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Abstract. The first implementation of a Machine Learning Algorithm inside a Level-1 trigger
system at the LHC is presented. The Endcap Muon Track Finder (EMTF) at CMS uses
Boosted Decision Trees (BDTs) to infer the momentum of muons in the forward region of
the detector, based on 25 different variables. Combinations of these variables representing 230

distinct patterns are evaluated offline using regression BDTs. The predictions for the 230 input
variable combinations are stored in a 1.2 GB look-up table in the EMTF hardware. The BDTs
take advantage of complex correlations between variables, the inhomogeneous magnetic field,
and non-linear effects – like inelastic scattering – to distinguish high momentum signal muons
from the overwhelming low-momentum background. The new momentum algorithm reduced
the background rate by a factor of three with respect to the previous analytic algorithm, with
further improvements foreseen in the coming year.

1. Introduction
The Compact Muon Solenoid (CMS) is a detector at the Large Hadron Collider (LHC) located
near Geneva, Switzerland. The LHC collides bunches of protons every 25 ns at a center of
mass energy of 13 TeV. The CMS experiment detects the resulting particles and measures
their kinematics using various subdetectors working in concert. With 40 million proton bunch
crossings per second amounting to roughly 40 TB of data each second, saving the information
from every event is not feasible. As such, the CMS trigger system chooses the interesting events
to save to disk, operating in two stages [1]. The Level-1 (L1) trigger runs in hardware online
reducing the throughput of data from 40 MHz to 100 KHz. From there, the High Level Trigger
(HLT) operates in software online reducing the rate from 100 KHz to 1 KHz. In the end, about
1 GB/s is saved to disk.

With 40 MHz of input, the L1 Trigger has only 4 µs to decide whether to keep the information
for an event. The Endcap Muon Track Finder (EMTF) – part of the L1 Trigger dedicated to
muons – has only about 500 ns to determine the location, tracks, and momentum of the muons
passing through the Cathode Strip Chambers (CSC) and Resistive Plate Chambers (RPC) in
the endcaps of CMS [2]. High momentum muons are an important object for many physics
analyses at CMS. As such, an accurate momentum assignment distinguishing low momentum
muons (background) from high momentum muons (signal) is key to the EMTF trigger. In order
to meet the timing requirements, the EMTF’s logic is implemented in Field Programmable Gate



Arrays (FPGAs), a type of reprogrammable hardware that allows vast parallelization and speeds
much greater than even the best CPUs.

To improve the transverse momentum (pt) assignment for muons in the endcaps at Level-1,
the EMTF team trained Boosted Decision Trees (BDTs) offline using TMVA [3], and stored the
prediction scheme into a 1.2 GB Look-Up Table (LUT). The FPGAs then use the LUT online to
assign the pt in a single operation. Using the LUT to turn the BDT pt assignment into a simple
look-up enables the EMTF to utilize the power of a robust machine learning algorithm for its
momentum predictions while still operating at the required time scale. Putting a parallelized
version of the BDTs directly into the FPGAs, while hypothetically possible, would require more
than the available number of logic gates. Such an implementation would still be slower than the
LUT method, and changing the pt assignment would require reprogramming the FPGA logic
each time. The LUT method provides a simple way to run any machine learning evaluation at
high speed by turning the evaluation into a single operation.

2. Metrics of Success
Two metrics are used to measure the success of the EMTF: the rate and the efficiency. The rate
at X GeV is defined as the number of muons with a predicted pt greater than X GeV. In other
words, the rate consists of both true and false positives above the pt threshold. The efficiency
at X GeV is defined as the number of muons with both predicted pt and true pt greater than X
GeV divided by the number of muons with true pt above X GeV. Put another way, the efficiency
measures the percentage of muons with true pt above X GeV correctly predicted above X GeV.
A good trigger will minimize the data saved without losing the interesting high pt events where
unexplored physics lies, i.e. it will minimize rate while maximizing the efficiency.

3. The EMTF Regression Project
A muon traveling through the endcap detectors has a chance to leave hits in four sequential
stations labeled 1, 2, 3, and 4. The specific combination of hits like 1,3,4 is called the mode.
Each station records the φ and θ location of a hit, among other information. The CSCs have
better spatial resolution, so the φ and θ information is taken from the CSCs by default, but
the RPC measurements for the station are used if the CSCs missed the hit in the same station.
The charged muons travel through a magnetic field following curved paths due to the Lorentz
force. The force causes the high pt muons in a magnetic field to bend less and the low pt muons
to bend more. The difference in φ and θ between stations i and j, ∆φij and ∆θij , quantify the
curvature of the track. With most of the curvature accounted for by the ∆φ variables, the ∆φs
provide the majority of the pt discrimination.

A major difficulty in minimizing the rate is the steeply falling pt distribution. A typical
interesting event has pt greater than 25 GeV, and there are about one thousand 5 GeV muons
for every 25 GeV muon. With so many more low pt events, predicting the low momentum
muons poorly will drastically increase the rate. Moreover, in addition to the large number of
low pt muons, there are other noteable difficulties: the muons travel through a non-uniform
magnetic field, some scatter between detector stations, and those with high pt often shower
charged particles upon interacting with the detector material. Moreover, low pt muons may
spiral completely before getting to the next station. The scattering, showering, and spiraling
add noise to the underlying true behavior, while the number of low pt muons requires that the
regression focus on the low momentum regime to prevent an explosion in the rate.

In order to assign pt in a robust way and deal with the aforementioned difficulties, a BDT
is trained for each possible mode using the discretized values for the features of Table 1. The
loss function and weights are chosen to focus on the low pt events and minimize the rate while
maintaining acceptable efficiency. Features are chosen for each mode to give the BDT the



information needed to predict the pt while dealing with the non-uniform magnetic field and the
problematic scattering and showering effects.

The ∆φ variables available for each mode are used as features to determine the curvature
and get most of the pt discrimination. However, the power of these variables depends largely on
the track position in θ. The magnetic field varies as a function of θ affecting the magnitude of
the curvature for a given pt, thus correlating ∆φ, pt, and θ. The link between these three makes
θ the next most important training feature.

Variables modeling the mean and RMS of the available ∆φs for the mode are also used as
features in order to identify scattering and showering effects. If a muon were to scatter or shower
between stations the recorded hit in a station may not be the true hit of the muon. Any ∆φ
involving this station will be an outlier. To determine the severity of the deviation and the
likelihood of scattering/showering, the idea is to identify the outlier station and to compare
the mean and RMS ∆φ with and without the outlier station. The greater the difference the
greater the severity. The nominal mean and RMS ∆φ features are calculated using all available
∆φs for the mode. The exclusive mean and RMS are calculated using all available ∆φij for the
mode with i or j 6= Sout, where Sout is the outlier station. Sout is the excluded station such that
leaving it out of the sum minimizes the mean and RMS. The outlier station, Sout, is also used
as a feature. Including the nominal mean and RMS of ∆φ, the exclusive RMS and mean of ∆φ,
and Sout as features helps the BDT differentiate scattering, showering, and normal events.

The features described above are the most important features, but not the whole collection.
The front-rear (FR) bit designates whether the muon hit a front or rear CSC chamber in the
station, and it is also included. The ∆θs provide additional curvature information, and these
are included as well. The B feature for each station is included as well, and it flags whether the
φ, θ information for the station came from the CSCs or the RPCs. If there are bits available for
the Bi feature it also includes information about the single station ∆φ bend angle within a CSC
chamber. Lastly, the +/− feature stores the signs of the later ∆φs relative to the first ∆φij for
the mode.

4. Putting the BDTs into a Look-up Table
After training BDTs for each mode, the mode and the fundamental features from which the
others can be derived are discretized and fit into a 30 bit word. The discretization scheme is
different for each mode, detailed in Table 1. With the feature space compressed into 30 bits,
there are 230 possibilities that need to be assigned a pt. A LUT is created by looping over all 230

possible bit words, decoding each word into the fundamental features, deriving the secondary
features, and sending the values to the BDT to assign the pt prediction. Using 9 bits for the pt,
this amounts to a 1.2 GB LUT where each bit word value is an address and the pt is the value
in memory. Discretizing the feature space and creating a LUT turns the pt assignment into a
single operation. The LUT is then used by the FPGA logic online to assign pt to muon tracks
in the EMTF. The LUT method is a simple way to run any machine learning method quickly,
but compressing the features into 30 or so bits may not always be feasible for the application.

Table 1. The feature discretization scheme for each mode.
Four Station Modes

Mode Feature ∆φ12 ∆φ23 ∆φ34 +/- ∆θ14 B1 B2 B3 B4 FR1 θ Mode
1-2-3-4 Bits 7 5 4 2 2 2 1 1 1 1 3 1



Three Station Modes

Mode Feature ∆φ12 ∆φ23 +/- ∆θ13 B1 B2 B3 FR1 FR2 θ Mode
1-2-3 Bits 7 5 1 3 2 1 1 1 1 5 3
Mode Feature ∆φ12 ∆φ24 +/- ∆θ14 B1 B2 B4 FR1 FR2 θ Mode
1-2-4 Bits 7 5 1 3 2 1 1 1 1 5 3
Mode Feature ∆φ13 ∆φ34 +/- ∆θ14 B1 B3 B4 FR1 FR3 θ Mode
1-3-4 Bits 7 5 1 3 2 1 1 1 1 5 3
Mode Feature ∆φ23 ∆φ34 +/- ∆θ24 B2 B3 B4 FR2 – θ Mode
2-3-4 Bits 7 5 1 3 2 1 1 1 – 5 4

Two Station Modes

Mode Feature ∆φXY ∆θXY BX BY FRX FRY θ Mode
X-Y Bits 7 3 3 3 1 1 5 7

X-Y runs through the possible two station combinations: 1-2, 1-3, 1-4, 2-3, 2-4, 3-4.

5. Results and Conclusions
The LUT scheme utilizing the BDT predictions has been implemented in the EMTF for 2016
and 2017 data taking. As seen in Figure 1, the upgraded system – compared to the legacy
system – reduces the rate at 25 GeV by a factor of three with no loss in efficiency. The legacy
system was used in the endcaps until 2015.

Figure 1. On the left, the upgraded EMTF rate divided by the legacy rate is shown for a
variety of pt thresholds. On the right, the upgraded and legacy efficiencies are presented for a
25 GeV threshold. The upgraded EMTF has a 3x lower rate than the legacy system at 25 GeV
with virtually no difference in plateau efficiency for the same threshold. Plots are taken from [4].
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