CERN Accelerating science

002289667 001__ 2289667
002289667 003__ SzGeCERN
002289667 005__ 20241024143055.0
002289667 0247_ $$2DOI$$9JACoW$$a10.18429/JACoW-IPAC2017-TUPVA130
002289667 0248_ $$aoai:inspirehep.net:1626306$$pcerncds:CERN:FULLTEXT$$pcerncds:FULLTEXT$$pcerncds:CERN$$qINSPIRE:HEP$$qForCDS
002289667 035__ $$9http://inspirehep.net/oai2d$$aoai:inspirehep.net:1626306$$d2017-10-17T20:42:18Z$$h2017-10-18T04:00:43Z$$mmarcxml
002289667 035__ $$9Inspire$$a1626306
002289667 041__ $$aeng
002289667 084__ $$2CERN Library$$aCLIC-Note-01119
002289667 088__ $$aCERN-ACC-2017-162
002289667 088__ $$aCLIC-Note-1119
002289667 100__ $$aMarín, [email protected]$$uCERN
002289667 245__ $$9JACoW$$aCLIC Tuning Performance Under Realistic Error Conditions
002289667 260__ $$c2017
002289667 300__ $$a4 p
002289667 520__ $$9JACoW$$aIn this paper we present the latest results regarding the tuning study of the baseline design of the CLIC Final Focus System. In previous studies, 90% of the machines reach 90% of the nominal luminosity, when considering beam position monitor errors and transverse misalignments of magnets for a single beam case. In the present study, roll misalignments and strength errors are also included for both e⁻ and e⁺ beamlines, making the study a more realistic one. First, second and third order knobs are implemented in the tuning procedure to target the most relevant beam size aberrations. In order to minimise the total number of luminosity measurements a simultaneous scan of various knobs has been developed to cope with the non-fully orthogonality of the knobs. The obtained results for single and double beam studies are presented.
002289667 540__ $$9JACoW$$aCC-BY-3.0$$uhttp://creativecommons.org/licenses/by/3.0/
002289667 595__ $$aCLIC-Note
002289667 595__ $$aCLICARCHIVE
002289667 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002289667 6531_ $$2JACoW$$aluminosity
002289667 6531_ $$2JACoW$$acollider
002289667 6531_ $$2JACoW$$atarget
002289667 6531_ $$2JACoW$$alinear-collider
002289667 6531_ $$2JACoW$$aalignment
002289667 690C_ $$aCERN
002289667 700__ $$aLatina, Andrea$$iINSPIRE-00002966$$jJACoW-00021470$$uCERN
002289667 700__ $$aPlassard, [email protected]$$uCERN
002289667 700__ $$aSchulte, Daniel$$jJACoW-00001631$$uCERN
002289667 700__ $$aTomás, Rogelio$$iINSPIRE-00286070$$jJACoW-00003672$$uCERN
002289667 773__ $$cTUPVA130$$qIPAC2017$$wC17-05-14$$y2017
002289667 8564_ $$81360948$$s209759$$uhttps://cds.cern.ch/record/2289667/files/tupva130.pdf
002289667 8564_ $$81360948$$s1587089$$uhttps://cds.cern.ch/record/2289667/files/tupva130.pdf?subformat=pdfa$$xpdfa
002289667 960__ $$a13
002289667 962__ $$b2263434$$kTUPVA130$$ncopenhagen20170514
002289667 980__ $$aARTICLE
002289667 980__ $$aConferencePaper
002289667 980__ $$aCLICNOTE
002289667 999C6 $$a0-0-1-1-0-0-1$$t2017-09-29 10:13:41$$vcontent.pdf;1$$vInvenio/1.1.2.1260-aa76f refextract/1.5.44
002289667 999C5 $$01228241$$hM. Aicheler et al.$$mCERN, Geneva, Switzerland, Rep$$o1$$rCERN-2012-007$$tA Multi-TeV Linear Collider Based on CLIC Technology: CLIC Conceptual Design Report$$y2012
002289667 999C5 $$hP. Raimondi and A. Seryi$$min Proc. EPAC’00, Vienna,, pp. 492—494$$o2$$tA novel final focus design for high energy linear colliders$$y2000
002289667 999C5 $$hB. Dalena et al.$$i978-3-95450-182-3$$mProceedings of IPAC2017, Copenhagen, Denmark TUPVA130 01 Circular and Linear Colliders A03 Linear Colliders 2405 Copyright©2017CC-BY-3.0andbytherespectiveauthors$$o3$$sPhys.Rev.ST Accel.Beams,15,051006$$tBeam delivery system tuning and luminosity monitoring in the Compact Linear Collider$$y2012
002289667 999C5 $$hJ. Snuverink, R.M. Bodenstein, and R. Tomás$$min Proc. IPAC’16, Busan, Korea, May, paper THPMR047, pp. 3508-3511$$o4$$tTwo-beam tuning in the CLIC-BDS$$y2016
002289667 999C5 $$o5$$tThe tracking code placet$$uhttps://clicsw.web.cern.ch/clicsw/
002289667 999C5 $$hD. Schulte$$mPh.D. thesis, DESY, Hamburg, Germany, TELSA-Rep.-08, 2017$$o6$$tStudy of electromagnetic and hadronic background in the interaction region of the TESLA collider$$y1997
002289667 999C5 $$hR. Assman et al.$$mPRST-AB, vol. 3, p. 121001$$o7$$tEmittance preservation with dispersion free steering at LEP$$y2000
002289667 999C5 $$hT. Raubenheimer et al.$$mNucl. Inst. Meth. A vol. 302, pp. 191-208$$o8$$tA Dispersion Free Trajectory Technique for Linear Colliders$$y1991
002289667 999C5 $$hT. Raubenheimer et al.$$mStanford, CA, USA, Rep -071$$o9$$pSLAC$$rSLAC-TN-03$$tBrief review of linear collider beam based alignment for linacs$$y2004
002289667 999C5 $$hA. Latina and P. Raimondet$$mal Proc. LINAC’10, Tsukuba, Japan, Sep., paper MOP026, pp. 109-111$$o10$$tA novel alignment procedure for the final focus of future linear collider$$y2010
002289667 999C5 $$hR.P. Brent$$mCh. 3-4, Englewood Cliffs, NJ:$$o11$$pPrentice-Hall$$tAlgorithms for minimization without derivatives$$y1973
002289667 999C5 $$054819$$hK.L. Brown et al.$$mStanford, CA, USA, Rep -462$$o12$$pSLAC$$rSLAC-R-95$$tThird-order transport a computer program for designing charged particle beam transport systems$$y1995
002289667 999C5 $$01317542$$hT. Okugi et al.$$o13$$sPhys.Rev.ST Accel.Beams,17,023501$$tLinear and second order optics corrections for the KEK accelerator test facility final focus beam line$$y2014
002289667 999C5 $$0861448$$hJ. A. Nelder and R. Mead$$i978-3-95450-182-3$$mTUPVA130 Proceedings of IPAC2017, Copenhagen, Denmark 2406 Copyright©2017CC-BY-3.0andbytherespectiveauthors 01 Circular and Linear Colliders A03 Linear Colliders$$o14$$sComput.J.,7,308-313$$tA Simplex method for function minimization$$y1965