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Abstract Historically, high energy physics computing
has been performed on large purpose-built computing
systems. These began as single-site compute facilities,
but have evolved into the distributed computing grids
used today. Recently, there has been an exponential
increase in the capacity and capability of commercial
clouds. Cloud resources are highly virtualized and in-
tended to be able to be flexibly deployed for a variety
of computing tasks. There is a growing interest among
the cloud providers to demonstrate the capability to
perform large-scale scientific computing. In this paper,
we discuss results from the CMS experiment using the
Fermilab HEPCloud facility, which utilized both local
Fermilab resources and virtual machines in the Ama-
zon Web Services Elastic Compute Cloud. We discuss
the planning, technical challenges, and lessons learned
involved in performing physics workflows on a large-
scale set of virtualized resources. In addition, we will
discuss the economics and operational efficiencies when
executing workflows both in the cloud and on dedicated
resources.
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1 Overview

The use of highly distributed systems for high-throughput
computing has been very successful for the broad scien-
tific computing community. Programs such as the Open
Science Grid [1] allow scientists to gain efficiency by
utilizing available cycles across different domains. Tra-
ditionally, these programs have aggregated resources
owned at different institutes, adding the important func-
tionality to elastically contract and expand resources to
match instantaneous demand as desired. An appealing
scenario is to extend the reach of extensible resources
to the rental market of commercial clouds.

A prototypical example of such a scientific domain
is the field of High Energy Physics (HEP), which is
strongly dependent on high-throughput computing. Ev-
ery stage of a modern HEP experiment requires mas-
sive resources (compute, storage, networking). Detector
and simulation-generated data have to be processed and
associated with auxiliary detector and beam informa-
tion to generate physics objects, which are then stored
and made available to the experimenters for analysis.
In the current computing paradigm, the facilities that
provide the necessary resources utilize distributed high-
throughput computing, with global workflow, schedul-
ing, and data management, enabled by high-performance
networks. The computing resources in these facilities
are either owned by an experiment and operated by lab-
oratories and university partners (e.g. Energy Frontier

FERMILAB-PUB-17-092-CD
ACCEPTED

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. 
Department of Energy, Office of Science, Office of High Energy Physics.



2 Burt Holzman et al.

experiments at the Large Hadron Collider (LHC) such
as CMS, ATLAS) or deployed for a specific program,
owned and operated by the host laboratory (e.g. Inten-
sity Frontier experiments at Fermilab such as NOvA,
MicroBooNE).

The HEP investment to deploy and operate these
resources is significant: for example, at the time of this
work, the size of the worldwide computing infrastruc-
ture for the CMS experiment at the LHC is 150,000
cores, with US CMS deploying 15,000 cores at the Fer-
milab Tier-1 site, and more than 45,000 cores at seven
Tier-2 sites. Computing activity of a HEP experiment
like CMS can be separated into organized processing
activities that are planned and centrally managed, and
analysis activities that are chaotic, submitted by many
individuals and much less predictable. Common to both,
all computing activity comes in “bursts”, depending on
the accelerator schedule and the availability of new ad-
vances in software and understanding of the detector
(calibration and alignment). A typical week for an on-
premises Fermilab cluster across multiple experiments
is shown in Figure 1. This demonstrates the stochastic
nature of compute demand as well as the expense of
provisioning for peak capacity rather than steady-state
use. At the same time, peak capacity is required to do
large amounts of computing in a short amount of time
(e.g. new analyses with discovery potential, conference
deadlines).

The evolution of the HEP experimental program
(upgrades, new experiments) will generate increased com-
puting needs that go well beyond any performance gains
expected from advancements in computing techniques
and technologies. Furthermore, due to power and cool-
ing requirements, new architectures are departing from
Moore’s law expectations, resulting in lower performance
per core. By 2025, the muon program, the long-baseline
and short-baseline neutrino programs, and the LHC will
be at the apex of their offline analysis, as the two new
programs (High-Luminosity LHC, DUNE) are coming
on-line producing massive amounts of data [2–4]. The
increased precision, event complexity, and luminosity
of the HL-LHC alone will push computing needs nearly
two orders of magnitude above current HEP capabil-
ities, while generating exabytes of data. The implied
increase in compute capacity may not be possible to
satisfy with on-premises homogeneous resources. As a
result of this as well as the stochastic demand, we need
infrastructure to manage heterogeneous distributed re-
sources, optimize their use, and maximize their effi-
ciency and cost effectiveness.

It is essential for HEP to develop the concepts and
deploy the infrastructure that will enable analysis of
these vast amounts of data efficiently and cost effec-

Fig. 1 Utilization of the Fermilab general purpose scientific
computing cluster. The different colored bars correspond to
different experiments; the line represents the total number of
available cores.

tively. Following the Infrastructure-as-a-Service (IaaS)
paradigm [5], US HEP facilities could incorporate and
manage rental resources, achieving elasticity that sat-
isfies demand peaks without over-provisioning local re-
sources.

Along this paradigm, the HEPCloud facility con-
cept is envisioned to be a portal to an ecosystem of
heterogeneous commercial and academic computing re-
sources. It will provide “complete solutions” to users
with agreed-upon levels of service, automatically rout-
ing user workflows to on-premises and off-premises re-
sources based on efficiency metrics, cost, workflow re-
quirements, and the policies of the facilities hosting the
resources. This will be done transparently to the user,
utilizing a sophisticated decision engine and cost model,
and policies for managing user allocations to potential
computing resources. This includes managing security
and access controls to leadership-class computing facil-
ities on behalf of the user community.

In order to investigate the merit of this approach,
we deployed the Fermilab HEPCloud pilot project. The
goal was to produce a design of the overall concept and
deploy a first implementation of important components,
allowing us to investigate the merit of this approach,
and to evaluate different solutions. The objective was
to integrate rented resources into the current Fermi-
lab computing facility in a manner transparent to the
user. The first type of external resources considered was
commercial clouds, through partnerships with different
providers, and the first partnership was with Amazon
Web Services (AWS). For our studies, we identified use
cases that both emphasized and exercised the necessary
aspects of the concept and were also useful to the exper-
imenters. One of these use cases focused on CMS Monte
Carlo generation and reconstruction, targeting physics
results for the Moriond conference in March 2016 [6–8].
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This use case studied the scalability and sustainability
of elastic provisioning of AWS resources through the
portal, and exercised the prototype decision engine and
cost model.

The HEPCloud concept is a facility-centric approach
to computing resources; a host facility (Fermilab) man-
ages the resource acquisition decisions. The HEP field
has made significant inroads in utilizing elastic resources.
Earlier work includes [9–12]; contrasting with the HEP-
Cloud approach, these papers survey the status of cloud
use and cost comparisons from an experiment point-of-
view.

2 CMS Use Case: Introduction

The CMS experiment is facing a large and ever increas-
ing computing challenge. To meet the growing comput-
ing needs, CMS has considered the use of resources be-
yond the traditional CMS owned grid-provided systems.

One appealing potential solution is the utilization
of dynamically provisioned resources—either via aca-
demic and opportunistic access, or through commer-
cially provided computing services. The logical plat-
form choice for a first implementation of this solution
was the market leader [13] in cloud IaaS, Amazon Web
Services (AWS). CMS demonstrated small-scale cloud
computing on this platform for a short amount of time
as a proof-of-concept to investigate feasibility [14,15].
The HEPCloud demonstration described herein took
the next big step and was intended to show the ability
to increase the global processing capacity of CMS by a
significant fraction—60,000 cores—for an extended pe-
riod. Importantly, the test was also intended to deliver
useful simulated physics events to the collaboration for
analysis at a production scale.

To deploy resources for the use case, CMS was awarded
a 9 to 1 matching grant from AWS that allowed the
purchase of $300k of credits for computing, storage,
and network charges for an investment of $30k. The
size of the award was based on an estimate of what it
would cost to do one month of large-scale processing.
Additionally, a conditional cost waiver was granted for
exporting data; as long as the export costs remained
under 15% of the total monthly bill, and were trans-
mitted across research networks such as ESNet, the ex-
port charges would be waived entirely. This discount
program was so successful that it has been extended
to researchers at all academic and research institutions
[16].

CMS has three standard workflow types that it has
traditionally executed on dedicated resources. GEN-
SIM generates physics events via pseudo-random num-
ber generators, with no input files and large output files;

DIGI-RECO simulates the detector response and re-
constructs physics quantities (e.g. tracks with particle
identification), with large input files and modest output
files; and DATA-RECO reconstructs physics quantities
from detector data, with large input files and modest
output files. We chained together GEN-SIM and DIGI-
RECO into a GEN-SIM-DIGI-RECO workflow, an op-
timal case for minimizing egress charges. Over the last
six months, GEN-SIM and DIGI-RECO represented
more than half of the global CPU resources utilized by
the experiment. We considered many different physics
workflows to simulate for the experiment, evaluated the
applicability of each solution, and the urgency of the
scientific needs. We chose four GEN-SIM-DIGI-RECO
workflows (“TTJets”, “DY M10–50”, “DY M50”, “WJet-
sToLNu”) that were both needed and judged to be most
appropriate for the test.

In the following sections, we discuss the tests per-
formed, the services required, and the scale and perfor-
mance achieved. We also evaluate the cost to provide
dedicated computing resources at Fermilab versus the
costs paid to AWS for the same capacity.

3 Procurement Evaluation

The Fermilab HEPCloud team, in consultation with
CMS staff and the Fermilab Procurement office, wrote
a set of specifications for commercial cloud providers.
This included a set of financial and technical require-
ments to satisfy the need of the Fermilab HEPCloud
facility project. The financial requirements included the
ability to track spending by groups, to account for reg-
ular spending and credits, to access technical support,
and to pay in advance with pro forma invoicing. The
technical requirements included access to a minimum
scale of storage and CPU cores, guaranteed network
bandwidth to the ESNet science network, support for
certain APIs to launch virtual machines, support for
monitoring, and the ability to alert on preset levels of
spending. A Statement of Work was prepared that de-
scribed the activity of CMS and three other projects,
and specified a total amount of computing services that
would be purchased. A wide variety of cloud providers
and resellers were requested to bid on this Request For
Quotations (RFQ) [17]. The bids were evaluated ac-
cording to a predetermined set of best value criteria.
Once the qualifying bid was selected, the team certi-
fied that the services of the selected provider met the
requirements of the RFQ. DLT Solutions, a reseller of
Amazon, was awarded the contract with terms that give
us the flexibility to immediately spend funds when they
are available.
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Major cloud vendors offer grants for customers to
explore their platform. For this work, Fermilab has ob-
tained two Amazon Web Services Research Grants for
the NOvA and CMS experiment. While general dis-
cussions on the users’ needs and the grant programs
are conducted freely with the vendors, the acceptance
of the grant and related service access need to be co-
ordinated with procurement. This ensures fairness in
the competitive bidding process and fosters compliance
with government restrictions on undersigning customer
agreements. As for the latter, resellers of cloud ser-
vices provide government-friendly contracts by taking
upon themselves the liability of looser indemnification
clauses. Purchased services and grant credits can be
managed together as a single program.

4 Services

4.1 Services Deployed in AWS

A simplified overview of the architecture of the AWS
services used is shown in Figure 2. These components
are described in detail in the following sections.

4.1.1 Caching Application Code and Database Access

The sole on-demand service deployed for the CMS use
case was a dynamically scaled web cache. This service
ran Squid servers1 on the front end, utilizing CERN-
VMFS (CVMFS) technology [18] to cache the applica-
tion code, and the Frontier service [19] to cache database
queries from an off-site experimental conditions database.
From previous studies [20], it was observed that a squid
service that was not co-located with compute nodes
had a latency that was high enough to degrade perfor-
mance. In order to instantiate the service, AWS Cloud-
Formation2 was used to orchestrate the entire process
for launching and tearing down the service and depen-
dent infrastructure. The following services and/or com-
ponents were configured by the the CloudFormation
template created by the Fermilab HEPCloud team:

– Elastic Load Balancer (ELB)3

– Auto Scaling Group4 (from 1 to N servers) and poli-
cies

– Squid-optimized Amazon Machine Image
– Route 535 DNS CNAME Record Set
– CloudWatch6 alarms
1 Optimizing Web Delivery, http://www.squid-cache.org
2 https://aws.amazon.com/cloudformation/
3 https://aws.amazon.com/elasticloadbalancing/
4 https://aws.amazon.com/autoscaling/
5 https://aws.amazon.com/route53/
6 https://aws.amazon.com/cloudwatch/

Fig. 2 A simplified overview of the AWS services utilized for
the CMS use case.

One CloudFormation stack as described above was
deployed per availability zone. Each stack had a known,
fixed address, which was predetermined by the Route
53 service. An initialization script ran in each virtual
machine at launch that auto-detected which region and
availability zone it was in, as well as the public host-
name of the machine. CMS-specific configuration files
were modified at launch to point to the appropriate
squid server and the location of the input data via an
AWS Simple Storage Service (S3)7 URI.

The squid server was used to cache both the experiment-
specific software, which was delivered via CVMFS, and
event-specific database information, which came from
Frontier. CVMFS maintains its own local cache on the
local disk, while Frontier does not. In order to efficiently
cache the Frontier information, we instantiated a squid
cache on each worker node, reducing the net load on
the AWS central squid servers and on the main Frontier
servers at CERN, as well as the cost of traffic through
the Elastic Load Balancer (ELB). At peak load, each
ELB stack was running eight squid servers, with four
squid processes per server. Each server was instanti-
ated on a 4-core c3.xlarge instance [21]. Eight stacks
were instantiated, each one corresponding to a differ-
ent region/zone combination.

7 https://aws.amazon.com/s3/
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4.1.2 AWS Network Configuration

Each AWS region has a default Virtual Private Cloud
(VPC) that defines the network configuration for an
AWS account. The default VPC was modified to accom-
modate the CMS use case. The VPC is set up with one
Internet Gateway configured with a subnet per Avail-
ability Zone. Once the VPC is configured, Security Groups
act as firewalls to control the traffic allowed to reach
the virtual machines. Two Security Groups were con-
figured. One Security Group allowed the squid servers
to contact the general internet in order to retrieve data
and cache it. The other Security Group restricted out-
bound network access to Fermilab, CERN, and the AWS
public IP addresses; this group allows inbound ssh ac-
cess from Fermilab only.

4.1.3 AWS Spot Instances

AWS sells their excess resource capacity following a
market model called “Spot Market”. For every com-
bination of machine type, availability zone, and region,
users supply a bid price that represents the maximum
that they are willing to pay per hour of computing time.
AWS sets a dynamically-changing “spot price” based on
the current supply and demand.8 If the user’s bid price
is above the spot price, and there is sufficient capac-
ity in the resource pool, the resources are provisioned
at the spot price. If the spot price fluctuates above the
bid price after a resource has been provisioned, the user
is preempted with a two minute advance notice. Re-
sources are charged on the hour boundary and when
the instance is terminated by the user; in the event of
preemption, the last fraction of an hour is not charged.

4.1.4 AWS Limits

In order to ensure that the AWS service is properly
scaled to support the user workflow and to control po-
tential runaway costs, the service has a number of ad-
justable global default limits, some of which are hidden
to the end-user. We encountered several of these during
testing and the initial ramp-up of the CMS workflows.

The Elastic Network Interface (ENI) service man-
ages the network interfaces on the AWS worker nodes.
A limit was discovered when the number of instances
exceeded the default allocation and new Squid/Frontier
instances began to generate errors when attempting to

8 AWS provides an API to provision both individual ma-
chines and in bulk (“spot fleet”). At the time of our demon-
stration, our underlying provisioning tools did not support
spot fleet.

provision additional ENI. The default limit is dynami-
cally generated, but can be statically set upon request;
the limit was increased to 5000.

The HEPCloud team was notified ahead of time
by AWS that the use case would require an increase
in Elastic Block Storage (EBS) limits. We initially ex-
pected to use an Amazon Machine Image (AMI) with a
single 7 GB EBS volume for the operating system, and
two ephemeral disk volumes. After gaining some experi-
ence with the AWS service, EBS-only AMIs were added
to the list of provisionable resources, as some instance
types do not support ephemeral volumes. Increasing the
diversity of instance types reduced the overall preemp-
tion rate and took advantage of good price-performance.
This required an additional EBS limit increase request
from 20 TB to 300 TB per region.

The limits governing the number of spot instance
requests per region had to be significantly increased
over the defaults—from 20 to 5500—in order to scale
to 60,000 cores. As a precaution, the limits governing
the number of non-spot instances were lowered to 20,
the expected bounds of the on-demand Squid/Frontier
instances.

Additionally, we had to raise the limit on the num-
ber of entries per Security Group from 50 to 125. The
project, in fact, established a requirement for a “deny
all” security posture in order to reduce the risk of errant
jobs running up outbound network costs, as described
in the previous section. Since we were accessing S3 over
its public network interface, we had to explicitly enable
outbound access from our instances to the S3 endpoints
in each region. This access was granted by configuring
a large number of whitelisted subnets in the Security
Groups.

4.2 Services Deployed at Fermilab

4.2.1 Accounting and Billing

Fermilab operates an accounting system for the utiliza-
tion of grid resources. We extended this service by de-
veloping an additional probe to collect usage data from
Amazon. This probe polls the AWS monitoring inter-
face every hour to detect the number of machines in-
stantiated by instance type, the associated virtual orga-
nization and AWS account, and the spot price charged
for that hour. For instances that have been terminated,
it records the termination reason and time. This infor-
mation is recorded in the Gratia [22] database and the
Gratiaweb service can be used to analyze and display
it.

DLT Solutions supplied a billing summary of us-
age in comma-separated-value format and provided an
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hourly report on all AWS service usage. Custom rou-
tines were written to parse this billing data and keep
track of our balance, so that we could know how much
remaining funds were available. We also set up our
own alarms to alert if the burn rate was unexpectedly
high. Estimates of the data egress cost and its ratio to
the total cost were also calculated. Because monthly
data egress charges below 15% of the total cost are not
charged, this estimate informs operations of the poten-
tial costs of data egress. An access-restricted Grafana9

instance was deployed for monitoring financial data.

4.2.2 glideinWMS

The glideinWMS workload management system [23,24]
was used to provision the worker nodes used during the
CMS run. GlideinWMS follows the pilot-based work-
load paradigm—launching a pilot to provision and val-
idate a compute resource, which then pulls work from
a central queue. A development version of glideinWMS
was deployed to make available some of the new fea-
tures needed to run at scale at AWS. During the testing
period prior to ramp-up, several patches were applied
in situ to address various issues found. These patches
were provided to the glideinWMS development team
for addition to later development releases.

The glideinWMS HEPCloud instance was config-
ured with 120 resource types. Each type consisted of
AWS region in the US, availability zone, and instance
type; additional parameters (such as the maximum in-
stance lifetime) were added to the configuration. The
AMI ID and credentials needed to launch the instances
are passed securely between glideinWMS components.

The instances were configured to run a bootstrap
service. This service parsed a base-64 encoded string
(“user-data”) that was passed to the instance when pro-
visioned. The user-data contained the instance lifecy-
cle parameters, the X.509 proxy used for daemon com-
munication, and the glideinWMS pilot arguments (in-
cluding the URL of the glideinWMS pilot scripts). The
bootstrap service downloaded the pilot scripts and asso-
ciated files, then launched the pilot within the instance.

The lifecycle of the provisioned instance had the fol-
lowing stages. The factory requested instances as prompted
by the frontend. The maximum lifetime was passed to
the instance as part of user-data and enforced by the
system. The pilot exited when no more jobs match the
resources or when the maximum lifetime was exceeded.
The instance was configured to shut down when the
pilot exited. Additionally, an administrator could is-

9 The open platform for analytics and monitoring,
https://grafana.com

sue commands on the factory to remove provisioned
instances.

4.2.3 HTCondor / Submission Pool

At the time of the workflow testing and execution, the
CMS global HTCondor pool [25,26] was not capable
of increasing in scale by an additional 60,000 jobs. To
address this, we bypassed the CMS global HTCondor
pool and provisioned a separate HEPCloud HTCondor
pool. We deployed three independent machines at Fer-
milab as schedulers and two additional nodes to serve
as a highly-available HTCondor central manager. In-
stances of the CMS-specific workload submission sys-
tem WMAgent [27] were deployed on each scheduler.
The WMAgent instances retrieved descriptions of work
from a central service, created jobs, submitted them
to their local batch HTCondor scheduler, tracked their
completion, and resubmitted failed jobs when needed.

4.3 Reporting

The CERN Dashboard10 was used to track all the met-
rics collected by the workflow. Included in the workflow
data were total runtimes for each step, data I/O, and
efficiencies.

For infrastructure reporting and monitoring, Fermi-
lab deployed an additional publicly available Grafana
instance with customized views. The views included ag-
gregate numbers for AMI types per availability zone
and region, number of cores provisioned, and a run-
ning count of instances in running, idle, and preempted
state.

We also leveraged an already deployed ELK (Elas-
ticSearch, LogStash, Kibana) stack11 to read in all the
data available from the local HTCondor job scheduler,
allowing rich data mining of the HTCondor job data.
Additional data were available via logfiles that the jobs
stage out as part of their routine workflow.

5 Costs and stability of services

Motivated by a previous study [28], we selected a simple
bid strategy for spot pricing, which was to bid 25% of
the “on-demand” price for a given resource.

In this study, various adaptive algorithms and strate-
gies previously described in the literature were evalu-
ated. The cost of each strategy was computed, based
on collection of the spot price history over an interval

10 http://dashboard.cern.ch
11 https://www.elastic.io
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Fig. 3 Number of running instances by AWS Region and
Availability Zone.

Fig. 4 Pilot lifetimes in hours. The left histogram represents
the entire distribution; the right histogram is zoomed in to
show the distribution for pilots with lifetimes under 20 hours.

of four months. The static strategy gave the most bal-
anced performance in terms of cost when averaged over
a variety of pricing conditions.

We devised a strategy of “portfolio diversification”
based on our observations of the spot market. To im-
prove the availability and stability of the system at
scale, we bid in more than 100 different spot markets,
representing nearly all the regions and zones then avail-
able in the US, as illustrated in Figure 3.

The mean lifetime for a provisioned resource was
37.6 hours, while the average job lifetime was 4.7 hours.
Figure 4 shows the distribution of provisioned resource
lifetimes. While the distribution is peaked in the lowest
bin, the tail is very long—some resources remained in
the pool for over 200 hours.

Over the course of the 3.2 million job run, 15.5%
of the jobs were preempted, as shown in Table 1. Pre-
emptions are made visible within HTCondor as the dis-
appearance of a provisioned resource. When a preemp-
tion is detected, the scheduler reschedules the job and
restarts it on a different available resource. The “num-
ber of job starts” is then strictly one less than the num-
ber of times a job was preempted.

There is also a time-dependence to the ability of ac-
quiring resources at scale. In general, during the busi-
ness day, AWS removes resources from the spot mar-
ket to fulfill their “reserved” and “on-demand” classes

Table 1 Preemption counts for CMS jobs

Number of times preempted Count Percentage of total
0 2736240 84.5%
1 403062 12.4%
> 1 101687 3.1%

Fig. 5 Count of CPU cores on AWS from February 1st (Mon-
day) to February 7th (Sunday), 2016. The plateau near 60,000
cores is limited by the local submission infrastructure. With
the exception of the large dip on February 4, the decreases
are purely due to the dynamics of the spot market.

of service. In the late evenings and on the weekends,
as the demands on those classes of service go down,
the supply of resources into the spot market increases.
This is clearly visible in Figure 5—there are peaks in
the early morning hours and on weekends, and valleys
during the day when resources were removed from pools
and machines were being more frequently preempted.

The default strategy used by the glideinWMS fron-
tend and factory was to attempt to distribute the load
evenly (on a number of core basis) across nearly all re-
gions, zones and instance types12. We found that some
region/zone/instance type combinations filled up very
quickly and the price quickly moved above our bid price,
causing quick preemption of those instance types. Over
time we ended up accumulating most of the instances
which were least likely to get preempted. The final in-
stance mix near the end of the steady-state is shown in
Table 213.

During the run, $211,985 was spent on AWS ser-
vices. 15,085,635 wallclock hours were consumed—giving
an average cost per wallclock hour of 1.4 cents. Approx-
imately 92% of cost was spent on EC2 instances, 6% on
support, and 2% on S3 storage. The cost per event for
different physics samples is shown in Table 3.

12 https://aws.amazon.com/ec2/instance-types/
13 Instance types that provided smaller contributions are not
included.
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Table 2 AWS instance distribution at steady-state. (Actual pricing was at or below the bid price.)

Instance Type Number of Instances Number of Cores per Instance Memory per Instance (GiB) Bid price per Instance
m3.xlarge 2905 4 15 $0.0665
m3.2xlarge 1244 8 30 $0.133
r3.2xlarge 1109 8 61 $0.175
r3.xlarge 826 4 30.5 $0.0875
c3.xlarge 759 4 7.5 $0.0525
c3.2xlarge 614 8 15 $0.105
m4.xlarge 655 4 16 $0.063
m4.2xlarge 413 8 32 $0.126

Table 3 Average time and cost per job and event, by sample

Sample Average time per successful job (s) Average time per event (s) Cost per 100 events
TTJets 25,345 42.2 $0.016
DY M10–50 14,111 23.5 $0.0092
DY M50 13,214 22.0 $0.0085
WJetsToLNu 12,235 20.4 $0.0079

6 Lessons Learned and Operational
Considerations

At the beginning of the CMS AWS HEPCloud use case,
a significant effort went into looking at the monitor-
ing that would be needed to prevent unnecessary waste
of computing resources. Tracking slow and stuck jobs,
identifying infinite loops in the application, identifying
I/O-bound jobs and other sources of low CPU efficien-
cies, and protecting against huge log files that would
incur high export transfer charges, were all considered.
On AWS, the financial loss associated with inefficiency
is explicit, but an early conclusion of the AWS investi-
gation was that we should ensure the monitoring put in
place for elastic resources is extended to dedicated grid
resources. On dedicated computing that has been pur-
chased in advance, it is easier to mislead yourself that
occurring inefficiencies are not a financial loss, but the
issues are the same as with cloud resources; the costs
have just been amortized up-front and are hidden.

AWS imposes a substantial fee for data egress out
of the cloud. Fees begin at $0.09 per GB and drop
to $0.07 per GB as the total egress per month ex-
ceeds 100 TB (at the time the use case was executed).
As mentioned earlier, these charges are waived if the
egress charges are less than 15% of the total process-
ing charges. Optimizing the use of resources encourages
longer running workflows with small output; there are
no charges for import. By chaining together GEN-SIM
and DIGI-RECO into a GEN-SIM-DIGI-RECO work-
flow, we kept egress charges under the 15% threshold
for the use case. Specifically, each job staged back ap-

proximately 161 events, and the average event size was
about 216 kB.

The I/O characteristics of the experimental work-
flow impacted the operational costs. In the DIGI stage
of the workflow, the job executed a loop that performed
some computation, did hundreds of reads from input
data, and then repeated. The initial strategy was to use
S3 storage for the input data, and to do streaming reads
from the application. However, there is a small charge
for each read (seek) operation. We discovered that the
CMS application performed so many read operations
(150 million HTTP GET requests per hour) that the
cost of I/O was comparable to the costs of processing
time. As a result, we changed strategies to retrieve an
entire input data file to the local worker node storage
and read it from there. The change reduced the cost
by five orders of magnitude and increased the job effi-
ciency.

As discussed above, the system was configured to
provision multiple resource types from multiple Ama-
zon regions and availability zones to increase the total
scale of available resources on the spot market. Data,
however, was stored at a specific Amazon region. To
access the data, therefore, one could opt to store the
dataset in one region, for about $0.03 per GB per month,
and access it from all regions, incurring in inter-region
transfer charges at $0.02 per GB. Alternatively, one
could replicate the dataset in all regions, increasing the
storage charges, to avoid inter-region transfer charges.
The latter was the most cost effective strategy for the
size of the input data.

We also needed to ensure that only authenticated
users could read from S3, as we could not control the
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Table 4 The number of events, jobs, and failure rates of each
of the 4 large-scale GEN-SIM-DIGI-RECO workflows. The
outlying failure rate (labeled with *) was due to overloading
the Fermilab local storage.

Sample Events Jobs Failure Rate
DY M10–50 121 M 560590 0.6%
DY M50 65 M 185971 14%*
TTJets 197 M 1089459 0.5%
WJetstoLNu 66 M 459184 0.1%

quantity of data being read (and charged) for unauthen-
ticated access. Read privileges were granted to the com-
pute nodes via “roles” which were assigned at the time
of node instantiation. The compute node then retrieves
private, public, and session keys via the AWS Security
Token Service (STS); this method is preferable to the
less-secure method of passing in private keys from out-
side AWS with appropriate privileges. In order to stage
in the complete file to the node, we leveraged the ex-
isting callout to a curl executable in the CMS software
framework [29]. Two additional binaries were deployed
to the worker node via the glideinWMS frontend—an
AWS-capable curl that generates custom AWS HTTP
authentication headers, and another that wraps the en-
vironment configuration in order to prepend an appro-
priate path to the environment. In addition, a bootstrap
script tied into the standard CVMFS setup commands
was added to the local image.14

7 Performance and reliability

Table 4 shows the job failure rate as seen by the WMAgent
system for the various samples produced in GEN-SIM-
DIGI-RECO workflows. These rates do not account for
intermediate failures that are retried by the underlying
HTCondor batch system (e.g. due to node preemption),
or the built-in 3-try resubmission from WMAgent itself.
Except for the DY M50 outlier (where the reason is un-
derstood, and the events were eventually recovered), the
job failure rate looks competitive or even better than
what one would expect if the workflow was running at
CMS-owned sites.

The reasons jobs can fail are many, but assuming the
workflow itself is stable, the failures are usually related
to external dependencies. Among those, the most com-
mon are I/O related failures—reading input or staging
output to mass storage. Figure 6 shows the effect of
some of these failures on the job numbers during the
time when we were trying to find a stable working point.

We encountered several issues. The Fermilab storage—
destination for the output data—was overloaded at full

14 https://github.com/holzman/glidein-scripts

Fig. 6 Count of CPU cores on AWS from January 28 to
February 1, 2016. Valleys in the distribution correspond
mostly to failures on components external to AWS.

scale. The implementation of the transfer protocol did
not scale well in the storage system; we remedied this
by switching to a better-supported protocol.15 An im-
age was misconfigured, causing failed reads of input
data from S3; a properly-configured image was rolled
out. The security token used to authenticate reads was
expiring too soon; this was corrected by acquiring the
token “just-in-time” rather than when the instance was
provisioned.

Apart from failure-related drops in job count, both
Figure 5 and Figure 6 show that it is not trivial to keep
50,000 cores fed with jobs continuously. We had two
occasions where problems with the WMAgent service
prevented us from keeping the AWS resources busy: we
couldn’t keep up with the required job submission rate.
Because glideinWMS only provisions resources when
there are idle jobs in the queue, and because we also
terminate provisioned resources after a short time if
they are idle, this did not incur a large cost inefficiency.
In short, these issues did not cause any failures per se,
but had an impact on how quickly we could finish a
workflow running on AWS.

Another source of inefficiency in the system is due
to the spot market. Our jobs could get preempted if the
cost of the resource exceeds the maximum bid that CMS
is willing to pay for the resource. This would not show
up as a failure, since HTCondor will reschedule the job.
However, it has a similar effect as failed jobs—it causes
computing resources to be spent on computations for
which we get no usable output. Table 5 shows the sum
of wall clock and CPU time for jobs run between Jan-
uary 13 to February 12. The first number represents
all jobs, including ones that are preempted and retried.

15 The EOS storage system [30] implements the SRM proto-
col by deploying the BeStMan [31] software package, which is
not well-supported. We switched to using the xrootd protocol,
which is supported natively by EOS.
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Table 5 Wall clock and CPU time totals for CMS jobs on
AWS

Sum of all jobs Wall Clock (h) 15,087,067
Sum of completed jobs Wall Clock (h) 13,663,074
Sum of completed jobs CPU Time (h) 11,885,993

The second and third are sums for only the final iter-
ation of a job that ran to completion (including failed
jobs).

From these numbers we can deduce that there was a
roughly 10% inefficiency due to preemption losses (but
the monetary losses are lower because of the way AWS
bills in the case of preemption). The other deduction is
that average CPU efficiency over all final job iterations
is 87%. This is a very good number considering that
our workflows run every step of GEN-SIM-DIGI-RECO
sequentially on the instance and not all these steps are
CPU-bound. For reference, the average efficiency for
GEN-SIM, DIGI, and RECO on the grid are 57%, 68%,
and 82%, respectively.

8 Detailed cost comparison

Cost is one of the most interesting comparisons between
commercially provisioned resources and dedicated pur-
chased computers. Historically, commercially provisioned
computing has been much more expensive than regu-
larly used purchased systems. In recent years, due to the
market competition, there has been a steady decrease
in the cost of commercial computing. This decrease,
combined with the evolution of spot pricing as a fea-
sible working model, has made the commercial sources
of computing more cost competitive.

Fermilab attempted to estimate the cost per core-
hour of the CMS Tier-1 processing resources. In this
calculation there is a number of objective (but site-
specific) values, such as the cost per kilowatt of power,
the initial cost of the machines, the average lifetime
for computers, and the amortized cost of the comput-
ing center building. There are also several more subjec-
tive inputs, such as the effort required to perform the
administrative functions and the average utilization of
the dedicated systems. In the cost calculations it was
assumed that 3 Full Time Equivalent (FTE) units of
effort were required to handle the local network and
hardware administration of approximately 700 comput-
ing systems. The estimate assumes 100% utilization of
CMS Tier-1 resources; at lower utilization, the effec-
tive cost per productive CPU cycle is larger. Given the
uncertainty in the subjective inputs, we estimate that
the error on the per hour core cost is roughly 25%.
There are also several assumptions in this estimate. As

a national laboratory and host to an accelerator com-
plex, Fermilab buys electrical power in bulk at favor-
able prices. The costs also do not include the price of
constructing new data centers.

An important consideration when comparing the
relative costs of core-hours is ensuring that the work
performed by each core in an hour is also comparable.
CMS performed a series of benchmarks using a stan-
dard simulation workflow—the so-called tt benchmark—
comparing the speed of event production on a variety
of AWS instances and several generations of hardware
at Fermilab [33]. Looking at the same number of cores
used by the application, there is a spread of roughly
30%. Newer hardware generally tends to be faster for
event production even if it has a lower clock speed. The
spread of performance is observed at both locations and
there is virtually no systematic difference between the
benchmark performance on local Fermilab equipment
versus AWS-hosted systems. The performance is simi-
lar, so we believe it is reasonable to directly compare
the core costs.

As shown in Table 6, commercially provisioned re-
sources are roughly 50% more expensive than dedicated
well-utilized local resources, but there are some caveats.
Not all workflows could be performed on AWS at this
low cost rate. Workflows that have large output and in-
cur high export charges would be more expensive, and
workflows that require large random access to data not
available within AWS would be less efficient and there-
fore more expensive. A similar test at a lower scale using
the NOvA experiment [34] measured an average cost of
$0.03 per core-hour because they needed to use larger
systems and transfer data between regions. There is the
potential for significant variation in cost. On the other
hand, Fermilab is only this inexpensive if the resources
are continuously used. One of the most attractive el-
ements of commercially provisioned resources is that
they can be dynamically provisioned. There is no dif-
ference in cost to require twice as much computing in
one month and nothing in the following month. The
advantages of this kind of peak scheduling will be dis-
cussed in the following section.

Given the continued evolution to lower costs in com-
mercially provisioned computing resources and the suc-
cess of this project utilizing them, it is likely that the
HEP community will pursue a hybrid utilization model
with contributions from both dedicated grid comput-
ing and commercially provisioned computing. There are
differences in the workflows that are best suited for
each, so it is unlikely that one will completely replace
the other, but a model with complementary resources
is both desirable and cost effective.
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Table 6 The cost per hour for one core of computing on dedicated Tier-1 resources at Fermilab and on virtualized commercial
cloud resources on AWS and the tt benchmark (greater = faster). The uncertainty in the AWS cost data corresponds to one
standard deviation from the daily cost per core-hour. The AWS cost does not include cost of staff.

Site Average cost per core-hour tt benchmark (tt / s per core)
Fermilab CMS Tier-1 $0.009 ± 25% [32] 0.0163
AWS $0.014 ± 12% 0.0158

9 Non-economic value of commercially
provisioned resources

The computing resources for HEP experiments are pledged
by the funding agencies of countries participating in the
Worldwide LHC Computing Grid (WLCG [35]). Be-
cause of the lead time to commission physical resources
in the computing centers in the different countries, the
planning process looks 18 months ahead. The HEP ex-
periments plan and request computing resources yearly.
Requests are scrutinized and eventually endorsed in a
formal process by the Computing Resource Scrutiny
Group (C-RSG). Resources are deployed on a specific
date, and then available to the experiment throughout
the year; it is very important that the experiments’ cen-
tral production teams plan for steady and continuous
use during long periods of time, as shown on the left
side of Figure 7. Experience from Run1 and Run2 at
the LHC shows that the computing needs of experi-
ments are not constant over time. A number of activi-
ties, such as data (re)processing, simulation data gener-
ation and reconstruction, tend to come in bursts with
irregular time structure, dictated by software release,
conference and data taking schedules. Thus, there is
a significant mismatch of the planning frequency, and
thus, provisioning of resources, and the frequency with
which user demand varies. In the example of a confer-
ence deadline, production activities have to start well
in advance to make the deadline with constant resource
usage. Incorporating elastic resource provisioning (e.g.
commercial cloud) could enable a much more efficient
processing plan starting shortly before the conference.
The available elasticity of bursting resources into com-
mercial clouds would change the way people work in
large scientific collaborations and allow for shorter and
more agile time schedules. The right side of Figure 7
shows this case where processing and simulation is done
in burst. With resources provisioned with commercial
clouds, the planning process could also be condensed.
Time to provision resources is shorter because physical
resources do not have to be provisioned and installed
at the computing centers.

Provisioned resources like AWS may also provide
a powerful source for problem recovery. In case of a
problem that invalidates work already performed (ei-

Fig. 7 An illustration of provisioning for average vs. provi-
sioning for peak.

ther due to software, a systematic computing issue, or
not properly accounting for changing experiment con-
ditions) there is not sufficient excess capacity in the
system to perform the work twice, without having to
make difficult choices to cancel needed future work. At
the same time it is not possible in the current budget
environment to reserve excess capacity to recover from
this type of failure. The cloud model is interesting be-
cause it allows for the dynamic purchase of sufficient
capacity to solve problems without maintaining dedi-
cated resources in reserve. This ability to burst to a
high fraction of the total CMS resources for a period
of time should be seen as an useful insurance policy to
recover from such problems.

Specialized resources like high-memory slots and other
more exotic hardware configurations might be provi-
sioned more flexibly with commercial partners. This
would allow to react flexibly and maximize physics out-
put without long-term investment in physical hardware.

10 Looking Forward

The HEPCloud CMS use case on AWS, performed by
Fermilab and CMS, has demonstrated that it is possi-
ble to utilize dynamically provisioned cloud resources
to sustain execution of many CMS workflows at an ex-
tremely large scale. As shown in Figure 8, the HEP-
Cloud facility was able to increase the amount of re-
sources available to CMS by 33%. When viewed in terms
of the expansion of the Tier-1 facilities, as shown in Fig-
ure 9, the effect is even larger.

In order to operate the resources most efficiently
we selected specific workflows, but we did not find any
that could not be executed. Individual sites that con-
sider purchased computing services as a component of
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Fig. 8 A comparison of the scale of processing on AWS to
other global CMS activity.

Fig. 9 A comparison of the scale of processing on AWS to
other CMS Tier-1 activity.

their processing pledge to the experiment should be
able to maintain a production efficiency similar to what
we observed, by deploying dedicated interface systems
for grid services on top of dynamically provisioned re-
sources (e.g. through a HEPCloud-like solution).

11 Global Context of Dynamic Resources

The successful completion of real-life CMS workflows
at scale as described in this note demonstrates the po-
tential for utilizing the HEPCloud paradigm and estab-
lishes the merits of this approach. Commercial cloud re-
sources rented from AWS (supported through an AWS
grant) were successfully integrated into the current Fer-
milab computing facility in a manner transparent to the
experiment.

The CMS HEPCloud use case with AWS demon-
strated scalability at a level of the worldwide LHC com-
puting scale. This result is crucially important to ex-
trapolate to the expected future exponential increases
in computing needs, establishing that cloud provision-

ing is becoming a real contender for realizing these fu-
ture needs.

We demonstrated that elasticity of cloud provision-
ing is very high, certainly sufficient to address the burst-
ing needs of HEP computing. We also demonstrated
that this approach is compatible with the operational
procedures of a number of diverse experiment work-
flows. This approach can be used in “production mode”
once the HEPCloud portal and the flexible services
backbone will be fully functional and running in op-
erations mode. HEPCloud will then provide important
new on-demand capabilities to experiment production
managers; these capabilities will increase flexibility and
enable efficiency gains in the experiment resource plan-
ning process.

We demonstrated that performance and efficiencies
are high, comparable to and sometimes surpassing ded-
icated HEP resources. We measured CPU efficiency to
be approaching 90% overall, which compares favorably
with dedicated resources even given the rather complex
workflows used in the demonstrator. The demonstrated
reliability and high availability of the “as-a-service” ap-
proach is sufficient to serve as a backup and insurance
against eventual local outages, potentially increasing
the overall robustness of the local facility.

Cost effectiveness is a complex issue, but given the
increasingly competitive market of cloud providers we
expect it to further increase. HEP can make use of
spot market prices effectively. We saw that preemption
caused only a 10% inefficiency overall, and the cost im-
pact of this inefficiency was actually much lower, given
the AWS spot market pricing policies. The cost com-
parisons assume almost 100% utilization of owned re-
sources, a value that is rarely reached or sustained over
the year, given the inability to plan at the frequency re-
quired for full resource utilization, the “burst” nature of
experiment computing workloads, and the inherent “in-
elastic” nature of owned resources. As a matter of fact,
the LHC utilization history of Tier-1 resources has been
significantly lower, narrowing the cost gap between on-
premises and off-premises further.

The current AWS costing model puts a premium on
data transfers, making data intensive workflows a cost
driver. However, this may change in the future, given
that the actual networking cost per unit data contin-
ues to decrease exponentially over time. HEP, via ES-
net “Points of Presence” into the AWS cloud, has ac-
cess to a flexible and high performance infrastructure of
data access points, which should bring down the actual
data transport costs to the provider. Using data trans-
fer volume as a cost driver is part of the AWS business
model today, but it is at least conceivable that future
cost models for large-scale clients like HEP could de-
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emphasize data fees while still providing enough margin
for cloud providers to be profitable.

The demonstrator described in this note is just the
beginning of making HEPCloud a dependable part of
the Fermilab and HEP computing infrastructure for
the LHC, the intensity frontier and the neutrino pro-
gram. For the LHC in particular, the new capabilities
of on-demand resources and resource elasticity provided
by HEPCloud are significant enough to partially out-
weigh the larger cost per core-hour, making HEPCloud
provisioning of LHC resources a new and important
ingredient to the overall computing ecosystem. HEP-
Cloud adds commercial or community cloud resources
to the predominance of owned resources, augments op-
portunistic resources across OSG, and contributes fu-
ture HPC and supercomputing center resources to the
mix. This approach will help HEP facilities move away
from standalone, siloed solutions.

We expect the new capability of reliable and robust
on-demand provisioning of HEPCloud to significantly
impact future resource planning for the LHC and the
rest of the HEP computing program. For the next cycle
of computing resource planning, on-demand capabilities
will lower the need for owned resources on the floor,
lowering the need for over-provisioning as a strategy to
deal with peak demands. The corresponding decrease in
investment cost for owned resources will provide some
flexibility for on-demand capacity. The exact balance
for the coming resource years will need to be carefully
determined. In the meantime, making the HEPCloud
portal a robust and fully supported piece in the US
HEP computing landscape will be of high priority and
importance.

We anticipate that the HEPCloud portal concept
will provide a means for all laboratories to provide shared
resources in the ecosystem, resulting in a large pool
of offerings for compute, archival capabilities, database
services, data management, etc., potentially linking all
US HEP computing. The concept, inception, and evolu-
tion is guided in large part by the requirements of large
international experiments (LHC, for example). As such,
it will be directly applicable and beneficial to the inter-
national community, and could be extended to incor-
porate any additional requirements introduced by the
international aspect (assuming international partners
and funding).

12 Conclusions

The HEP experimental program continues to evolve,
and will require computing capacity in excess of scaling
current on-premise resources within reasonable budget
scenarios and computing technology evolution. To help

address this problem, it is essential that we develop
the capability to expand HEP facilities beyond what is
on the local data center floor. A sensible target which
will yield significant benefits is to leverage the industry
trends in cloud computing. The HEPCloud facility con-
cept provides a portal to such computing resources as a
transparent layer for the users, offloading the decisions
of when and how to acquire off-premises resources to
the facility and its Decision Engine.

We deployed an implementation of aspects of the
HEPCloud facility concept using glideinWMS technol-
ogy, with the goal of evaluating the performance and
quantifying the benefits of the concept. To achieve this
goal, we designed and executed a number of different
use cases for different experiments. The goal of the
CMS use case was to enable the execution of a physics
workflow that would add significantly to their overall
global compute capacity, while generating useful anal-
ysis results for the experiment. This second aspect en-
sures that the use case demonstrates directly the ben-
efits of the approach. For a full simulation workflow
(from event generation to physics reconstruction), over
15 million hours of computing were consumed, simu-
lating more than 500 million events. The steady-state
cost came to 1.4 ± 12% cents per core-hour, which is
not much larger than the estimated 0.9 ± 25% cents
per core-hour for the Fermilab data center. The NOvA
experiment also executed a smaller-scale workflow on
AWS (at a cost of 3 cents per core-hour), demonstrating
the ability of the HEPCloud facility to serve different
user communities and exercising a different processing-
to-data ratio.

From this work, we have shown that commercial
cloud resources can be acquired at large scales for costs
that are larger than, but comparable to, the cost of
procuring and deploying similar resources on-site. Given
the large year-over-year increases in the size of cloud
computing industry-wide and the potential economies
of scale, it is conceivable that the steady-state comput-
ing costs could approach or even undercut the price of
procuring physical equipment. Beyond the comparison
of steady-state costs, the needs and demands of the sci-
entific community are not flat with respect to time, but
have a structure and time-dependence. Having the abil-
ity to pay for only the resources that are used gives a
large amount of flexibility and can increase planning
flexibility, efficiency, and cost effectiveness overall. On
the other hand, not all workflows are well-suited to run-
ning off-site. Despite the international proliferation of
high-bandwidth networks, scientific workflows that are
very data intensive may be better matched to executing
on local resources near storage. It is clear that a hybrid
approach, the HEPCloud facility—capable of provision-
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ing both on-premises and off-premises resources and ag-
gregating them into a single virtual facility—will give
the most flexibility and gives the scientific community
the best chance to meet the ever-growing needs of its
users.
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