Searches for SUSY and Dark Matter from ATLAS and CMS

With an emphasis on Post-EPS results and t final states

Dan Guest On behalf of ATLAS and CMS

UC Irvine

September 1, 2017

SUSY + DM, ATLAS + CM

Theoretical Motivation

Dark Matter

Supersymmetry

- Mitigates t corrections to m_H
- Provides dark matter
- ► Also no evidence

dguest@cern.ch (UCI)

SUSY + DM, ATLAS + CMS

2 / 24

Dark Matter: Simplified Models

- \blacktriangleright Introduce a collection of simplified models
 - ▶ *Mediators* stand in for more complex theories

- Signature is $E_{\rm T}^{\rm miss}$ + associated particles
- ▶ Bonus: we can look for the visible mediator decay products!
- ▶ At LHC, grouped into mono-X, di-X searches
- ► Formalized via the LHC Dark Matter Forum (<u>arXiv:1507.00966</u>, <u>arXiv:1603.04156</u>, <u>arXiv:1705.04664</u>)

SUSY: Less simplified models

- ▶ Some are more model based, use SUSY variables
 - \blacktriangleright $m_{T2}, m_{CT}, \text{ etc}$
 - ▶ Used to extract SUSY with multiple DM particles in final state

- ▶ Some complicated enough that the signature becomes generic, e.g.
 - Multijet + $E_{\rm T}^{\rm miss}$: <u>SUSY-2016-13</u>
 - Multijet: SUS-16-040

Mono-Everything (Photon Shown)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2016-32/

The "Easy" Final States: Mono- γ , Mono-jet

- ► Require precise $E_{\rm T}^{\rm miss}$, object calibration
- Many interpretations

Next in Line: Mono Boson

- ▶ Rely heavily on large-R "fat" jets
- \blacktriangleright Include subjet *b*-tagging, substructure

Mono Top, Hadronic (PAS: EXO-16-051)

- Trigger: $H_{\mathrm{T}}^{\mathrm{miss}} > x \cap E_{\mathrm{T}}^{\mathrm{miss}} > x$
 - ▶ $x \in \{90, 100, 110, 120\}$, depending on lumi
- \blacktriangleright Veto leptons, extra b-jets
- One R = 1.4 jet passing top selection
- ► Two production modes: resonant and non-resonant

ATLAS Result

- Similar signal model at $\sqrt{s} = 8 \text{ TeV}$
- ▶ Single lepton, $m_{\rm T}$ -based selection
- ▶ <u>arXiv:1410.5404</u>

CMS Mono Top: Top Tagger

- \blacktriangleright Soft Drop Mass 110–210 GeV
- ► b tagged subjet
- ► Top BDT:
 - ► HEPTopTaggerV2
 - τ₃₂
 - ▶ 11 ECF ratios
- ▶ Similar to ATLAS approach
 - ► <u>ATLAS-CONF-2017-064</u>

Control Regions

- $t\bar{t}$ (mu + had), 6%
- ► $Z \rightarrow \mu \mu$ + jets, 7%

Single- μ Selection

Mono Top

- ▶ No deviation from standard model
- Previous limits on on similar models: $M_{\phi} \lesssim 700 \,\text{GeV}$

Two-body Decays https://cds.cern.ch/record/2203615

CMS Experiment at the LHC, CERN Data recorded: 2016-May-11 21:40:47.974592 GMT Run / Event / LS: 273158 / 238962455 / 150

2 l (ATLAS: <u>arXiv:1707.02424</u>, CMS: <u>EXO-16-031</u>)

- ▶ Look for bumps on a smooth background
- ▶ Rules lots of (simplified) parameter space

SUSY + DM, ATLAS + CM

Dijet (ATLAS: <u>arXiv:1703.09127</u>, CMS: <u>EXO-16-056</u>)

dguest@cern.ch (UCI) SUSY + DM. ATLAS + CMS Set

SUSY Searches

https://cds.cern.ch/record/2113241

 $2\tilde{t} \rightarrow 2\ell + 2b + E_{\mathrm{T}}^{\mathrm{miss}} (\underline{\mathrm{arXiv:}1708.03247})$

- ► Separate from $t\bar{t}$ by cutting hard on m_{T2} (arXiv:hep-ph/0304226)
- ► Still leaves "gaps" e.g. where $m_{\tilde{t}} m_t \approx m_{\tilde{\chi}_1^0}$

Model-based DM \tilde{t} Searches

Full Hadronic $\tilde{t} \to t + E_{\rm T}^{\rm miss}$ (arXiv:1707.03316)

- ► Focus on "compressed": small $\Delta m \equiv m_{\tilde{t}} m_{\tilde{\chi}_1^0}$
- ▶ Custom SV-based discriminant to identify *b*-jets with $p_{\rm T} < 20 \,{\rm GeV}$

3rd Generation Squark $\rightarrow c, b \; (arXiv:1707.07274)$

Similar final state to $\underline{arXiv:1407.0608}$

Summary: Simplified Mediator $(g_q = 0.25, g_\ell = 0.0)$

SUSY + DM, ATLAS + CMS

Summary Dark Matter

Simplified Mediator $(g_q = 0.1, g_{\ell}^{A} = 0.1, g_{\ell}^{V} = 0.01)$

SUSY + DM, ATLAS + CMS

Comparison to direct detection

 $g_q = 0.25, g_\ell = 0.0$

▶ In the low energy limit, we can compare to direct detection

$$\frac{g_{\chi}g_q}{Q^2 - M^2} = -\frac{g_{\chi}g_q}{M^2} \left(1 + \frac{Q^2}{M^2} + O\left(\frac{Q^4}{M^4}\right)\right) \approx -\frac{g_{\chi}g_q}{M^2}$$

Bonus Exclusions: Mono-H

- ▶ Showing ATLAS $H \rightarrow bb$ (arXiv:1707.01302)
- ▶ CMS results in backup

Selected CMS SUSY Results* - SMS Interpretation

ICHEP '16 - Moriond '17

22 / 24

ATLAS SUSY Searches* - 95% CL Lower Limits

May 2017

	Model	e, μ, τ, γ	Jets	E_{T}^{miss}	∫£ dt[fb	-1] Mass limit	$\sqrt{s} \equiv 7, 8$	TeV $\sqrt{s} \equiv 13 \text{ TeV}$	Reference
Inclusive Searches	$ \begin{split} & \text{MSUGRA/CMSSM} \\ & \vec{q}_{1}, \vec{q}_{-q} \vec{q}_{1}^{2} \\ & \vec{q}_{1}, \vec{q}_{-q} \vec{q}_{1}^{2} \\ & \vec{q}_{2}, \vec{q}_{-q} \vec{q}_{1}^{2} \\ & \vec{q}_{2}, \vec{k}_{-q} \vec{q}_{1}^{2}, \vec{q}_{2}^{2} \\ & \vec{g}_{2}, \vec{k}_{-q} \vec{q}_{1}^{2}, \vec{q}_{1}^{2} \\ & \vec{g}_{2}, \vec{k}_{-q} \vec{q}_{1}^{2} \vec{x}_{1}^{2} \\ & \vec{g}_{3}, \vec{k}_{-q} \vec{q}_{1}, \vec{k}_{-q} \vec{k}_{1}^{2} \\ & \vec{g}_{3}, \vec{k}_{-q} \vec{k}_{1}, \vec{k}, \vec{k}, \vec{k}, \vec{k}, \vec{k}, \vec{k}, k$	0-3 e, µ/1-2 τ 2 0 mano-jet 0 3 e, µ 0 1-2 τ + 0-1 ℓ 2 γ γ 2 e, µ (Z) 0	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 7-11 jets 0-2 jets 1 b 2 jets 2 jets 2 jets mono-jet	b Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 36.1 36.1 36.1 36.1 36.1 32 20.3 13.3 20.3 20.3	44 608 GeV 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.85 TeV 1.57 TeV 2.02 TeV 2.01 TeV 1.825 TeV 1.825 TeV 2.0 TeV 2.0 TeV 1.65 TeV 1.65 TeV 1.85 TeV 1.8 TeV	n(i))+m(j) m(7),-200 GeV, m(1* ges, i))+m(2** ges, i)) m(7),-250 GeV m(7),-250 GeV m(7),-260 GeV, m(7),-55 (m(7),+m(2))) m(7),-450 GeV rct(NLSP)-0.1 mm m(7),-450 GeV m(1),-153 GeV m(5),-153 GeV m(5),-153 GeV	1607.6555 ATUAS-CORF-5017.622 1604.0773 ATUAS-CORF-3017.622 ATUAS-CORF-3017.623 ATUAS-CORF-3017.033 1607.0567 1607.0567 1507.0563 ATUAS-CORF-3017.066 1503.03230 1502.0518
3 ⁿⁱ gen. <u>ĕ</u> med.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0-1 e, µ 0-1 e, µ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	2 2 2 2 1	1.92 TeV 1.97 TeV .37 TeV	m(t_1)<600 GeV m(t_1)<200 GeV m(t_1)<300 GeV	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
3rd gen. squarks direct production	$\begin{array}{l} b_1b_1, b_2 \rightarrow b\xi_1^D \\ b_1b_1, b_2 \rightarrow b\xi_1^T \\ T_1f_1, T_1 \rightarrow b\xi_1^T \\ T_1f_2, T_2 \rightarrow b\xi_1^T \\ \vec{n}, \vec{n}, \vec{n} \rightarrow \xi_1^T \\ \vec{n}, \vec{n} \rightarrow \xi_1^T \\ \vec{n}, \vec{n} \rightarrow \xi_1^T \\ \vec{n}, \vec{n}, \vec{n}, \vec{n} \rightarrow \xi_1^T \\ \vec{n}, \vec{n}, \vec{n} \rightarrow \xi_1^T \\ \vec{n}, \vec{n}, \vec{n}, \vec{n} \rightarrow \xi_1^T \\ \vec{n}, $	0 $2 e, \mu$ (SS) $0.2 e, \mu$ $0.2 e, \mu$ 0 $2 e, \mu$ (Z) $3 e, \mu$ (Z) $1.2 e, \mu$	2 b 1 b 1 -2 b 1 -2 jets/1 -2 mono-jet 1 b 1 b 1 b 4 b	Yes Yes Yes 4 Yes Yes Yes Yes Yes	36.1 36.1 1.7/13.3 10.3/36.1 3.2 20.3 36.1 36.1 36.1	B 590 GeV 117-100 GeV 200-720 GeV A 90-186 GeV 200-920 GeV A 90-186 GeV 200-920 GeV A 90-186 GeV 200-900 GeV A 90-323 GeV 150-600 GeV A 200-900 GeV 200-900 GeV		$\begin{split} m(\tilde{t}_{1}^{0}) & < 420 GeV \\ m(\tilde{t}_{1}^{0}) & < 200 GeV, \ m(\tilde{t}_{1}^{0}) & = m(\tilde{t}_{1}^{0}) + 100 GeV \\ m(\tilde{t}_{1}^{0}) & = m(\tilde{t}_{1}^{0}) + 56 GeV \\ m(\tilde{t}_{1}^{0}) & = 16 eV \\ m(\tilde{t}_{1}^{0}) & = 16 eV \\ m(\tilde{t}_{1}^{0}) & = 50 GeV \\ m(\tilde{t}_{1}^{0}) & = 0 GeV \\ m(\tilde{t}_{1}^{0}) & = 0 GeV \end{split}$	ATLAS-CONF-2017-038 ATLAS-CONF-2017-030 1202-1202, ATLAS-CONF-2016-077 1508.08816, ATLAS-CONF-2017-020 1604.07773 1403.522 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
EW direct	$ \begin{split} \tilde{t}_{k,R} \tilde{t}_{k,R}, \tilde{t} \rightarrow \ell f_1^0 \\ \tilde{k}_k^* \tilde{t}_1, \tilde{k}_1^+ \rightarrow \tilde{t}_1 \ell (f) \\ \tilde{k}_1^* \tilde{t}_1^* \tilde{k}_2^* \tilde{k}_1^+ \rightarrow \tilde{t}_1 \ell (f) \\ \tilde{k}_1^* \tilde{k}_1^* \tilde{k}_2^* \tilde{k}_2^+ \rightarrow \tilde{t}_1 \ell (fv), \tilde{k}_1^* \ell (fv) \\ \tilde{k}_1^* \tilde{k}_2^* \rightarrow W \tilde{t}_1^* \tilde{k}_1^* \\ \tilde{k}_1^* \tilde{k}_2^* \rightarrow W \tilde{t}_1^* \tilde{k}_1^* \\ \tilde{k}_1^* \tilde{k}_2^* \rightarrow W \tilde{t}_1^* \tilde{k}_1^* \\ \tilde{k}_1^* \tilde{k}_2^* \rightarrow \tilde{k}_1 \ell \\ GGM (wino NLSP) weak prod. \tilde{k}_1^* \\ GGM (bino NLSP) weak prod. \tilde{k}_1^* \end{split} $	2 e,μ 2 e,μ 2 τ 3 e,μ 2 ·3 e,μ e,μ,γ 4 e,μ γG 1 e,μ + γ γG 2 γ	0 0 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3	I 90-440 GeV \$2" 710 GeV \$2" 780 GeV \$2" 780 GeV \$2" 580 GeV \$2" 580 GeV \$2" 580 GeV \$4" 58 GeV \$6 H15-270 GeV 580 GeV	nı([*] 3)m ∨o nı(² 3)m	$\begin{split} m(\tilde{t}_{1}^{2}) = 0 \\ m(\tilde{t}_{1}^{2}) = 0, & m(\tilde{t}, \tilde{v}) = 0.5(m(\tilde{t}_{1}^{2}) + m(\tilde{t}_{1}^{2})) \\ m(\tilde{t}_{1}^{2}) = 0, & m(\tilde{t}, \tilde{v}) = 0.5(m(\tilde{t}_{1}^{2}) + m(\tilde{t}_{1}^{2})) \\ \mu(\tilde{t}_{1}^{2}), & m(\tilde{t}_{1}^{2}) = 0, & \tilde{d} \in \text{Scoupled} \\ m(\tilde{t}_{1}^{2}), & m(\tilde{t}_{1}^{2}) = 0, & \tilde{d} \in \text{Scoupled} \\ \mu(\tilde{t}_{1}^{2}), & m(\tilde{t}_{1}^{2}) = 0, & m(\tilde{t}, \tilde{v}) = 0.5(m(\tilde{t}_{1}^{2}) + m(\tilde{t}_{1}^{2})) \\ \mu(\tilde{t}_{1}^{2}) = 0, & m(\tilde{t}, \tilde{v}) = 0.5(m(\tilde{t}_{1}^{2}) + m(\tilde{t}_{1}^{2})) \\ \tau < t \text{fm} \end{split}$	ATLAS_CONF-2017-039 ATLAS_CONF-2017-039 ATLAS_CONF-2017-035 ATLAS_CONF-2017-039 ATLAS_CONF-2017-039 1501.07110 1405.5088 1507.05480 1507.05480
L ong-lived particles	$ \begin{array}{l} eq:linear_linea$	Disapp. trk dE/dx trk 0 trk dE/dx trk 1-2 µ 2 γ displ. ce/eµ/µ displ. vtx + jet	1 jet 1-5 jets	Yes Yes · · Yes ·	36.1 18.4 27.9 3.2 19.1 20.3 20.3 20.3	1 430 GeV 2 495 GeV 2 850 GeV 2 537 GeV 3 537 GeV 2 440 GeV 3 440 GeV 3 1.0 TeV 3 1.0 TeV	1.58 TeV 1.57 TeV	$\begin{split} m(\tilde{\tau}_{1}^{2}) &= (\tilde{\tau}_{1}^{2}) = 160 \text{ MeV}, \tau(\tilde{\tau}_{1}^{2}) = 0.2 \text{ ns} \\ m(\tilde{\tau}_{1}^{2}) = 0.0 \text{ MeV}, \tau(\tilde{\tau}_{1}^{2}) > 15 \text{ ns} \\ m(\tilde{\tau}_{1}^{2}) = 100 \text{ GeV}, 10 \text{ µs} < \tau(\tilde{s}) < 100 \text{ s} \\ m(\tilde{\tau}_{1}^{2}) = 100 \text{ GeV}, \tau > 10 \text{ ns} \\ 10 \leq tap < 50 \text{ ns} \\ 10 \leq tap < 50 \text{ s} \\ 10 \leq tap < 50 \text{ s}, SPS8 \text{ model} \\ \tau < \tau(\tilde{\tau}_{1}^{2}) < 740 \text{ mm}, m(\tilde{s}) = 1.3 \text{ FeV} \end{split}$	ATLAS CONF-017-017 1508.05332 1310.8584 1608.05129 1604.0420 1411.8785 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{l} LFV pp {\rightarrow} \tilde{r}_r + X, \tilde{r}_r {\rightarrow} e\mu/er/\mu\tau \\ Blinear RPV CMSSM \\ \tilde{r}_r^{*} \tilde{r}_r^{*} \to \psi \tilde{r}_r^{*} \mathcal{R}_r^{*} = \mathcal{R}_r^{*} $	$e\mu,e\tau,\mu\tau$ $2 e,\mu$ (SS) $4 e,\mu$ $3 e,\mu + \tau$ $0 4 - 0 4 - 1 e,\mu 8$ $1 e,\mu 8$ $0 2 e,\mu$	0-3 b 5 large-R je 5 large-R je 10 jets/0-4 10 jets/0-4 2 jets + 2 b	Yes Yes Yes ets - ets - b -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 36.1 15.4 36.1	5. 4.7 1.14 Te 4.7 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	1.9 TeV 1.45 TeV V 1.55 TeV 1.55 TeV 1.65 TeV -1.45 TeV	$\begin{split} \lambda_{111}''''''''''''''''''''''''''''''''''$	1907.08075 1404.2500 ATLAS.COMF.0016.075 1405.5086 ATLAS.COMF.2016.057 ATLAS.COMF.2016.057 ATLAS.COMF.2016.057 ATLAS.COMF.2017.013 ATLAS.COMF.2017.013 ATLAS.COMF.2017.036
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\ell}_1^0$	0	2 c	Yes	20.3	č 510 GeV		m(i ⁰)<200 GeV	1501.01325
Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on 10 ⁻¹ 1 Mass scale [TeV] similified models c.f. refix for the assumptions made									

dguest@cern.ch (UCI)

23 / 24

ATLAS Preliminary

Wrap Up

- ▶ No new physics, but...
- ▶ Lots of new ways to look for physics
 - ▶ Mono-X searches: Mono-t, Mono-H
 - ▶ Two body decays from simplified DM models
 - Trigger scouting
 - ISR + dijet
- ▶ Also many new SUSY searches
- \blacktriangleright A lot has happened since EPS 2017

BONUS SLIDES

Multijet + Large R Jet

$\gamma + E_{\rm T}^{\rm miss} + H_{\rm T} ({\rm arXiv:1707.06193})$

27 / 24

CMS Mono-H

