002291312 001__ 2291312
002291312 003__ SzGeCERN
002291312 005__ 20171104011953.0
002291312 0247_ $$2DOI$$a10.1016/j.physletb.2011.05.009
002291312 0248_ $$aoai:inspirehep.net:914012$$pcerncds:CERN$$qINSPIRE:HEP$$qCERN$$qForCDS
002291312 035__ $$9http://inspirehep.net/oai2d$$aoai:inspirehep.net:914012$$d2017-11-01T11:07:24Z$$h2017-11-02T05:00:11Z$$mmarcxml
002291312 035__ $$9Inspire$$a914012
002291312 041__ $$aeng
002291312 100__ $$aSeidlitz, M
002291312 245__ $$aCoulomb excitation of (31)Mg
002291312 260__ $$c2011
002291312 269__ $$c2011
002291312 300__ $$a6 p
002291312 520__ $$9Elsevier$$aThe ground state properties of ^3^1Mg indicate a change of nuclear shape at N=19 with a deformed J^@p=1/2^+ intruder state as a ground state, implying that ^3^1Mg is part of the ''island of inversion''. The collective properties of excited states were the subject of a Coulomb excitation experiment at REX-ISOLDE, CERN, employing a radioactive ^3^1Mg beam. De-excitation @c-rays were detected by the MINIBALL @c-spectrometer in coincidence with scattered particles in a segmented Si-detector. The level scheme of ^3^1Mg was extended. Spin and parity assignment of the 945 keV state yielded 5/2^+ and its de-excitation is dominated by a strong collective M1 transition. Comparison of the transition probabilities of ^3^0^,^3^1^,^3^2Mg establishes that for th e N=19 magnesium isotope not only the ground state but also excited states are largely dominated by a deformed pf intruder configuration.
002291312 520__ $$9Elsevier$$aThe ground state properties of 31 Mg indicate a change of nuclear shape at N=19 with a deformed Jπ=1/2+ intruder state as a ground state, implying that 31 Mg is part of the “island of inversion”. The collective properties of excited states were the subject of a Coulomb excitation experiment at REX-ISOLDE, CERN, employing a radioactive 31 Mg beam. De-excitation γ -rays were detected by the MINIBALL γ -spectrometer in coincidence with scattered particles in a segmented Si-detector. The level scheme of 31 Mg was extended. Spin and parity assignment of the 945 keV state yielded 5/2+ and its de-excitation is dominated by a strong collective M1 transition. Comparison of the transition probabilities of 30,31,32 Mg establishes that for the N=19 magnesium isotope not only the ground state but also excited states are largely dominated by a deformed pf intruder configuration.
002291312 542__ $$fElsevier B.V.
002291312 65017 $$2SzGeCERN$$aNuclear Physics - Theory
002291312 6531_ $$9author$$aCoulomb excitation
002291312 6531_ $$9author$$aISOL
002291312 6531_ $$9author$$aReduced transition matrix element
002291312 6531_ $$9author$$aIsland of inversion
002291312 690C_ $$aCERN
002291312 693__ $$eCERN ISOLDE
002291312 700__ $$aMucher, D$$qMuecher, D.
002291312 700__ $$aReiter, P
002291312 700__ $$aBildstein, V
002291312 700__ $$aBlazhev, A
002291312 700__ $$aBree, N
002291312 700__ $$aBruyneel, B
002291312 700__ $$aCederkall, J$$qCederkaell, J.
002291312 700__ $$aClement, E
002291312 700__ $$aDavinson, T
002291312 700__ $$avan Duppen, P
002291312 700__ $$aEkstrom, A$$qEkstroem, A.
002291312 700__ $$aFinke, F
002291312 700__ $$aFraile, L M
002291312 700__ $$aGeibel, K
002291312 700__ $$aGernhauser, R$$qGernhaeuser, R.
002291312 700__ $$aHess, H
002291312 700__ $$aHoller, A
002291312 700__ $$aHuyse, M
002291312 700__ $$aIvanov, O
002291312 700__ $$aJolie, J
002291312 700__ $$aKalkuhler, M$$qKalkuehler, M.
002291312 700__ $$aKotthaus, T
002291312 700__ $$aKrucken, R$$qKruecken, R.
002291312 700__ $$aLutter, R
002291312 700__ $$aPiselli, E
002291312 700__ $$aScheit, H
002291312 700__ $$aStefanescu, I
002291312 700__ $$avan de Walle, J
002291312 700__ $$aVoulot, D
002291312 700__ $$aWarr, N
002291312 700__ $$aWenander, F
002291312 700__ $$aWiens, A
002291312 710__ $$gMINIBALL
002291312 710__ $$gREX-ISOLDE
002291312 773__ $$c181-186$$pPhys. Lett. B$$v700$$y2011
002291312 960__ $$a13
002291312 980__ $$aARTICLE
002291312 999C5 $$rnucl-th/0107054$$sPhys.Rev.Lett.,87,082502
002291312 999C5 $$sEur.Phys.J.,A15,151
002291312 999C5 $$sPhys.Rev.Lett.,102,152501
002291312 999C5 $$sPhys.Rev.,C12,644
002291312 999C5 $$sNucl.Phys.,A394,378
002291312 999C5 $$sNucl.Phys.,A251,193
002291312 999C5 $$sPhys.Rev.,C41,1147
002291312 999C5 $$sPhys.Rev.Lett.,95,232502
002291312 999C5 $$sNOONE,49,165
002291312 999C5 $$sPhys.Lett.,B566,84
002291312 999C5 $$rarXiv:0906.3775$$sPhys.Rev.Lett.,103,032501
002291312 999C5 $$rnucl-th/0407082$$sPhys.Rev.,C70,044307
002291312 999C5 $$sPhys.Rev.,C78,017302
002291312 999C5 $$sPhys.Rev.,C63,011305
002291312 999C5 $$sPhys.Rev.Lett.,94,022501
002291312 999C5 $$sPhys.Rev.,C72,044314
002291312 999C5 $$sPhys.Rev.,C65,061304
002291312 999C5 $$sPhys.Lett.,B346,9
002291312 999C5 $$sPhys.Rev.,C72,054320
002291312 999C5 $$sPhys.Lett.,B522,227
002291312 999C5 $$sPhys.Rev.Lett.,99,072502
002291312 999C5 $$sPhys.Lett.,B620,118
002291312 999C5 $$sPhys.Rev.,C66,024325
002291312 999C5 $$sPhys.Rev.,C73,054303
002291312 999C5 $$sPhys.Lett.,B674,168
002291312 999C5 $$rnucl-ex/0412037$$sPhys.Rev.Lett.,94,172501
002291312 999C5 $$sPhys.Lett.,B643,257
002291312 999C5 $$sPhys.Lett.,B647,93
002291312 999C5 $$sPhys.Rev.Lett.,101,142504
002291312 999C5 $$sPhys.Lett.,B658,203
002291312 999C5 $$sPhys.Rev.,C63,047308
002291312 999C5 $$rarXiv:1010.3999$$sPhys.Rev.Lett.,105,252501
002291312 999C5 $$sPhys.Rev.,C47,2502
002291312 999C5 $$sPhys.Rev.,C76,059902
002291312 999C5 $$rnucl-th/0702012$$sPhys.Rev.,C75,041302
002291312 999C5 $$sHyperfine Interact.,129,43
002291312 999C5 $$sNucl.Instrum.Meth.,B73,550
002291312 999C5 $$sNucl.Instrum.Meth.,A480,448
002291312 999C5 $$sProg.Part.Nucl.Phys.,46,389
002291312 999C5 $$sNucl.Instrum.Meth.,A453,522
002291312 999C5 $$sNucl.Instrum.Meth.,B204,347
002291312 999C5 $$sPhys.Rev.,C75,017302
002291312 999C5 $$sEur.Phys.J.,A25,105
002291312 999C5 $$sPhys.Rev.,C79,054306
002291312 999C5 $$sBull.Am.Phys.Soc.,28,745
002291312 999C5 $$sPhys.Lett.,B461,322