13] as

hVðpÞjQ̄ðzÞγμ½z; 0�Qð0Þj0i

¼ −pμ ϵ
�
V · z
p · z

f∥VmV

Z
1

0

dxeip·zxϕ∥
Vðx; μÞ; ð3Þ

where p is the quarkoniummomentum, z lies along the plus
light-cone direction, and

½z; 0� ¼ P exp

�
igs

Z
z

0

dxAþ
a ðxÞTa

�
ð4Þ

is a gauge link that makes the nonlocal operator gauge
invariant. Here, gs ¼

ffiffiffiffiffiffiffiffiffiffi
4παs

p
, Aμ

a is the gluon field with the
color index a ¼ 1, 2,…, N2

c − 1, Nc ¼ 3, Ta is a generator
of color SU(3) in the fundamental representation, and the
symbol P denotes path ordering. Note that we have
included a factor ð−1Þ in the definition (3) relative to
the definition in Refs. [12,13] in order to obtain a positive
value for the decay constant. We note that the definition (3)
is equivalent to the definition of ϕ∥

V in Ref. [14], from
which we take the order-αs corrections to ϕ∥

V .
Setting z to 0 and imposing the normalization conditionZ

1

0

dxϕ∥
Vðx; μÞ ¼ 1; ð5Þ

we obtain

hVjQ̄ð0ÞγμQð0Þj0i ¼ −f∥VmVϵ
�μ
V ; ð6Þ

which allows one to relate the decay constant f∥V to the
quarkonium electromagnetic decay width ΓðV → eþe−Þ:

ΓðV → eþe−Þ ¼ 4π

3mV
α2ðmVÞe2Qf∥2V : ð7Þ

Here, αðmVÞ is the running electromagnetic coupling at the
scale mV .
We expand the LCDA at the low-energy scale μ0, which

is of order mQ, through order v2 and through order αs:

ϕ∥
Vðx; μ0Þ ¼ ϕ∥ð0Þ

V ðx; μ0Þ þ hv2iVϕ∥ðv2Þ
V ðx; μ0Þ

þ αsðμ0Þ
4π

ϕ∥ð1Þ
V ðx; μ0Þ þOðα2s ; αsv2; v4Þ: ð8Þ

The quantity hv2iV is proportional to the ratio of the
NRQCD LDME of order v2 to the NRQCD LDME of
order v0. The general expression for the ratio of the
NRQCD LDME of order v2k (k a nonnegative integer)
to the NRQCD LDME of order v0 is

hv2kiV ¼ 1

m2k
Q

hVðϵVÞjψ†ð− i
2
∇
↔Þ2kσ · ϵVχj0i

hVðϵVÞjψ†σ · ϵVχj0i
: ð9Þ

Here, ψ is the two-component (Pauli) spinor field that
annihilates a heavy quark, χ† is the two-component spinor
field that annihilates a heavy antiquark, σ is a Pauli matrix,
jVðϵVÞi denotes the vector quarkonium state in the quar-
konium rest frame with spatial polarization ϵV , and mQ

denotes the quark pole mass. The light-cone functions on
the right side of Eq. (8) are given by

ϕ∥ð0Þ
V ðx; μ0Þ ¼ δ

�
x −

1

2

�
; ð10aÞ

ϕ∥ðv2Þ
V ðx; μ0Þ ¼

δð2Þðx − 1
2
Þ

24
; ð10bÞ

ϕ∥ð1Þ
V ðx;μ0Þ¼CFθð1−2xÞ

×

���
4xþ 8x

1−2x

��
log

μ20
m̄2

Qð1−2xÞ2−1

��
þ

þ
�
16xð1−xÞ
ð1−2xÞ2

�
þþ

− ½8x�þ
�
þðx↔1−xÞ:

ð10cÞ

Here, the þ and þþ functions are defined by

Z
1

0

dx½fðxÞ�þgðxÞ ¼
Z

1

0

dxfðxÞ
�
gðxÞ − g

�
1

2

��
; ð11aÞ

Z
1

0

dx½fðxÞ�þþgðxÞ

¼
Z

1

0

dxfðxÞ
�
gðxÞ−g

�
1

2

�
−g0

�
1

2

��
x−

1

2

��
: ð11bÞ

Z-BOSON DECAYS TO A VECTOR QUARKONIUM PLUS … PHYS. REV. D 97, 016009 (2018)

016009-3



The order-αs light-cone function ϕ
∥ð1Þ
V ðx; μ0Þwas computed

in Ref. [14]. In Eq. (10c), we have replaced the pole mass
mQ with m̄Q, the modified-minimal-subtraction (MS) mass,
since the pole mass is ill defined, owing to renormalon
ambiguities. This change affects the expression for ϕ∥

V
at relative order α2s. The order-v2 light-cone function

ϕ∥ðv2Þ
V ðx; μ0Þ was computed in Ref. [2]. It can be inferred

from the computation for the quarkonium transverse LCDA
in Ref. [10] by using the fact that the relativistic corrections
to the LCDA are independent of the quarkonium spin [15].
It can also be inferred from the calculation in Ref. [16] for
S-wave Bc mesons in the limit mc ¼ mb. We have verified
this result by using the NRQCD formalism to compute the
complete order-v2 contribution to the direct amplitude,
which includes the order-v2 contribution to ϕ∥

V in Eq. (10b)
and the order-v2 contribution to the decay constant f∥V , and
making use of the known order-v2 contribution to f∥V [see
Eq. (12) below].
The decay constant f∥V is given by

f∥V ¼
ffiffiffiffiffiffiffiffi
2Nc

p ffiffiffiffiffiffiffiffiffi
2mV

p
mV

ΨVð0Þ

×

�
1 −

1

6
hv2iV − 8

αsðμ0ÞCF

4π
þOðα2s ; αsv2; v4Þ

�
;

ð12Þ

where CF ¼ ðN2
c − 1Þ=ð2NcÞ and CA ¼ Nc ¼ 3 for color

SU(3). We note that f∥V , as defined in Eq. (7), is scale
invariant. Hence, the dependence of the expression in
brackets on the right side of Eq. (12) on the scale μ0
implies thatΨVð0Þ depends on μ0 in such a way as to render
the complete expression scale invariant. The quarkonium
wave function at the origin ΨVð0Þ is related to the LO
NRQCD LDME [7]:

ΨVð0Þ ¼
1ffiffiffiffiffiffiffiffi
2Nc

p hVðϵVÞjψ†σ · ϵVχj0i: ð13Þ

The LO and order-αs contributions to f
∥
V were computed in

Ref. [14]. The order-v2 contribution to f∥V was computed in
Ref. [2]. It can be inferred from the order-v2 contribution to
the quarkonium electromagnetic decay rate in Ref. [7].
In this paper, we will use Eq. (7) to compute f∥V from the

measured electromagnetic decay widths. As was pointed
out in Ref. [3], this procedure eliminates the uncertainties in
the calculation that arise from the use of Eq. (12) in
conjunction with phenomenological determinations of
ΨVð0Þ and hv2iV . Equation (12) was used in the calculation
in Ref. [2]. We defer a discussion of the impact of that
choice to Sec. VI.
The hard-scattering kernel THðx; μÞ for the process

Z → V þ γ, through order αs, is [14]

THðx; μÞ ¼ Tð0Þ
H ðx; μÞ þ αsðμÞ

4π
Tð1Þ
H ðx; μÞ; ð14aÞ

where

Tð0Þ
H ðx; μÞ ¼ 1

xð1 − xÞ ; ð14bÞ

Tð1Þ
H ðx;μÞ¼CF

1

xð1−xÞ
�
½3þ2x logð1−xÞþ2ð1−xÞ logx�

×

�
log

m2
Z

μ2
− iπ

�
þxlog2ð1−xÞþð1−xÞlog2x

− ð1−xÞ logð1−xÞ−x logx−9

�
: ð14cÞ

III. RESUMMATION OF LOGARITHMS
IN THE DIRECT AMPLITUDE

A. The Gegenbauer expansion of the amplitude

The scale evolution of the LCDA can be computed
conveniently by expanding the LCDA in Gegenbauer
polynomials, which are the eigenvectors of the LO
evolution kernel. The Gegenbauer expansion of the
LCDA is

ϕ∥
Vðx; μÞ≡

X∞
n¼0

ϕ∥
nðμÞxð1 − xÞCð3=2Þ

n ð2x − 1Þ; ð15Þ

where ϕ∥
n is the nth Gegenbauer moment of ϕ∥

V , which
can be found by making use of the orthogonality
property of the Gegenbauer polynomials:

ϕ∥
nðμÞ ¼ Nn

Z
1

0

dxCð3=2Þ
n ð2x − 1Þϕ∥

Vðx; μÞ; ð16Þ

where

Nn ¼
4ð2nþ 3Þ

ðnþ 1Þðnþ 2Þ : ð17Þ

Note that ϕ∥
nðμÞ vanishes for odd n because ϕ∥

Vðx; μÞ
is symmetric about x ¼ 1=2. We define the LO,
order-v2, and order-αs Gegenbauer moments of ϕ∥

V as
follows:

ϕ∥
nðμÞ≡ ϕ∥ð0Þ

n ðμÞ þ hv2iVϕ∥ðv2Þ
n ðμÞ þ αsðμ0Þ

4π
ϕ∥ð1Þ
n ðμÞ

þOðα2s ; αsv2; v4Þ: ð18Þ

The moments ϕ∥
nðμÞ can be written in terms of the

moments ϕ∥
nðμ0Þ and an evolution matrix Unkðμ; μ0Þ:
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ϕ∥
nðμÞ ¼

Xn
k¼0

Unkðμ; μ0Þϕ∥
kðμ0Þ: ð19Þ

The LL and NLL expressions for Unkðμ; μ0Þ can be found
in the Appendix.
The Gegenbauer expansion of the hard-scattering kernel

is given by

THðx; μÞ ¼
X∞
n¼0

NnTnðμÞCð3=2Þ
n ð2x − 1Þ; ð20Þ

where Tn is the nth Gegenbauer moment of TH, which can
be found by making use of the orthogonality property of the
Gegenbauer polynomials:

TnðμÞ ¼
Z

1

0

dxxð1 − xÞCð3=2Þ
n ð2x − 1ÞTHðx; μÞ: ð21Þ

We define the LO and order-αs contributions to Tn as
follows:

TnðμÞ ¼ Tð0Þ
n ðμÞ þ αsðμÞ

4π
Tð1Þ
n ðμÞ þOðα2sÞ: ð22Þ

Making use of the orthogonality property of the
Gegenbauer polynomials again, we can write the light-
cone amplitude as

MðμÞ¼
Z

1

0

dxTHðx;μÞϕ∥
Vðx;μÞ¼

X∞
n¼0

TnðμÞϕ∥
nðμÞ: ð23Þ

We also define a decomposition of M into the LO, order-
v2, and order-αs contributions:

MðμÞ ¼ Mð0;0ÞðμÞ þ hv2iVMð0;v2ÞðμÞ þ αsðμÞ
4π

Mð1;0ÞðμÞ

þ αsðμ0Þ
4π

Mð0;1ÞðμÞ þOðα2s ; αsv2; v4Þ; ð24Þ

where

Mði;jÞðμÞ ¼
X∞
n¼0

TðiÞ
n ðμÞϕ∥ðjÞ

n ðμÞ: ð25Þ

By choosing the scale μ inMðμÞ to bemZ, we guarantee
that TnðμÞ contains no large logarithms. We choose the
initial scale of the LCDAs to be μ0 ¼ m̄Q. Then, logarithms

of m2
Z=m̄

2
Q are resummed by the evolution of ϕ∥

n from the
scale μ0 ¼ m̄Q to the scale μ ¼ mZ.
Using Eq. (24), we find that the resummed direct

amplitude is given by

iALC
dir ¼ −

eeQgZg
Q
AmV

m2
Z

f∥V

�
Mð0;0ÞðμÞ þ αsðμÞ

4π
Mð1;0ÞðμÞ

þ αsðμ0Þ
4π

Mð0;1ÞðμÞ þ hv2iVMð0;v2ÞðμÞ
�

þOðα2s ; αsv2; v4Þ: ð26Þ

We use this expression in our numerical calculations. We
make use of expressions for the evolution through NLL
accuracy, which are given in the Appendix.

B. The Abel-Padé method

The sum over n in Eq. (25) diverges for Mð0;v2Þ and
Mð0;1Þ [10,11]. As was explained in Ref. [11], such
divergences can arise because the light-cone distributions
contain generalized functions (distributions), rather than
ordinary functions. In Ref. [11], it was shown that one can
define the generalized functions as a limit of ordinary
functions, which leads one to compute Mði;jÞ as follows:

Mði;jÞðμÞ ¼ lim
z→1

X∞
n;m¼0

TðiÞ
m ðμÞUmnðμ; μ0Þznϕ∥ðjÞ

n ðμ0Þ: ð27Þ

The expression in Eq. (27) is the Abel summation of the
eigenfunction series for ϕ∥

Vðx; μ0Þ. In Ref. [11], the Abel
summation was erroneously applied to ϕ∥

Vðx; μÞ. (See
Ref. [17].) We have corrected that error here. The correc-
tion amounts to the replacement of zm with zn in Eq. (27).
One can improve upon the convergence of the series in

Eq. (27) in the limit z → 1, by constructing a Padé
approximant for the nth partial sum before taking the limit
z → 1. The use of the Padé approximant is effective in
improving the convergence of the series because it provides
an approximate analytic continuation for the function of z
that is represented by the series. That analytic continuation
is valid beyond the radius of convergence of the series,
which is typically jzj ¼ 1. The Abel-Padé method was
tested extensively against known analytic results for Mði;jÞ
in Ref. [11], and it converged rapidly to the correct value in
all cases. We will use it throughout this paper to evalu-
ate Mði;jÞ.

IV. AMPLITUDE FOR THE INDIRECT PROCESS

The amplitude for the indirect decay amplitude contains
the axial-vector-vector triangle diagram as a subdiagram.
The amplitude for the axial-vector-vector triangle diagram
is given in Ref. [18]. In that paper, the conventions for γ5
and the completely antisymmetric tensor ϵξμνρ are not
specified. We fix the overall sign of the triangle amplitude
in Ref. [18] in our conventions by requiring that it give the
correct axial-vector anomaly. Then, we find that the indirect
amplitude for the decay of a Z boson to a photon plus a
virtual photon is given by
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iMðZ→ γγ�Þ¼−gZe2
X
f

e2fg
f
Af

f
2m

2
Vϵ

ξϵ�μϵ�νϵξμνρp
ρ
γ ; ð28Þ

where f denotes any fermion that can appear in the loop in
the triangle diagram and

ff2 ¼
1

π2

Z
1

0

dz1

Z
1

0

dz2

Z
1

0

dz3δð1 − z1 − z2 − z3Þ

×
z2z3

m2
f − z1z2p2

γ − z2z3m2
V − z3z1m2

Z
: ð29Þ

Here, ϵξ, ϵ�μ, and ϵ�ν are the polarizations of the Z boson,
real photon, and virtual photon, respectively, and pγ is the
momentum of the real photon (p2

γ ¼ 0).1 Then, following
Refs. [1,10], we obtain the indirect amplitude for process
Z → V þ γ:

iMindðZ → V þ γÞ ¼ iMðZ → γγ�Þ −i
m2

V
ð−iegVγÞ

¼ iAindϵξμνρϵ
ξ
Zϵ

�μ
γ ϵ�νV pρ

γ ; ð30aÞ

where

iAind ¼ gZgVγ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παðmVÞ

p
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παð0Þ

p X
f

e2fg
f
Af

f
2 : ð30bÞ

Here, gVγ is given by

gVγ ¼ −
eQ
jeQj

�
3m3

VΓðV → eþe−Þ
4πα2ðmVÞ

�
1=2

: ð31Þ

The relative sign between the direct amplitude in Eq. (1)
and the indirect amplitude in Eq. (30) disagrees with the
relative sign that was found in Ref. [2]. That is, we find that
the direct and indirect amplitudes interfere constructively
for the process Z → J=ψ þ γ and interfere destructively for
the processes Z → ϒðnSÞ þ γ.

V. COMPUTATION OF THE DECAY RATES

A. Decay rate

The rate for the decay of a Z boson into a vector
quarkonium plus a photon is easily seen to be

ΓðZ → V þ γÞ ¼ 1

48πmZ

X
pol

jMdirðZ → V þ γÞ

þMindðZ → V þ γÞj2

¼ m3
Z

96πm2
V
jAdir þAindj2; ð32Þ

whereAdir is given inEq. (26),Aind is given inEq. (30b), and
we have dropped terms of order m2

V=m
2
Z. In evaluating the

expression for Adir in Eq. (26), we take the hard-scattering
scale μ to be mZ, and we take the initial scale μ0 to be the
heavy-quark MS mass m̄Q. The typical momentum scale of

loop corrections to the LCDA and to f∥V is the pole mass,
and, so, the pole mass would be a natural choice for μ0.
However, the pole mass is ill defined, as we have already
mentioned, owing to renormalon ambiguities, and the
presence of pole-mass renormalons could impact the con-
vergence of the perturbation series unfavorably in higher
orders. Therefore, we choose to take μ0 ¼ m̄Q. In applying
the Abel-Padé method to the expression forAdir in Eq. (26),
we take 100 terms in the eigenfunction expansion and use a
50 × 50 Padé approximant. As we have mentioned, in order
to minimize uncertainties in f∥V , we follow Ref. [3] and
compute f∥V from the leptonic width of the quarkonium,
using Eq. (7), instead of using the perturbative expression
in Eq. (12).

B. Numerical inputs

We take the pole masses to be the one-loop values mc ¼
1.483 GeV and mb ¼ 4.580 GeV, we take the MS masses
to be m̄c ¼ 1.275 GeV and m̄b ¼ 4.18 GeV, and we take
mZ ¼ 91.1876 GeV and ΓðZÞ ¼ ð2.4952� 0.0023Þ GeV.
We also take αðmJ=ψÞ ¼ 1=132.642 and αðmϒðnSÞÞ ¼
1=131.015. Our values for jΨVð0Þj2, hv2iV , and f∥V are
shown in Table I. We do not use the values for jΨVð0Þj2 in
our calculations, but we include them here for purposes
of later comparison with the calculations in Ref. [2]. We
use the values for jΨVð0Þj2 and hv2iV from Refs. [19,20],
except in the cases of hv2iϒð1SÞ and hv2iϒð2SÞ. As was
explained in Ref. [11], the uncertainties for hv2iϒð1SÞ and

TABLE I. Values of jΨVð0Þj2, hv2iV , and f∥V for V ¼ J=ψ and
ϒðnSÞ. The values for jΨVð0Þj2 and hv2iV have been taken from
Refs. [19,20], except for the uncertainties in hv2iϒð1SÞ and

hv2iϒð2SÞ, which are described in the text. The values for f∥V
have been computed by making use of Eq. (7).

V jΨVð0Þj2ðGeV3Þ hv2iV f∥VðMeVÞ
J=ψ 0.0729� 0.0109 0.201� 0.064 403.0� 5.1
ϒð1SÞ 0.512� 0.035 −0.009 20� 0.0105 683.8� 4.6
ϒð2SÞ 0.271� 0.019 0.0905� 0.0109 475.6� 4.3
ϒð3SÞ 0.213� 0.015 0.157� 0.017 411.3� 3.7

1Owing to the masslessness of the photon and the orthogon-
ality the Z-boson momentum and polarizations, some terms that
appear in the complete triangle-diagram amplitude and that
contribute to the axial-vector anomaly do not contribute to
Eq. (28).
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hv2iϒð2SÞ were probably underestimated in Ref. [20]. We
use the larger uncertainties for these quantities that are
given in Ref. [11].

C. Sources of uncertainties

In calculating the decay rates, we take into account
uncertainties in both the direct and indirect amplitudes, as is
described below. We also include the uncertainty in the
Z-boson total width in computing branching fractions. We
compute the overall uncertainties in the rates by making use
of the method that is described in Sec. VIE of Ref. [11].
That is, we find the extrema of the rate for values of the
input parameters that lie within a hyperellipse that is
centered at the central values of the input parameters
and whose semimajor axes have lengths that are equal to
the uncertainties in the input parameters.

1. Direct amplitude

In the direct amplitude, we include the uncertainties that
arise from the uncertainties in f∥V and hv2iV .We also include
the uncertainties that arise from uncalculated corrections
of order α2s, order αsv2, and order v4. We estimate the
uncertainties from these uncalculated corrections, relative to
the lowest nontrivial order in the direct amplitude, to be
f½CFCAα

2
sðm̄QÞ=π2�2þ½CFαsðm̄QÞv2=π�2þ½ð1=5Þv4�2g1=2

for the real part of the direct amplitude and
f½CAαsðm̄QÞ=π�2 þ ½v2�2g1=2 for the imaginary part of the
direct amplitude. (Note that the real part of the direct
amplitude starts in absolute order α0s and the imaginary part
of the direct amplitude starts in absolute order αs.) The
coefficient 1=5 in thev4 uncertainty in the direct amplitude is
the known short-distance coefficient for the order-v4 cor-
rection, which arises from the expression [15] for the 2kth x
moment of the LCDA hx2ki in terms of the order-v2k LDME
ratio hv2ki [see Eq. (9)]:

hx2ki ¼ hv2ki
2kþ 1

: ð33Þ

We take v2 ¼ 0.3 for the J=ψ and v2 ¼ 0.1 for the ϒðnSÞ
states. We also include an uncertainty ofm2

V=m
2
Z in order to

account for uncalculated corrections of order m2
V=m

2
Z.

2. Indirect amplitude

In indirect amplitude, we include uncertainties that arise
from the uncertainties in the leptonic-decay widths of the
quarkonia. We assume that the uncertainties in the leptonic-
decay widths are 2.5% for the J=ψ , 1.3% for the ϒð1SÞ,
and 1.8% for the ϒð2SÞ and ϒð3SÞ states. Again, we
include an uncertainty of m2

V=m
2
Z in order to account for

uncalculated corrections of order m2
V=m

2
Z.

VI. NUMERICAL RESULTS AND COMPARISONS
WITH PREVIOUS CALCULATIONS

A. Results

Our results for the branching fractions of the Z boson
into J=ψ þ γ and ϒðnSÞ þ γ are given in Table II. For
purposes of comparison, we also show the branching
fractions from Refs. [2,3].
Aswas found inRef. [2] and noted inRef. [3], we find that

the effect of the indirect amplitude is small. The inclusion of
the indirect amplitude changes the rate by þ1.0% for
Z → J=ψ þ γ, by −1.1% for Z → ϒð1SÞ þ γ, by −1.1%
for Z → ϒð2SÞ þ γ, and by −1.0% for Z → ϒð3SÞ þ γ.
We also find that the effects of NLL summation are small.

The inclusion of NLL resummation changes the rate by
þ2.5% forZ → J=ψ þ γ, byþ1.9% forZ → ϒð1SÞ þ γ, by
1.8% for Z → ϒð2SÞ þ γ, and by 1.8% for Z → ϒð3SÞ þ γ.
Our results for the branching fractions differ consider-

ably from the results in Refs. [2,3], in both the central
values and in the uncertainties. We now discuss in detail the
reasons for those differences.

B. Comparison with the results from Ref. [2]

Our branching fraction for Z → J=ψ þ γ differs from
that in Ref. [2] by −10%, which is about −0.5σ in the
uncertainties of Ref. [2]. Our branching fraction for Z →
ϒð1SÞ þ γ differs from that in Ref. [2] by −3%, which is
about −0.3σ in the uncertainties of Ref. [2].
These differences arise from several sources: (1) we have

corrected the value of the scale of ΨVð0Þ that was used in
Ref. [2]; (2) we have corrected the value of the scale of αs in
the order-αs corrections to fV that was used in Ref. [2];
(3) in the direct amplitude, we have absorbed the order-αs
and order-v2 NRQCD corrections to fV in Eq. (12) into an
overall factor fV that is determined from the quarkonium

TABLE II. The branching fractions of Z → V þ γ for V ¼ J=ψ and ϒðnSÞ. Our results are shown in the first column, and the results
from Refs. [2,3] are shown in the last two columns.

V BrðZ → V þ γÞ (this work) BrðZ → V þ γÞ (Ref. [2]) BrðZ → V þ γÞ (Ref. [3])
J=ψ 8.96þ1.51

−1.38 × 10−8 ð9.96� 1.86Þ × 10−8 8.02þ0.46
−0.44 × 10−8

ϒð1SÞ 4.80þ0.26
−0.25 × 10−8 ð4.93� 0.51Þ × 10−8 5.39þ0.17

−0.15 × 10−8

ϒð2SÞ 2.44þ0.14
−0.13 × 10−8 � � � � � �

ϒð3SÞ 1.88þ0.11
−0.10 × 10−8 � � � � � �
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electronic decay width, whereas these corrections were
computed from the NRQCD expansion and incorporated
additively into the direct amplitude in Ref. [2]; (4) we have
found a relative sign between the indirect and direct
amplitudes that is opposite to the sign that was given in
Ref. [2]; (5) we have resummed logarithms of m2

Z=m
2
Q,

which were not resummed in Ref. [2]; (6) we have chosen
μ0 ¼ m̄Q instead ofμ0 ¼ mQ, andwe have replacedmQwith

m̄Q in the expression for ϕ∥ð1Þ
V in Eq. (10c). In Table III, the

effects on the branching fractions of the corrections that
correspond to these differences are shown. The fractional
change in the branching fraction from each correction
depends on the order in which the corrections are incorpo-
rated into the calculation. In Table III, the fractional changes
are computed by incorporating the corrections in the order
(1), (2), (3), (4), (5), (6). For each quarkonium state, the
product of fractional changes gives the fractional change
between our result and that of Ref. [2]. As can be seen from
Table III, the effects of corrections (1), (2), (3), and (5) are
quite large. However, they tend to cancel each other, and,
consequently, our results for branching fractions do not
differ so greatly from those in Ref. [2]. We now discuss the
corrections to the calculation in Ref. [2] in detail.
In Ref. [2], the decay constant f∥V was computed by

making use of the perturbative expression in Eq. (12). As
we have mentioned, this results in greater uncertainties in
the calculations. As implemented in Ref. [2], it also leads
to shifts in the central values. The reason for this is that
the value for ΨVð0Þ that was used in Ref. [2] was
extracted from Ref. [21] at the scale mV , while the initial
scale μ0 in Ref. [2] was taken to be mQ. Therefore, the
value of ΨVð0Þ from Ref. [21] should have been
corrected as follows in order to account for the change
in the initial scale:

jΨVð0Þjμ¼mQ
¼ 1 − hv2iV

6
− 8

CFαsðmVÞ
4π

1 − hv2iV
6

− 8
CFαsðmQÞ

4π

jΨVð0Þjμ¼mV
: ð34Þ

The fraction on the right side of Eq. (34) gives correction (1),
which produces a correction of þ28% in the rate of
Z → J=ψ þ γ and a correction of þ8% in the rate
of Z → ϒð1SÞ þ γ.
In the expression for the direct amplitude in Ref. [2], there

are contributions that are proportional to −8αsðmZÞCF=
ð4πÞ − hv2iV=6. These contributions arise when one
expresses f∥V in terms of ΨVð0Þ, as in Eq. (12). However,

the argument of αs should be mQ, rather than mZ.
2 This

change of scale accounts for correction (2), which produces
a correction of −35% in the rate of Z → J=ψ þ γ and a
correction of −17% in the rate of Z → ϒð1SÞ þ γ.
In the direct amplitude, one can absorb the order-αs and

order-v2 contributions in the NRQCD expansion of f∥V in
Eq. (12) into an overall factor. In our calculation, we
express the direct amplitude in terms of the value of f∥V that
one obtains directly from the electronic width of the
quarkonium [see Eq. (1)]. As we have mentioned, this
approach reduces the size of the uncertainty in the direct
amplitude. The effect of absorbing the order-αs and the
order-v2 contributions in the NRQCD expansion of f∥V into
an overall factor fV that is computed from the quarkonium
electronic decay rate corresponds to correction (3).
Correction (3) changes the rate for Z → J=ψ þ γ by
−13% and changes the rate for Z → ϒð1SÞ þ γ by −2%.
As we have mentioned, our result for the relative sign

between the direct and indirect amplitudes disagrees with
that in Ref. [2]. Correction (4) accounts for the effects of
this change in the relative sign of the indirect amplitude.
The numerical effect of correction (4) is very small,
changing the rates by only about 2%, and is insignificant
in comparison with the uncertainties in the rates.
In Ref. [2], the resummation of logarithms of m2

Z=m
2
Q to

all orders in αs was estimated to produce a 1.5% effect in
the rate for Z → J=ψ þ γ. However, we find a much larger
effect, namely, þ18%. We find that the effect of the
resummation in the rate for Z → ϒð1SÞ þ γ is þ11%.
Correction (5) accounts for these resummation corrections.
In Ref. [2] the initial scale μ0 ¼ mQ was chosen. As

we have explained, we have taken μ0 ¼ m̄Q in order to
avoid renormalon ambiguities. We have also replaced mQ

with m̄Q in the expression for ϕ∥ð1Þ
V in Eq. (10c). These

differences affect the rate for Z → J=ψ þ γ by only þ2%
and affect the rate for Z → ϒð1SÞ þ γ by only þ1%.
Correction (6) accounts for these differences.
It was claimed in Ref. [2] that only the contributions of

the charm-quark, bottom-quark, and τ-lepton loops are
important in the indirect amplitude. However, we find that
these contributions yield −43% of the real part of the
indirect amplitude in the case of Z → J=ψ þ γ and 8% of

TABLE III. Effects on the branching fractions of corrections to the calculation in Ref. [2]. The corrections (1)–(6) are described
in the text.

V (1) (2) (3) (4) (5) (6)

J=ψ þ28.19% −34.73% −12.69% þ2.28% þ17.54% þ2.36%
ϒð1SÞ þ8.13% −16.96% −2.50% −2.40% þ11.34% þ1.16%

2This incorrect scale choice originated in Eq. (126) of Ref. [14]
and propagated to Ref. [2].
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the real part of the indirect amplitude in the case
of Z → ϒð1SÞ þ γ.
Our uncertainties are considerably smaller than those in

Ref. [2]. The differences in uncertainties arise from two
principal sources: (1) we have calculated f∥V from the
leptonic width of the quarkonium, using Eq. (7), instead of
using the perturbative expression in Eq. (12); and (2) we
have taken into account the known short-distance coef-
ficient 1=5 for the order-v4 corrections in estimating the
size of these uncalculated corrections.

C. Comparison with the results from Ref. [3]

Our branching fraction for Z → J=ψ þ γ differs from
that in Ref. [3] about þ12%, which is about þ2.0σ in the
uncertainties of Ref. [3]. Our branching fraction for Z →
ϒð1SÞ þ γ differs from that in Ref. [3] about −11%, which
is about −4.0σ in the uncertainties of Ref. [3].
The differences between our results for the central values

of the branching fractions and those of Ref. [3] arise
primarily because our calculations differ from the calcu-
lations in Ref. [3] in the following respects: (1) we have
included the nonlogarithmic part of the order-αs correction
to the LCDA; (2) we have taken μ0 ¼ m̄Q for the initial
scale, instead of μ0 ¼ 1 GeV, and we have replaced mQ

with m̄Q in the expression for ϕ∥ð1Þ
V in Eq. (10c); (3) we

have used different values of hv2iV ; (4) we have included
order-α2s contributions to the rate that arise from the
absolute square of the order-αs correction to the hard-
scattering kernel TH; (5) we have included NLL corrections
to the evolution of the LCDA; and (6) we have included the
indirect amplitude.
The effects of these differences on the branching

fractions are tabulated in Table IV. As was the case for
the corrections to the calculations in Ref. [2], the fractional
change in the branching fraction from each correction
depends on the order in which the corrections are incorpo-
rated into the calculation. In Table IV, the fractional
changes are computed by incorporating the corrections
in the order (1), (2), (3), (4), (5), (6). For each quarkonium
state, the product of fractional changes gives the fractional
change between our result and that of Ref. [3], aside from
some differences of less than 0.4% that arise from small
differences in the values that are used for the Fermi
constant, the heavy-quark pole masses, and the decay
constants. As can be seen from Table IV, the largest

correction to the rate for Z → J=ψ þ γ arises from the
inclusion of the nonlogarithmic part of the order-αs
correction to the LCDA. This correction is about þ12%.
The largest correction to the rate for Z → ϒð1SÞ þ γ arises
from the use of a different value of hv2iϒð1SÞ. This
correction is about −5%.
The uncertainties in the rates that are given in Ref. [3] are

much smaller than the uncertainties that we find. In
Ref. [3], uncertainties from uncalculated order-αs correc-
tions are estimated by varying the hard-scattering scale μ.
This approach does not take into account uncertainties from
uncalculated QCD corrections to the LCDA at the initial
scale μ0 of orders αsðμ0Þ, α2sðμ0Þ, and αsðμ0Þv2. We
estimate the relative uncertainties from the last two of
these sources using the formula f½CFCAα

2
sðm̄QÞ=π2�2 þ

½CFαsðm̄QÞv2=π�2g1=2, which leads to an uncertainty of 8%
in the case of Z → J=ψ þ γ and an uncertainty of 2.3% in
the case of Z → ϒð1SÞ þ γ. Our calculation shows that the
nonlogarithmic correction to the LCDA of order αs, which
is not included in Ref. [3], shifts the rate for Z → J=ψ þ γ
by about 12% and shifts the rate for Z → ϒð1SÞ þ γ by
about −4%. In Ref. [3], an uncertainty of about 6% is given
for the rate for Z → J=ψ þ γ and an uncertainty of about
3% is given for the rate for Z → ϒð1SÞ þ γ. Given the
uncertainties from uncalculated corrections of order α2sðμ0Þ
and αsðμ0Þv2 and the shifts from the known corrections of
order αsðμ0Þ, we believe that the uncertainties that are given
in Ref. [3] are underestimates, especially in the case of the
rate for Z → J=ψ þ γ.
In Ref. [3], the order-v2 correction was computed

through the use of a model LCDAwhose second x moment
is adjusted to match the second x moment of the actual
order-v2 correction. The use of a model LCDA circumvents
the difficulties of divergent eigenvector series that appear in
the resummation of logarithms m2

Z=m
2
Q. However, the

choice of the functional form in the model introduces
new uncertainties into the calculation that are not present in
a first-principles calculation, such as the calculation in the
present paper. In Ref. [22], a model LCDA with the same
functional form as the model LCDA in Ref. [3] was used to
compute both the order-αs and the order-v2 correction to
the LCDA for the process of Higgs-boson decay to a vector
quarkonium plus a photon. It was noted in Ref. [11], that, in
this case, the model LCDA does not reproduce the results
of the first-principles calculations of the order-αs and the
order-v2 corrections accurately. However, we find that, in
the case of the process Z → V þ γ, the model LCDA does
reproduce the results of first-principles calculation of the
order-v2 correction to the LCDA reasonably well. The
model LCDA result for the order-v2 correction differs from
the first-principles result by −1.1% in the case of Z →
J=ψ þ γ and byþ0.8% in the case of Z → ϒðnSÞ þ γ. This
suggests that the difficulties with the model LCDA that
were noted in Ref. [11] may arise because of the

TABLE IV. The effects on the branching fractions of
differences between the calculations in this work and the
calculations in Ref. [3]. The corrections (1)–(6) are described
in the text.

V (1) (2) (3) (4) (5) (6)

J=ψ þ11.62% −0.15% −3.47% þ0.68% þ2.38% þ1.02%
ϒð1SÞ −3.78% −3.50% −5.21% þ0.97% þ1.81% −1.14%
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incorporation of order-αs correction to the LCDA into the
model LCDA. We note that the model LCDA contains
contributions of order v4 and higher. As was pointed out
in Ref. [11], these contributions are incompatible with
the relation between the x moments of the LCDA and the
NRQCD LDMEs that is given in Eq. (33). Apparently, the
(incorrect) higher-order contributions that are contained in
the model LCDA are not numerically significant at the
present level of accuracy.

VII. SUMMARY AND DISCUSSION

We have presented a calculation of decay rates for the
processes Z → V þ γ, where V is one of the vector
quarkonia J=ψ or ϒðnSÞ, with n ¼ 1, 2, or 3. Our results
for the branching fractions for Z → V þ γ are given in
Table II. Our calculations contain corrections through
relative orders αs and v2, as well as logarithms of
m2

Z=m
2
Q, resummed at NLL accuracy to all orders in αs.

The use of the Abel-Padé method [11] allows us to compute
for the first time the resummation effects for the order-αs
corrections to the quarkonium LCDA and to compute from
first principles the resummation effects for the order-v2

corrections to the quarkonium LCDA. The rates for
Z → J=ψ þ γ and Z → ϒð1SÞ þ γ have been computed
previously at lower levels of accuracy [2,3]. Our compu-
tations of the rates for the decays Z → ϒð2SÞ þ γ and
Z → ϒð3SÞ þ γ are new. We have also verified the expres-
sions for the order-v2 corrections to the decay rate that are
given in Ref. [2].
Our central values for the branching fractions differ

from those in Ref. [2] by −10% for the decay Z →
J=ψ þ γ and by −3% for the decay Z → Υð1SÞ þ γ. These
differences arise principally for the following reasons:
(1) we have corrected the value for scale of the quarko-
nium wave function at the origin that was used in Ref. [2];
(2) we have corrected the value for the scale of αs in the
order-αs corrections to the quarkonium decay constant that
was used in Ref. [2]; (3) in the direct amplitude, we have
replaced the nonrelativistic expansion of fV [in terms of
ΨVð0Þ, αs, and hv2i] that was used in Ref. [2] with an
overall factor fV that is determined from the quarkonium
electronic decay rate; (4) we have included resummations
of logarithms of m2

Z=m
2
Q in the direct amplitude, whereas

such resummations were not included in the direct
amplitude in Ref. [2]. The individual corrections (1)–(4)
are quite large, but they tend to cancel each other in the
rate. We have also found that the sign of the indirect
amplitude, relative to the direct amplitude, is opposite to
the sign that is reported in Ref. [2]. The numerical
consequences of this change in sign are small.
Our central values for the decay rates differ from those

in Ref. [3] by þ12% for the decay Z → J=ψ þ γ and by
−11% for the decay Z → ϒð1SÞ þ γ. In the case of the
decay Z → J=ψ þ γ, most of the shift in the central value

occurs because our calculation includes nonlogarithmic
corrections to the LCDA of order αs, while the calcu-
lation in Ref. [3] does not. In the case of the decay
Z → ϒð1SÞ þ γ, the largest difference between our decay
rate and that of Ref. [3] occurs because we take the value
of hv2iϒð1SÞ from the potential-model calculation in
Ref. [20], while the calculations in Ref. [3] make use
of an estimate hv2iϒð1SÞ ¼ 0.1. Other small differences
between the results of our calculations and those of
Ref. [3] arise for the following reasons: (1) we take the
initial scale of the LCDA to be the heavy-quark MS
mass, rather than 1 GeV; (2) we include the order-α2s
contribution to the rate that comes from the absolute
square of the order-αs correction to the hard-scattering
kernel; (3) we resum logarithms of m2

Z=m̄
2
Q at NLL

accuracy, rather than LL accuracy; and (4) we include
the indirect decay amplitude. We argue that the choice of
the heavy-quark mass as the initial scale of the LCDA is
more appropriate than the choice 1 GeV because the
heavy-quark mass is the typical scale of perturbative
loop corrections to the LCDA.
It is argued in Ref. [3] that the value of hv2iϒð1SÞ in

Ref. [20] cannot be correct because it is negative.
However, the minimal-subtraction expression for
hv2iϒð1SÞ is obtained by subtracting a power divergence.
Hence, there is no reason that hv2iϒð1SÞ must be non-
negative. One can see that this is so by computing, for
example, the minimal-subtraction expression for hv2i for
positronium. In the case of positronium, a full calculation,
including binding effects, can be carried out reliably in
perturbation theory. That computation results in a neg-
ative value for hv2i.
The uncertainties in our decay rates are considerably

larger than those in Ref. [3]. In Ref. [3], uncertainties that
arise from uncalculated corrections of higher orders in αs
were estimated by varying the hard-scattering scale
μ ∼mZ. This procedure does not take into account
QCD corrections to the LCDA, which reside at a scale
μ0 ∼mQ and which were not included in the expression
for the amplitude in Ref. [3]. Therefore, we believe that
the procedure in Ref. [3] underestimates that uncertainties
in the rates.
In Ref. [3], the order-v2 correction to the LCDA were

computed by making use of a model for the LCDA whose
second x moment, in the narrow-width approximation,
agrees with the second xmoment of the order-v2 correction
to the LCDA. Such a procedure obviates the use of the
Abel-Padé method. However, it introduces model uncer-
tainties that may not be quantifiable. In Ref. [11], it was
found that the use of such a model LCDA for both the
order-αs and the order-v2 corrections to the LCDA does not
produce accurate results. However, we have found that,
when the model LCDA is used to account only for the
order-v2 correction to the LCDA, it leads to results that
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differ from our first-principles calculation only by amounts
that are, numerically, of order v4.
The calculations of the decay rate for Z → V þ γ in

the present paper improve upon the accuracy of previous
theoretical predictions for those rates and give, we
believe, more realistic estimates of the theoretical
uncertainties. Measurements of the decays Z → V þ γ
are interesting in their own right as tests of the standard
model and as tests of our understanding of the formation
of quarkonium bound states in hard-scattering processes.
However, such measurements are also important because
they can lead to a better understanding of the exper-
imental difficulties in the observation of quarkonium-
plus-photon final states. That understanding may facili-
tate the observation of the rare decays of the Higgs
boson to quarkonium-plus-photon final states, which
could yield a first measurement of the Higgs-boson-
charm-quark coupling and alternative measurements of
the Higgs-boson-bottom-quark coupling.
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APPENDIX: EVOLUTION OF THE LCDA

The evolution of the LCDA ϕ∥
Vðx; μÞ is governed by the

Efremov-Radyushkin-Brodsky-Lepage (ERBL) equation
[5,23,24]:

μ2
∂
∂μ2 ϕ

∥
Vðx; μÞ ¼

Z
1

0

dyV∥½x; y; αsðμÞ�ϕ∥
Vðy; μÞ; ðA1Þ

where the order-αs and order-α2s contributions to the ERBL
kernel for the longitudinally polarizedmesonV∥½x; y; αsðμÞ�
are given in Refs. [8,25], respectively. The solution of
Eq. (A1) is given, through NLL order, by [26]

ϕ∥
nðμÞjNLL ¼ Unkðμ; μ0Þϕ∥

nðμ0Þ; ðA2Þ

where Unkðμ; μ0Þ is defined by

Unkðμ;μ0Þ¼
(
ENLO
n ðμ;μ0Þ; if k¼ n;

αsðμÞ
4π ELO

n ðμ;μ0Þdnkðμ;μ0Þ; if k<n:
ðA3Þ

Here,

ELO
n ðμ; μ0Þ≡

�
αsðμÞ
αsðμ0Þ

�γ
∥ð0Þ
n
2β0 ;

ENLO
n ðμ; μ0Þ≡ ELO

n ðμ; μ0Þ

×

�
1þ αsðμÞ − αsðμ0Þ

4π

γ∥ð1Þn β0 − γ∥ð0Þn β1
2β20

�
:

ðA4Þ

The one-loop and two-loop QCD beta-function coefficients
are given, respectively, by

β0 ≡ 11

3
CA −

4

3
TFnf;

β1 ≡ 34

3
C2
A −

20

3
CATFnf − 4CFTFnf; ðA5Þ

where, aswe have already noted,CF ¼ ðN2
c − 1Þ=ð2NcÞ and

CA ¼ Nc ¼ 3 for color SU(3). TF ¼ 1=2, and nf is the
number of the active quark flavors. The LO anomalous

dimension γ∥ð0Þn is given by [8,12,25]

γ∥ð0Þn ¼ 8CF

�
Hnþ1 −

3

4
−

1

2ðnþ 1Þðnþ 2Þ
�
; ðA6Þ

where

Hn ¼
Xn
j¼1

1

j
ðA7Þ

is the harmonic number. The NLO anomalous dimension

γ∥ð1Þn−1 is given in Ref. [27] as
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γ∥ð1Þn−1 ¼
�
C2
F−

1

2
CFCA

��
16Hn

2nþ1

n2ðnþ1Þ2þ16

�
2Hn−

1

nðnþ1Þ
�
ðHð2Þ

n −S0ð2Þn=2Þþ64~Snþ24Hð2Þ
n −3−8S0ð3Þn=2

−8
3n3þn2−1

n3ðnþ1Þ3 −16ð−1Þn 2n
2þ2nþ1

n3ðnþ1Þ3
�

þCFCA

�
Hn

�
536

9
þ8

2nþ1

n2ðnþ1Þ2
�
−16HnH

ð2Þ
n þHð2Þ

n

�
−
52

3
þ 8

nðnþ1Þ
�
−
43

6
−4

151n4þ263n3þ97n2þ3nþ9

9n3ðnþ1Þ3
�

þCF
nf
2

�
−
160

9
Hnþ

32

3
Hð2Þ

n þ4

3
þ16

11n2þ5n−3

9n2ðnþ1Þ2
�
; ðA8Þ

where

HðkÞ
n ≡Xn

j¼1

1

jk
; with Hð1Þ

n ≡Hn; ðA9Þ

S0ðkÞn=2 ≡
8<
:

HðkÞ
n=2; if n is even;

HðkÞ
ðn−1Þ=2; if n is odd;

ðA10Þ

~Sn ≡
Xn
j¼1

ð−1Þj
j2

Hj: ðA11Þ

The off-diagonal evolution factor dnkðμ; μ0Þ is

dnkðμ;μ0Þ¼
Mnk

γ∥ð0Þn − γ∥ð0Þk −2β0

8><
>:1−

�
αsðμÞ
αsðμ0Þ

�γ
∥ð0Þ
n −γ∥ð0Þ

k
−2β0

2β0

9>=
>;;

ðA12Þ

where

Mnk¼
ðkþ1Þðkþ2Þðkþ3Þ

ðnþ1Þðnþ2Þ ðγ∥ð0Þn −γ∥ð0Þk Þ

×

�
8CFAnk−γ∥ð0Þk −2β0
ðn−kÞðnþkþ3Þ þ4CF

Ank−ψðnþ2Þþψð1Þ
ðkþ1Þðkþ2Þ

�
;

Ank¼ψ

�
nþkþ4

2

�
−ψ

�
n−k
2

�
þ2ψðn−kÞ−ψðnþ2Þ−ψð1Þ; ðA13Þ

and ψðnÞ is the digamma function.
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