KATE WHALEN (U. OREGON) ON BEHALF OF THE ATLAS COLLABORATION DARK MATTER SEARCHES WITH THE ATLAS DETECTOR

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR INTRODUCTION

- Plentiful evidence for dark matter
 - Galactic rotation curves
 - Gravitational lensing
 - Cosmic microwave background
- DM candidate should be
 - Electrically neutral
 - Weakly interacting
 - Massive

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR **DARK MATTER SEARCHES**

- Three complementary methods
 - Indirect detection: annihilation / decay products, e.g. gamma rays, cosmic rays, neutrinos
 - FERMI-LAT, AMS, ICECUBE...
 - Direct detection: WIMP-nucleon scattering
 - DEAP, PICASSO, CDMS, XENON, LUX...
 - Collider production
 - Will review a selection of searches (not all of them!) with the ATLAS detector for dark matter produced at the LHC

K. Whalen (ICPPA2017)

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR DARK MATTER MODELS AT THE LHC (RUN 1)

- Effective field theories (EFT)
 - Run 1 DM searches at the LHC
 - Contact interactions
 - Described in terms of effective energy scale and m_{DM}
 - Invalid at large momentum transfer: problematic in Run 2 (13 TeV LHC) SM, DM SM **DM**

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR DARK MATTER MODELS AT THE LHC (RUN 2)

- Simplified models
 - Contain a stable or very long-lived DM candidate " χ "
 - Introduce a mediator that couples to SM and DM to resolve the contact interaction into s- / t-channel interactions
 - Permit more complete descriptions of DM production kinematics at the LHC
 - Need more parameters (masses and couplings): $m_{\gamma'}$ $m_{med}, g_{SM}, g_{\gamma}$

ATLAS / CMS DM forum arXiv:1507.00966

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR **SIMPLIFIED MODELS AT THE LHC**

Typical signatures at the LHC:

MONO-X SEARCHES

MONO-JET SEARCH

- Dirac fermion WIMPs produced via s-channel exchange of leptophobic spin-1 mediator with axial-vector couplings
- Search for large E_T^{miss} recoiling against a high- p_T jet

$$E_{T}^{miss}, p_{T}^{jet} > 250 \text{ GeV}$$

- ► N_{jets} (p_T >30 GeV) ≤ 4, $\Delta \phi(jet, p_T^{miss}) > 0.4$
- Veto events containing electrons or muons
- ▶ Dominant $Z(\rightarrow vv)$ +jets background constrained using simultaneous fit to E_{τ} distribution in W($\rightarrow \ell \nu$)/Z($\rightarrow \ell \ell$) + jets control regions
 - W/Z+jets MC predictions (NLO SHERPA) reweighted to account for higherorder corrections (arXiv:1705.04664 [hep-ph])
 - 0.7-1% theoretical uncertainty on extrapolation from control regions
- Background uncertainty ~2-5% (dominated by jet/energy scale & resolution)

MONO-JET RESULTS

- 10 signal regions in bins of E_{T}^{miss}
- ▶ 95% CL exclusion limits on axial-vector mediator with g_a $= 0.25, g_{\gamma} = 1$
 - Mediator masses below 1.55 TeV excluded for very light WIMPS
- Also considered pseudoscalar mediator with $g_q, g_r = 1$ (not yet sensitive; see backup)

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR **MONO-PHOTON SEARCH**

- Simplified model with vector or axial-vector couplings
- Also consider dimension-7 EFT operator
- Search for large E_T^{miss} recoiling against a high- E_T photon
 - $E_{T}^{miss}, E_{T}^{*} > 150 \text{ GeV}$
 - $\Delta \boldsymbol{\phi}(\boldsymbol{\chi}, \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}}) > 0.4$
 - $N_{jets} \leq 1$
 - Veto events containing electrons or muons
- Dominant backgrounds (Zy, Wy, y+jets) normalized in control regions using a simultaneous likelihood fit

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR **MONO-PHOTON RESULTS**

- Three inclusive signal regions in E_{T}^{miss}
- Results presented for axial-vector mediator with couplings $g_q = 0.25$, $g_y = 1$

 - Converted to limits on χ -nucleon scattering cross-section

• Excluded axial-vector and vector mediators below 750-1200 GeV for χ masses below 230-480 GeV

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR MONO-W/Z (HADRONIC) SEARCH

- Highly boosted hadronically decaying W/Z recoiling against large E_{T}^{miss} (> 250 GeV)
- ▶ Jet substructure techniques used to tag large-R (anti-k_T R=1.0) jets from W/Z boson decays:
 - Require m_{iet} within 15 GeV of W/Z mass
 - D₂ variable (energy correlation ratio, see <u>ATLAS-CONF-2017-064</u>, e.g.) used to select jets with two-pronged substructure

QCD jet

Phys. Lett. B 763 (2016) 251

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR MONO-W/Z (HADRONIC) RESULTS

- Dominant backgrounds (Z+jets, W+jets, ttbar) normalized in control regions using a profile likelihood fit to the E_T^{miss} distribution
- Set limits on simplified model with vector mediator and couplings $g_q = 0.25, g_\chi = 1$

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR MONO-Z (LEPTONIC)

- Search for boosted $Z(\rightarrow \ell \ell) + E_T^{miss}$
- Require two same-flavour, opposite-sign leptons (ee, $\mu\mu$) with $|m_Z - m_{\ell \ell}| < 15$ GeV
- Boosted topology: E^{Tmiss} > 90 GeV, small angular separation between leptons ($\Delta R_{\ell\ell} <$ 1.8)
- Irreducible ZZ background estimate from MC; WZ, Z+jets from data-driven methods

arXiv:1708.09624

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR MONO-Z (LEPTONIC) RESULTS

- Low-mass (E_T^{miss} > 90 GeV) search sets limits on simplified WIMP DM model with axial-vector mediator, $g_q = 0.25$, $g_{\gamma} = 1$
 - Mediator up to 560 GeV excluded for light WIMPs
 - WIMPs up to 130 GeV excluded (for 400 GeV mediator)
- Other interpretations in high-mass signal region $(E_T^{miss} > 120 \text{ GeV}):$
 - > ZH production: $(Z \rightarrow \ell \ell, H \rightarrow invisible)$
 - Heavy resonances (e.g. 2HDM, RS graviton) decaying to $ZZ \rightarrow \ell \ell \nu \nu$

MONO-HIGGS

- Initial-state Higgs radiation highly suppressed: mono-Higgs production allows a direct probe of SM-DM interactions
- Target model: Z' 2HDM, with SM $h \rightarrow b\overline{b}$
- Multivariate b-tagging (<u>ATLAS-CONF-2016-039</u>)
- Resolved topology ($150 < E_T^{miss} < 500 \text{ GeV}$)
 - Two small-R jets; one or two b-tags
- Boosted topology ($E_T^{miss} > 500 \text{ GeV}$)
 - Large-R jet with b-tagging applied to small-R track jets matched to large-R jet

MONO-HIGGS RESULTS

2 b-tag category gives highest signal sensitivity for resolved (binned in E_T^{miss}) and **boosted** regimes

DI-X RESONANCE (MEDIATOR) SEARCHES

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR **DIJET RESONANCES**

- High-mass dijet search probes a wide range of signatures in mass range above ~1 TeV
 - Z' (dark matter mediator), W', W*, quantum black holes, excited quarks
- Lowest unprescaled single-jet trigger: $p_T^{jet} > 380$ GeV
- Multijet background prediction: sliding-window fit

19

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR **NEW TECHNIQUES: TRIGGER-LEVEL DIJET ANALYSIS**

- Bandwidth & detector readout limitations force prescaling of single-jet triggers at $p_T < \sim 400 \text{ GeV}$
 - Lose dijet events below m_{ii} ~ 1 TeV
- Avoid by recording trigger-level objects containing limited information
 - Jet four-momentum, identification variables
 - No tracking, muon, calorimeter cell info
 - Event size < 5% of typical fully-built event</p>
- Special data-scouting stream records all events containing jet regions of interest with $E_T > 75$ GeV (level-1)
- Search targets resonance masses between 450-950 GeV

ATLAS-CONF-2016-030

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR **NEW APPROACHES: DIJET+ISR**

- Extend dijet resonance search to even lower masses and smaller couplings
 - Sensitivity of traditional searches limited by trigger thresholds to m_{ii} ~ 2p_T^{min}
- Trigger on initial-state radiation (jet or photon) and search for recoiling dijets
 - Solution Set $E_T > 380 \text{ GeV}$
 - ISR photon threshold: E_T > 140 GeV

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR **DIJET RESONANCE SEARCH RESULTS**

- Searches set limits on leptophobic axial-vector Z' mediators across a broad mass range
- Signal regions restrict y* to reduce multijet backgrounds

$$y_{12}^* = (y_{j1} - y_{j2})/2$$

Trigger-level analysis and dijet+ISR search extend limits at lower masses and smaller couplings

The ATLAS Run 2 physics programme includes many searches for a wide variety of dark matter signatures

- couplings using new techniques
- Nice complementarity with direct / indirect detection experiments

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR CONCLUSION

Thank you! Спасибо!

BACKUP

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR MONOJET RESULTS (PSEUDOSCALAR MEDIATOR)

K. Whalen (ICPPA2017)

<u> ATLAS-CONF-2017-060</u>

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR **MONO-PHOTON RESULTS**

MONO-Z (LEPTONIC)

arXiv:1708.09624 [hep-ex]

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR **DIJET ANGULAR ANALYSIS**

Search for BSM contributions to angular distribution sets limits on contact interaction scale

$$\chi = e^{2|y^*|} \sim \frac{1 + \cos \theta^*}{1 - \cos \theta^*}$$

DIJET INTERPRETATIONS

Model	$95\%~{\rm CL}$ exclusion limit			
	Observed	Expected		
Quantum black hole	$8.9~{\rm TeV}$	$8.9~{ m TeV}$		
W'	$3.6~{\rm TeV}$	$3.7 { m ~TeV}$		
W^*	$3.4 { m ~TeV}$ $3.77 { m ~TeV} - 3.85 { m ~TeV}$	$3.6 { m ~TeV}$		
Excited quark	$6.0~{\rm TeV}$	$5.8 { m TeV}$		
$Z' \ (g_q = 0.1)$	$2.1~{\rm TeV}$	$2.1 { m ~TeV}$		
$Z' \ (g_q = 0.2)$	$2.9~{\rm TeV}$	$3.3 { m ~TeV}$		
Contact interaction $(\eta_{\rm LL} = -1)$	$21.8 { m ~TeV}$	$28.3 { m TeV}$		
Contact interaction $(\eta_{\rm LL} = +1)$	13.1 TeV 17.4 TeV – 29.5 TeV	$15.0 { m TeV}$		

arXiv:1703.09127

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR **DIJET TRIGGER-LEVEL ANALYSIS: RATE & BANDWIDTH**

ATLAS trigger operation public results

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR DARK MATTER SUMMARY PLOT (AXIAL-VECTOR MEDIATOR)

K. Whalen (ICPPA2017)

ATLAS Exotics summary plots

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR DARK MATTER SUMMARY PLOTS (VECTOR MEDIATOR)

ATLAS Exotics summary plots

DARK MATTER SEARCHES WITH THE ATLAS DETECTOR **COMPARISON WITH DIRECT DETECTION EXPERIMENTS**

ATLAS Exotics summary plots

ATLAS EXCLUSION LIMITS

ATLAC Excise Coordbook 05% CL Upper Exclusion Limite

010						$\int \mathcal{L} dt = 0$	3.2 - 37.0) to 1	$\sqrt{s} = 8$, 13 lev
	Model	<i>ℓ</i> ,γ	Jets†	E ^{miss} T	∫£ dt[fb ⁻	Limit		Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell\nu$	$0 e, \mu$ 2γ $-$ $\geq 1 e, \mu$ $-$ 2γ $1 e, \mu$ $1 e, \mu$	$1 - 4j$ $-$ $2j$ $\geq 2j$ $\geq 3j$ $-$ $1J$ $\geq 2b \geq 3i$	Yes - - - Yes Ves	36.1 36.7 37.0 3.2 3.6 36.7 36.1 13.2	7.75 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV 4.1 TeV ass 1.75 TeV	$n = 2$ $n = 3 \text{ HLZ NLO}$ $n = 6$ $n = 6, M_D = 3 \text{ TeV, rot BH}$ $n = 6, M_D = 3 \text{ TeV, rot BH}$ $k/\overline{M}_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 1.0$ Tier (1 1) $\mathcal{B}(A^{(1,1)} \rightarrow tt) = 1$	ATLAS-CONF-2017-060 CERN-EP-2017-132 1703.09217 1606.02265 1512.02586 CERN-EP-2017-132 ATLAS-CONF-2017-051 ATLAS-CONF-2016-104
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \ell\nu \\ \text{HVT } V' \to WV \to qqqq \text{ model B} \\ \text{HVT } V' \to WH / ZH \text{ model B} \\ \text{HVT } V' \to WH / ZH \text{ model B} \\ \text{LRSM } W'_R \to tb \\ \text{LRSM } W'_R \to tb \end{array}$	2 e, μ 2 τ - 1 e, μ 1 e, μ 0 e, μ nulti-channe 1 e, μ 0 e, μ	- 2 b ≥ 1 b, ≥ 1J/2 - 2 J 1 2 b, 0-1 j ≥ 1 b, 1 J	– – – Yes – Yes –	36.1 36.1 3.2 3.2 36.1 36.7 36.1 20.3 20.3	ass4.5 TeVass2.4 TeVass1.5 TeVass2.0 TeVass5.1 TeVass3.5 TeVass2.93 TeVass1.92 TeVass1.76 TeV	$\Gamma/m = 3\%$ $g_V = 3$ $g_V = 3$	ATLAS-CONF-2017-027 ATLAS-CONF-2017-027 ATLAS-CONF-2017-050 1603.08791 ATLAS-CONF-2016-014 1706.04786 CERN-EP-2017-147 ATLAS-CONF-2017-055 1410.4103 1408.0886
CI	Cl qqqq Cl llqq Cl uutt 2	– 2 e,μ 2(SS)/≥3 e,μ	2 j _ ≀ ≥1 b, ≥1 j	_ _ Yes	37.0 36.1 20.3	4.9 TeV	21.8 TeV η_{LL}^- 40.1 TeV η_{LL}^- $ C_{RR} = 1$	1703.09217 ATLAS-CONF-2017-027 1504.04605
DM	Axial-vector mediator (Dirac DM) Vector mediator (Dirac DM) $VV_{\chi\chi}$ EFT (Dirac DM)	0 e, μ 0 e, μ, 1 γ 0 e, μ	1 - 4 j $\leq 1 j$ $1 J, \leq 1 j$	Yes Yes Yes	36.1 36.1 3.2	1.5 TeV 1.2 TeV 700 GeV	g_q =0.25, g_χ =1.0, $m(\chi)$ < 400 GeV g_q =0.25, g_χ =1.0, $m(\chi)$ < 480 GeV $m(\chi)$ < 150 GeV	ATLAS-CONF-2017-060 1704.03848 1608.02372
ГØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	– – Yes	3.2 3.2 20.3	ass 1.1 TeV ass 1.05 TeV ass 640 GeV	$egin{array}{llllllllllllllllllllllllllllllllllll$	1605.06035 1605.06035 1508.04735
Heavy quarks	$VLQ TT \rightarrow Ht + X$ $VLQ TT \rightarrow Zt + X$ $VLQ TT \rightarrow Wb + X$ $VLQ BB \rightarrow Hb + X$ $VLQ BB \rightarrow Zb + X$ $VLQ BB \rightarrow Wt + X$ $VLQ QQ \rightarrow WqWq$	0 or 1 <i>e</i> , <i>µ</i> 1 <i>e</i> , <i>µ</i> 1 <i>e</i> , <i>µ</i> 2/≥3 <i>e</i> , <i>µ</i> 1 <i>e</i> , <i>µ</i> 1 <i>e</i> , <i>µ</i>	$ \geq 2 \text{ b}, \geq 3 \text{ j} \\ \geq 1 \text{ b}, \geq 3 \text{ j} \\ \geq 1 \text{ b}, \geq 1 \text{ J}/2 \\ \geq 2 \text{ b}, \geq 3 \text{ j} \\ \geq 2/\geq 1 \text{ b} \\ \geq 1 \text{ b}, \geq 1 \text{ J}/2 \\ \geq 4 \text{ j} $	Yes Yes j Yes Yes j Yes Yes	13.2 36.1 36.1 20.3 20.3 36.1 20.3	ss 1.2 TeV ss 1.16 TeV ss 1.35 TeV ss 700 GeV ss 790 GeV ss 1.25 TeV ss 690 GeV	$\begin{aligned} \mathcal{B}(T \to Ht) &= 1\\ \mathcal{B}(T \to Zt) &= 1\\ \mathcal{B}(T \to Wb) &= 1\\ \mathcal{B}(B \to Hb) &= 1\\ \mathcal{B}(B \to Zb) &= 1\\ \mathcal{B}(B \to Wt) &= 1 \end{aligned}$	ATLAS-CONF-2016-104 1705.10751 CERN-EP-2017-094 1505.04306 1409.5500 CERN-EP-2017-094 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton ℓ^* Excited lepton v^*	- 1 γ - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j 1 b, 2-0 j - -	- - Yes -	37.0 36.7 13.3 20.3 20.3 20.3	ass6.0 TeVass5.3 TeVass2.3 TeVass1.5 TeVass3.0 TeVass1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $f_g = f_L = f_R = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1703.09127 CERN-EP-2017-148 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
Other	LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ 2 Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	2 e, μ ,3,4 e, μ (SS 3 e, μ, τ 1 e, μ – –	2 j - - 1 b - -	- - Yes -	20.3 36.1 20.3 20.3 20.3 7.0	ass2.0 TeVmass870 GeVnass400 GeVI invisible particle mass657 GeVcharged particle mass785 GeVpole mass1.34 TeV	$m(W_R) = 2.4$ TeV, no mixing DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \rightarrow \ell\tau) = 1$ $a_{non-res} = 0.2$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	1506.06020 ATLAS-CONF-2017-053 1411.2921 1410.5404 1504.04188 1509.08059

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

ATLAS Exotics summary plots

